характеристики, основные виды и показатели

Сегодня все больше автолюбителей предпочитают авто с дизельными моторами. Основная причина – экономичность, надежность, простота эксплуатации. Но есть и недостатки, которые перечеркивают все плюсы – плохое топливо для дизельных двигателей и нехватка знаний о солярке у отечественных автолюбителей. Как следствие, возникает множество проблем в эксплуатации – загрязнение топливной системы, снижение мощности двигателя, замерзание солярки в морозную погоду и так далее. Чтобы избежать неприятностей, стоит знать о дизтопливе как можно больше и главное – уметь его выбирать.

Характеристики дизельного топлива

По своей структуре топливо для дизельных двигателей отличается от привычного бензина. В народе такой состав называется «соляркой». По сути, это смесь углеводородов, которые формируются путем перегонки нефтепродуктов и выбора из них необходимых фракций. В основе дизельного топлива углеводороды, которые отличаются высокой температурой кипения – около 300-350 градусов Цельсия.
Столь разные составы бензина и дизеля объясняют и различность подходов в работе двигателей. К примеру, в бензиновом моторе воспламенение топлива происходит от искры (источник последней – свеча зажигания). Для бензина ключевое значение имеет устойчивость к детонации, то есть октановое число. В свою очередь, дизельный двигатель работает за счет создания более мощной степени сжатия.

Основной параметр, характеризующий качество смеси – цетановое число. Именно по нему можно судить, насколько быстро воспламеняется дизтопливо в цилиндре силового узла. Чем больше цетановое число, тем меньше затрат времени на воспламенение горючей смеси и тем эффективнее работа двигателя. Собственно, цетановое число отображает временную задержку между впрыском топливной смеси в камеру сгорания цилиндров и ее воспламенением.

В случае если цетановое число ниже 40, то работа двигателя будет неудовлетворительной. Появляются сильные задержки при воспламенении, падает мощность, возникает детонация, снижается общий ресурс мотора. У топлива нормального качества цетановое число должно находиться на уровне 48-52. Что касается солярки более высокого качества, то ее цетановое число и вовсе может достигать 53-55.
Российские стандарты в отношении соляры считаются одними из самых «мягких». Здесь допускается применение дизельного топлива с цетановым числом от 48 единиц и выше (для зимнего топлива). Но есть исключения. К примеру, для некоторых зимних видов солярки, имеющих депрессорные присадки в составе, разрешается выпуск и продажа соляры с описываемым нами параметром от 40 и более.
Хотелось бы отметить, что слишком высокое цетановое число – также не очень хорошо. К примеру, если показатель будет превышать отметку «60», то топливо просто не будет успевать сгорать, повышается дымность выхлопа, увеличивается «прожорливость» транспортного средства и так далее.

Ещё кое-что полезное для Вас:

  • Какие бывают марки бензина и чем они отличаются?
  • Инжекторный двигатель: устройство, принцип работы, конструкция
  • Какой масляный фильтр выбрать для двигателя?

Основные виды топлива для дизельных двигателей

Часто новички забывают о главном недостатке солярки – его способности замерзать уже при небольшом морозе. В такой ситуации авто не заведется, а для решения проблемы приходится применять целый комплекс мер по прогреву основных элементов и повышению температуры солярки в системе. Чтобы этого не допустить, важно правильно выбирать дизельное топливо, знать его виды и особенности.
Из основных классов солярки можно выделить:

1. Летнее дизтопливо

Его особенность – жидкое состояние при температуре от «нуля» градусов Цельсия и более. К основным параметрам можно отнести:

  • цетановое число, как правило, от 45 градусов Цельсия и более;
  • вязкость. При температуре 20-22 С составляет 4-6 кв. мм/с;
  • плотность. При температуре 20-22 С составляет до 850-860 кг/куб метр;
  • температура полного замерзания – от -10 градусов Цельсия и ниже. На практике такое топливо может застывать и раньше (от -3-5 градусов Цельсия).

Главный недостаток летнего топлива – появление конденсата влаги внутри бака, отслаивание влаги и ее скопление в нижней части емкости. Подобная особенность доставляет массу проблем автолюбителям:

  1. летом водная «пробка» может блокировать топливную систему и привести к сбоям в работе;
  2. зимой влага замерзает и обездвиживает авто даже при минимальном морозе. Вот почему еще до наступления холодов летнюю солярку нужно полностью сливать из бака и заменять его на более качественный зимний состав.
2. Зимняя солярка

Данный вид солярки пользуется наибольшей популярностью в России. При этом нельзя забывать о главной его особенности – замерзании при достижении 30 градусов мороза. Для регионов с суровой зимой такое топливо для дизельных двигателей – не лучший вариант.
К основным характеристикам зимнего дизтоплива можно отнести:

  • цетановое число – от 44-45;
  • плотность – до 830-840 кг/кубический метр;
  • вязкость – от 1,9 до 4,9-5,0 кв.мм/с.

Параметры вязкости и плотности приведены для температуры 20-22 градусов Цельсия.ъ

3. Арктическая

Это лучший вариант для районов, где температура на улице может опускаться намного ниже тридцати градусов. Такая солярка способна достойно выдержать морозы до -50 градусов Цельсия, что существенно ниже, чем у конкурентов. Из основных характеристик арктического топлива можно выделить:

  • цетановое число – от 40;
  • плотность – до 820-830 кг/куб. метр;
  • вязкость – от 1,5 до 4,0 кв. мм/с.

Параметры вязкости и плотности, как и в предыдущих случаях, приведены для температуры в 20-22 градуса Цельсия.

Видео: Как завести замерзший дизельный мотор?!

Стандарты экологичности топлива для дизелей

  1. Евро-3 – это уже устаревший стандарт дизельного топлива, который был актуален до 2005 года (в ЕС). После появления новых требований Евро-3 перестало удовлетворять нормам, и было снято с производства;
  2. Евро-4 – сравнительно новый стандарт, который пришел на смену вышедшего из оборота стандарта Евро-3. В ЕС Евро-4 начал использоваться с 2005 года. С начала 2013 года весь транспорт, который завозится в Россию, должен соответствовать данному классу. Единственное исключение – авто, выпущенные до конца 2012 года. Для них еще допускается соответствие более старому стандарту;
  3. Евро-3. В ближайшее время планируется вообще запретить эксплуатацию авто со стандартом ниже Евро-4;
  4. стандарт Евро-5 является самым новым. В ЕС его соблюдение обязательно для грузовых авто, выпущенных начиная с 10.2008 года, а для легковых авто – с 09.2009 года. Действует стандарт и на территории РФ. В частности, он распространяется на все автомобили, которые ввозятся на территорию государства;
  5. К особому виду топлива можно отнести биодизель. Его особенность – наличие в составе животных и растительных жиров. Собственно, сама структура дизтоплива является полностью натуральной, а состав является результатом переработки сои, рапса и прочих растений. Особенность топлива в том, что оно может применяться как в чистом виде, так и в качестве специальной добавки к обычным видам топлива.

Распознать биодизель можно по специальному обозначению. Так, в США о наличии биодизеля в составе можно судить по наличию буквы «В» в названии. Далее стоит цифра, которая показывает процентное содержание специального состава в общей массе. Что касается цветанового числа, то для такого вида топлива оно составляет около 50-51.

Эксплуатационные показатели дизельного топлива

К основным показателям топлива для дизельных двигателей можно отнести:

  1. Цетановое число (о нем мы говорили выше). Его величина позволяет судить о будущих экономических показателях силового узла и его мощности. Чем больше данный параметр, тем лучше работает двигатель;
  2. Фракционный состав позволяет определить, насколько качественно будет сгорать топливо, какова токсичность отработанных газов, каким будет уровень дымности и так далее;
  3. Низкотемпературные свойства. Данный параметр определяет температуру замерзания топлива и особенности его хранения;
  4. Вязкость и плотность. От этих характеристик зависит, насколько качественной будет подача топлива к двигателю, его распыление и фильтрация;
  5. Температура вспышки. Этот параметр определяет, насколько безопасно использовать дизтопливо в дизельных моторах;
  6. Уровень чистоты. Чем чище соляра, тем больший ресурс будут иметь различные фильтры авто и ЦПГ силового узла;
  7. Наличие серы. Подобная примесь может привести к образованию коррозии, повышенному нагару и износу на внутренних элементах двигателя и топливной системы.
Вывод

Если вы отдали предпочтение автомобилю с дизелем, то важно как можно больше знать о топливе для них, особенностях его выбора и эксплуатации. В этом случае можно добиться лучшей экономичности авто, исключить проблемы с лишней водой в баке и замерзанием топлива.

Свойства и виды дизельного топлива – petrolcards.ru

Дизельное топливо (ДТ) – одно из наиболее популярных видов горючего, что используется для двигателей внутреннего сгорания. Оно более экономичное, чем бензин, к тому же стоит дешевле. Поэтому все больше автомобилей – не только грузовых, но и легковых, сегодня используют разные виды дизельных топлив. Какие характеристики у этого горючего и что надо знать, выбирая топливо, читайте далее.

Виды дизельного топлива

Качественно-количественный состав и физико-химические характеристики топлива для дизельных двигателей обуславливают его классификацию. Различают три основных марки ДТ:

  • Л – летнее, используется преимущественно в теплый сезон, когда температура окружающей среды выше 0С;
  • Е – межсезонное, которое может использоваться круглогодично, если температура окружающей среды не ниже -15С;
  • З – зимнее, применяемое в холодное время года, когда температура воздуха выше -20С;
  • А – арктическое, которое можно использовать в особо суровых условиях при температуре окружающего воздуха до -50С. 

Эти виды топлива различаются между собой фракционным составом, вязкостью, плотностью, температурой испарения и застывания, а также иными характеристиками, о которых мы поговорим ниже.

Также существует подразделение топлива на экологические классы, что определяется содержанием соединений серы в выхлопе. Используемые у нас в стране классы – от К2 до К5 – соответствуют европейской маркировке. То есть топливо К4 – это Евро 4 и т.д.

Цетановое число дизельного топлива

Это основное свойство дизельного топлива, аналогичное октановому числу бензина. Цетановое число определяет воспламеняемость горючего. Чем оно выше, тем более качественным считается топливо, так как сгорает оно более равномерно и с низкой скоростью нарастания давления в двигателе. Это положительно сказывается на ходовых характеристиках авто, эксплуатационных свойствах и долговечности ДВС.

Но повышение цетанового числа сверх рекомендованного для конкретного двигателя может наоборот привести к возрастанию нагрузки на него и снижению характеристик, падению экономичности и повышению уровня дымности отработанных газов.

Цетановое число топлива определяется опытным путем как объемная доля количества цетана в смеси с альфа-изомером метилнафталина в топливе. Для сравнения используют эталонную смесь с известным содержанием цетана и метилнафталина. Этот показатель топлива напрямую зависит от углеводородного состава горючего и определяет мощность, экономические показатели работы двигателя. Цетановое число дизельного топлива связано линейной зависимостью с его температурой кипения.

У топлива для дизельных автомобилей, реализуемого на отечественном рынке показатель цетанового числа колеблется в пределах от 30 до 80. Для горючего, идущего на экспорт, а также иностранного ДТ применяют другой показатель – дизельный индекс, который может иметь значение от 20 до 80. Численно эти характеристики примерно соизмеримы.

Фракционный состав топлива

Этот показатель определяет качественно-количественный состав горючего, а также влияет и на цетановое число. Чем больше легких углеводородных фракций содержится в топливе, тем меньше кислорода необходимо для образования горючей смеси. Соответственно, тем быстрее топливо воспламеняется и тем полнее идет процесс его сгорания. Таким образом, ДТ, богатое легкими углеводородами, более экономично в использовании и имеет высокие экологические показатели.

Влияние фракционного состава у дизельного топлива не столь велико для двигателей с предкамерным и вихрекамерным смесеобразованием. А вот ходовые и экономические показатели ДВС с непосредственным впрыском в силу конструктивных особенностей сильно зависят от фракционного состава топлива.

Вязкость и плотность топлива

Это очень близкие физические показатели, находящиеся в прямой зависимости. Чем ниже вязкость топлива (и, соответственно, его плотность), тем лучше оно испаряется и распыляется, что способствует лучшему и более простому смесеобразованию. Наоборот, повышение плотности и вязкости горючего ведет к росту диаметра капель в топливной смеси, что негативно сказывается на качестве и препятствует полному сгоранию.

Но и слишком низкий показатель вязкости топлива имеет негативные последствия. Такое горючее, вследствие своей высокой текучести, просачивается между движущимися элементами топливной системы и не обеспечивает требуемого внутреннего давления, что снижает производительность насоса и увеличивает нагрузку на него.

Нормальной вязкостью дизельного топлива считается показатель в пределах 1,8-7,0 мм/с. Изменение вязкости в этих границах практически не сказывается на мощности, экономичности и долговечности дизельного мотора.  

Чистота топлива

Этот качественный показатель определяется коэффициентом фильтруемости горючего. Для его измерения используют специализированные бумажные фильтры, через которые несколько раз пропускают порции топлива, измеряя время полной фильтрации. Чем меньше в ДТ примесей, тем быстрее оно фильтруется. Негативное влияние на свойства топлива оказывают содержащиеся в нем:

  • Вода. Она может составлять 0,002-0,008% топлива по объему. Этот показатель считается нормальным и не влияет на характеристики горючего. Повышение его до 0,01% приводит к падению мощности, росту расхода топлива и снижению долговечности движущихся элементов.
  • Поверхностно-активные вещества (ПАВ). Основными соединениями этого типа являются мыла нафтеновых кислот, которые повышают вязкость топлива и негативно сказываются на его эксплуатационных свойствах.
  • Смолистые соединения. Они снижают цетановое число и препятствуют полному сгоранию топлива. Использование горючего с эфирными и смолистыми примесями влечет образование нагара на свечах и стенках цилиндров.
  • Мелкодисперсные твердые примеси. В качественном топливе их содержание составляет не более 0,002-0,004%. Больший показатель – это потенциальная опасность повреждения движущихся элементов топливной системы.

Работа на дизельном топливе с большим количеством примесей – воды, грязи, ПАВ – снижает не только мощностные и экономические показатели, но и увеличивает износ основных элементов топливной системы. 

Другие важные характеристики дизеля 

Еще одно важное свойство ДТ – температура вспышки. Для дизельных двигателей (особенно, с непосредственным впрыском) очень важно, при какой температуре воспламеняются топливная смесь. Подбор оптимальной температуры способствует полному сгоранию дизельного горючего. Если же температура слишком низкая (или наоборот высокая), то некоторые составные вещества – в основном непредельные углеводороды – сгорают не полностью, образуя на поверхности цилиндров, свечах и других элементах двигателя нагар.

Не менее важны и низкотемпературные характеристики топлива, что определяет климатическую зону его использования. На этот показатель влияет углеводородный состав. Легкие фракции низкой плотности и высокой текучести замерзают (загустевают) при более низких температурах. Но производство таких топлив более затратно. Для снижения стоимости к топливу обычно добавляют так называемые депрессорные присадки – вещества, понижающие температуру застывания горючего. Такое топливо отличается меньшим расходом и повышенными мощностными характеристиками при низкой температуре окружающей среды. Кроме того, на таком горючем дизельные автомобили лучше и стабильнее работают, быстрее заводятся.   

Еще немного о дизельном топливе

Как видим, качественные характеристики и состав топлива очень важны для работы топливной системы и общих характеристик двигателя в целом. В основном это касается мощности и расхода. Но даже если эти показатели не столь существенны для вас, следует помнить, что некачественным топливом очень просто загубить двигатель – в результате повышенной нагрузки и износа движущихся элементов.

Что такое дизельное топливо

Что такое дизельное топливо

В. Адди Маевски, Ханну Яаскеляйнен

Это предварительный просмотр статьи, ограниченный некоторым исходным содержанием. Для полного доступа требуется подписка DieselNet.
Пожалуйста, войдите под номером , чтобы просмотреть полную версию этого документа.

  • Проверка свойств топлива: качество воспламенения
  • Тестирование свойств топлива: смазывающая способность
  • Испытание свойств топлива: работоспособность при низких температурах
  • Проверка свойств топлива: сера
  • Присадки к дизельному топливу
  • Свойства топлива и выбросы

Реферат : Дизельное топливо представляет собой смесь углеводородов, полученную путем перегонки сырой нефти. Важные свойства, которые используются для характеристики дизельного топлива, включают цетановое число (или цетановый индекс), летучесть топлива, плотность, вязкость, работоспособность при низких температурах и содержание серы. Спецификации дизельного топлива различаются для разных марок топлива и в разных странах.

  • Переработка сырой нефти
  • Компоненты дизельного топлива
  • Свойства дизельного топлива
  • Дизельное топливо со сверхнизким содержанием серы (ULSD)
  • Типовые характеристики

Зарождение нефтехимической промышленности относится к 1850-м годам. Первые нефтеперерабатывающие заводы были построены Игнацием Лукасевичем недалеко от Ясло, Польша (тогда под властью Австрии) в 1854–1856 годах [3410] . Продукты переработки использовались в керосиновой лампе Лукасевича, а также в искусственном асфальте, машинном масле и смазочных материалах. Несколько лет спустя, в 1859 г., сырая нефть была обнаружена в Пенсильвании в Соединенных Штатах. Первым продуктом, очищенным от сырой нефти в Пенсильвании, также был керосин, использовавшийся в качестве лампового масла [1149] .

Поскольку только часть сырой нефти можно было переработать в керосин, на первых нефтеперерабатывающих заводах оставалось некоторое количество побочных продуктов нефтепереработки. Эти побочные продукты нефти привлекли внимание Рудольфа Дизеля, изобретателя поршневого двигателя с воспламенением от сжатия. Дизель, чья первая концепция двигателя была разработана для использования угольной пыли в качестве топлива, осознал, что жидкие нефтепродукты могут быть лучшим топливом, чем уголь. Двигатель был переработан для работы на жидком топливе, в результате чего в 189 г. был создан успешный прототип.5. И двигатель, и топливо по-прежнему носят название Diesel.

Дизельное топливо представляет собой смесь углеводородов с температурой кипения от 150 до 380°С, получаемых из нефти. Сырая нефть состоит из углеводородов трех основных классов: (1) парафиновые, (2) нафтеновые (или циклопарафиновые) и (3) ароматические углеводороды. Ненасыщенные углеводороды (олефины) редко встречаются в сырой нефти. Следует отметить, что термины «парафиновый» и «нафтеновый» звучат устарело; мы используем их, потому что они все еще распространены в нефтехимической промышленности. В современной химии соответствующие группы углеводородов называются алканы и циклоалканы .

Состав нефти может варьироваться от маловязких светлоокрашенных коричневатых или зеленоватых нефтей низкой плотности до густых и черных нефтей, напоминающих расплавленную смолу. Тонкие нефти с низкой плотностью называются «высокоплотными» сырыми нефтью, а густые с высокой плотностью — «низкоплотными» сырыми нефтью. Это соглашение, довольно запутанное для тех, кто не связан с нефтяной промышленностью, объясняется использованием «плотности в API», которая является свойством топлива, обратно пропорциональным его плотности, уравнение (5).

В процессе переработки сырая нефть превращается в транспортное топливо — бензин, топливо для реактивных двигателей и дизельное топливо — и другие нефтепродукты, такие как сжиженный нефтяной газ (СНГ), топливо для отопления, смазочное масло, парафин и асфальт. Сырая нефть с высокой плотностью содержит больше более легких продуктов, необходимых для производства транспортного топлива, и, как правило, имеет более низкое содержание серы. Современные процессы нефтепереработки также могут преобразовывать сырую нефть с низкой плотностью в более легкие продукты за счет дополнительных затрат на более сложное технологическое оборудование, большее количество этапов обработки и больше энергии.

Современные процессы нефтепереработки можно разделить на три категории:

  • Разделение: Сырая нефть разделяется на компоненты на основе некоторых физических свойств. Наиболее распространенным процессом разделения является перегонка, при которой компоненты сырой нефти разделяются на несколько потоков в зависимости от их температуры кипения. Процессы разделения не изменяют химическую структуру компонентов сырья.
  • Преобразование: Эти процессы изменяют молекулярную структуру компонентов сырья. Наиболее распространенными процессами преобразования являются каталитический крекинг и гидрокрекинг, которые, как следует из названий, включают «крекинг» больших молекул в более мелкие.
  • Модернизация: Обычно используется в реформулированных топливах для удаления соединений, присутствующих в следовых количествах, которые придают материалу некоторые нежелательные свойства. Наиболее часто используемым процессом повышения качества дизельного топлива является гидроочистка, которая включает химические реакции с водородом.

Схема современного нефтеперерабатывающего завода с выделенными потоками дизельного топлива показана на рисунке 1 [1149] . В первичной дистилляционной колонне, работающей при атмосферном давлении, сырая нефть разделяется на ряд потоков со все более высокой температурой кипения, которые называются прямогонные продукты (например, прямогонное дизельное топливо ). Материал, который слишком тяжел для испарения при атмосферной перегонке, удаляется из нижней части колонны (так называемые «атмосферные остатки»). На большинстве нефтеперерабатывающих заводов атмосферные остатки дополнительно фракционируют путем второй перегонки, проводимой под вакуумом.

Рисунок 1 . Дизельные потоки на современном НПЗ

АГО — газойль атмосферный; ВГО — вакуумный газойль; HCO — масло тяжелого цикла

(любезно предоставлено Chevron)

Количество и качество потоков, отбираемых при перегонке, зависит от химического состава сырой нефти. Сырая нефть также дает долю бензина, дизельного топлива, мазута и других продуктов, которая обычно отличается от структуры спроса на продукцию на конкретных рынках. Единственный способ сбалансировать схему производства на нефтеперерабатывающем заводе с потребностями рынка — это процессы последующей конверсии. В этих процессах конверсии большие молекулы углеводородов разбиваются на более мелкие под действием тепла, давления или катализаторов. На нефтеперерабатывающих заводах применяют термический крекинг (висбрекинг и коксование), каталитический крекинг и гидрокрекинг (также с использованием катализатора, но проводимый под высоким давлением водорода) для увеличения выхода целевых продуктов за счет крекинга нежелательных тяжелых фракций. Конечные продукты получают смешивание продуктов конверсии (крекинг-компонентов) с потоками первичной перегонки.

Как смешанные, так и прямогонные продукты могут потребовать различной степени облагораживания для снижения содержания серы, азота и других соединений. Ряд процессов, называемых гидрообработкой , используют водород с соответствующим катализатором для улучшения потоков нефтепереработки. Гидрообработка может варьироваться от мягких условий гидроочистки , при которой удаляются химически активные соединения, такие как олефины и некоторые соединения серы и азота, до более жестких условий гидроочистка , которая насыщает ароматические кольца и удаляет почти все соединения серы и азота.

Как видно из рисунка 1, дизельное топливо, используемое на автомобильном транспорте, представляет собой дистиллятное топливо , т. е. не содержит (некрекинговых) остаточных фракций. Остаточные нефтяные материалы содержатся в печном топливе и судовом топливе — последнее известно как тяжелое жидкое топливо (HFO) или бункерное топливо [5702] . Эти продукты обладают свойствами, в значительной степени отличными от свойств дистиллятных дизельных топлив.

###

Испытание свойств топлива: смазывающая способность

Испытание свойств топлива: смазывающая способность

Ханну Яаскеляйнен

Это предварительный просмотр статьи, ограниченный некоторым исходным содержанием. Для полного доступа требуется подписка DieselNet.
Пожалуйста, войдите под номером , чтобы просмотреть полную версию этого документа.

Abstract : Смазывающая способность дизельного топлива может быть измерена в ходе испытаний транспортных средств, насосных установок или стендовых испытаний. Наиболее важными стендовыми испытаниями являются установка с высокочастотным возвратно-поступательным движением (HFRR) и анализатор смазывающей способности шарика на цилиндре при истирании (SLBOCLE). Поскольку различные испытания основаны на различных типах механизмов износа, корреляция между методами не всегда является удовлетворительной.

  • Обзор
  • ASTM D6079 HFRR
  • ИСО 12156-1 ХФРР
  • ASTM D6078 SLBOCLE
  • Корреляция между методами
  • Влияние добавок

Термин смазывающая способность часто определяется как способность смазки — в данном случае дизельного топлива — минимизировать трение между поверхностями и их повреждение при относительном движении под нагрузкой. Как правило, тесты, используемые для оценки смазывающей способности дизельного топлива, пытаются создать условия граничной смазки. В частности, результаты испытаний, которые количественно определяют смазывающую способность топлива, являются мерой способности топлива минимизировать трение между поверхностями и/или повреждение поверхностей при относительном движении в условиях граничной смазки.

Для измерения смазывающей способности топлива были разработаны различные типы методов:

  • Испытания транспортных средств. При испытании транспортного средства [1241] транспортное средство эксплуатируется на топливе в течение определенного периода времени или определенного расстояния. Затем компоненты топливной системы можно разобрать и проверить на предмет износа. Этот тест имеет то преимущество, что он наиболее репрезентативен для реальных условий и может измерять все возможные отказы, связанные с износом, а не только те, которые связаны с граничной смазкой. Однако испытания такого рода очень дороги и требуют много времени и не позволяют проводить испытания большого количества комбинаций топлива.
  • Испытания насосной установки. Альтернативой испытанию на транспортном средстве является испытание на насосной установке (ASTM D6898). 0 [1523] . При испытаниях на стенде ТНВД устанавливается на испытательный стенд и приводится в действие электродвигателем. Топливо циркулирует через насос в течение заданного периода времени. Затем насос и любое другое оборудование, присоединенное к нему, можно разобрать и проверить на предмет износа и других вредных воздействий. Преимущество этого испытания заключается в том, что оно менее затратно, чем полное испытание транспортного средства, при этом сохраняя возможность проверки многих отказов, связанных с износом, помимо тех, которые связаны с граничной смазкой. Это по-прежнему требует много времени и денег в эксплуатации. Для одного теста может потребоваться до 500-1000 часов тестового времени. Испытания на насосной установке часто необходимы для оценки эффективности гораздо более простых стендовых испытаний.
  • Стендовые испытания. Для проведения быстрых и относительно недорогих измерений смазывающей способности топлива был разработан ряд стендовых испытаний, которые пытаются воссоздать условия граничной смазки, аналогичные тем, которые используются в оборудовании для впрыска топлива:
    • Анализатор смазывающей способности шарика на цилиндре (BOCLE) был разработан для авиационного топлива для реактивных двигателей. Он продолжает использоваться для этого приложения. Он особенно полезен для измерения влияния топлива и присадок на окислительный износ — важный механизм износа в авиационных топливных системах.
    • Анализатор смазывающей способности шарика на цилиндре (SLBOCLE) был разработан в середине 1990-х годов в ответ на отказы дизельной топливной системы в результате внедрения дизельного топлива с низким содержанием серы. Он аналогичен тесту BOCLE, но с изменениями, которые делают его менее чувствительным к окислительному износу и более чувствительным к истиранию клея.
    • Высокочастотная поршневая установка (HFRR) также была разработана в 1990-х годах для оценки смазывающей способности дизельного топлива. В зависимости от тестируемого топлива он может создавать широкий спектр механизмов износа.
    • Метод Ball on Three Disks (BOTD) появился достаточно недавно и все еще находится в стадии разработки. Это компактная и более экономичная версия аппарата «Мяч на трех сиденьях».

Из методов стендовых испытаний HFRR чаще всего используется для оценки дизельного топлива. SLBOCLE был широко распространен в 1990-х годах, но примерно с 2005 года практически не использовался. Оба метода более подробно обсуждаются в следующих разделах, а их основные характеристики перечислены в таблице 1. Необходимо соблюдать осторожность при интерпретации результатов испытаний на смазывающую способность любого из этих стендовых испытаний. Они воспроизводят лишь ограниченное количество механизмов износа, которые могут повлиять на работу дизельных топливных систем. Хотя механизмы износа, которые они воспроизводят, обычно важны для дизельных топливных систем, их относительная важность в любой конкретной топливной системе очень сильно зависит от конструкции топливной системы и условий эксплуатации.

9 0215

902 04

9 0204

Таблица 1
Краткое изложение основных характеристик различных лабораторных методов испытаний на смазывающую способность
  ASTM D6078 SLBOCLE ASTM D6079 HFRR ISO 12156-1 HFRR
Параметр мин. нагрузка, при которой коэффициент трения ≥ 0,175 след износа на шарике след износа на шарике
Температура жидкости 25°C 25 или 60°С. 60°C предпочтительнее, если не возникает проблем с летучестью или разложением 60°C
Объем жидкости 50 мл 2 мл 2 мл
Воздух 25°C, относительная влажность 50 % > 30 % относительной влажности см. рис. 6

200 г 200 г
Продолжительность 60 с при каждом увеличении нагрузки 75 мин 75 мин
Шарик: стационарный возвратно-поступательный, 50 Гц / ход 1 мм возвратно-поступательный, 50 Гц / ход 1 мм
— диаметр 12,7 мм 6 мм 6 мм
— материал AISI E-52100 AISI E- 52100 хромсодержащая сталь AISI E-52100
— отделка 5-10 EP R a < 0,05 мкм R a < 0,05 мкм
— твердость твердость по Роквеллу C 64-66 твердость по Роквеллу C 58-66 твердость по Роквеллу ness C 58-66
Кольцо/Диск: Кольцо Диск, стационарный Диск, стационарный
— скорость 52 5 об/мин
— размер 49,2 мм 10 мм 10 мм
— материал SAE 8720 AISO E-52100 хромистая легированная сталь, отожженная.