Назначение и принцип действия асинхронного двигателя

Подробности
Категория: Электрические машины
  • электродвигатель

Назначение асинхронного электродвигателя

Система трехфазного переменного тока, позволившая создать устройства для получения вращающегося магнитного потока, вызвала появление наиболее распространенного в данное время электродвигателя, называемого асинхронным. Это название обусловлено тем, что вращающаяся часть машины — ротор — всегда вращается со скоростью, не равной скорости магнитного потока, т.е. не синхронно с ним. Изготовляемый на мощности от долей ватта до тысяч киловатт при напряжениях 127, 220, 380, 500, 600, 3000, 6000, 10000 В, этот электродвигатель прост по конструкции, надежен в эксплуатации и дешев по сравнению с другими типами. Он применяется во всех видах работ, где не требуется поддержания постоянной скорости вращения, а также в быту, в однофазном исполнении для малой мощности.

Принцип действия асинхронного двигателя

Рассмотрим устройство, показанное на рис.  Оно состоит из постоянного магнита 1, медного диска 2, рукоятки 3 и подшипников 4. Если вращать магнит при помощи рукоятки, то медный диск начинает вращаться в ту же сторону, но с меньшей частотой. Медный диск можно рассматривать как бесчисленное множество замкнутых витков; при вращении магнита 1 его магнитные силовые линии (м.с.л.) пересекают витки диска, и в витках наводится электродвижущая

Модель асинхронного двигателя

Обозначим:

п, — частота вращения магнита (синхронная частота), об/мин;
п2 — частота вращения диска, об/мин; п — разность частот вращения магнита и диска, об/мин.

Частота вращения диска меньше частоты вращения магнита, и, следовательно, диск вращается с несинхронной (асинхронной) частотой. Разница частот магнита и диска представляет собой частоту, с которой м.с.л. пересекают витки диска. Отношение разницы частот к синхронной частоте называется скольжением. Скольжение может быть выражено в долях единицы или в процентах:

В двигателях вращающееся магнитное поле создается трехфазным током, протекающим по обмотке статора, а роль диска выполняет обмотка ротора. Активная сталь статора и ротора служит магнитопроводом, уменьшающим в сотни раз сопротивление магнитному потоку.

Под влиянием подведенного к статору напряжения сети Ul в его обмотке протекает ток I,. Этот ток создает вращающийся магнитный поток Ф, замыкающийся через статор и ротор. Поток создает в обеих обмотках э.д.с. Е{ и Е2, как в первичной и вторичной обмотках трансформатора. Таким образом, асинхронный двигатель подобен трехфазному трансформатору, в котором э.д.с. создаются вращающимся магнитным потоком.

Рис. 2 . Работа асинхронного двигателя при cos ф2 = 1

Пусть поток вращается в направлении движения стрелки часов. Под влиянием э.д.с. Е2 в обмотке ротора пойдет ток I2, направление которого показано на рис. 2. Предположим, что он совпадает по фазе с Е2. Взаимодействие тока I2 и потока Ф создает электромагнитные силы F, приводящие ротор во вращение, вслед за вращающимся потоком. Таким образов, асинхронный двигатель представляет собой трансформатор с вращающейся вторичной обмоткой и способный поэтому превращать электрическую мощность E2I2 cos ф в механическую.

Ротор всегда отстает от вращающегося магнитного потока, так как только в этом случае может возникать э.д.с. Е2, а следовательно, ток 12 и силы F. Чтобы изменить направление вращения ротора, следует изменить направление вращения потока. Для этого меняют местами два любых провода, подводящие ток от сети к статору. В этом случае меняется порядок следования фаз ABC на АСВ или ВАС, и поток вращается в обратную сторону.

Ротор двигателя вращается с асинхронной частотой п2, поэтому и двигатель называется асинхронным. Частоту вращения магнитного потока называют синхронной частотой п1. Частота вращенияротора
Теоретически скольжение меняется от 1 до 0 или от 100% до 0, так как при неподвижном роторе в первый момент пуска п2 — 0; а если вообразить, что ротор вращается синхронно с потоком, п2 = пх.

Чем больше нагрузка на валу, тем меньше скорость ротора п2 и следовательно больше S, так как больший тормозной момент должен уравновеситься вращающим моментом; последнее возможно только при увеличении Е2 и I2, а значит и S. Скольжение при номинальной нагрузке SH у асинхронных двигателей равно от 1 до 7%; меньшая цифра относится к мощным двигателям.

  • Назад
  • Вперёд
  • Вы здесь:  
  • Главная
  • Оборудование
  • Эл. машины
  • Устройство и ремонт электрических машин

Еще по теме:

  • Испытания по определению электрических величин электрических машин
  • Основные повреждения электродвигателей
  • Двигатели типа ДАБ
  • Методы сушки электрических машин
  • Автоматизация испытаний электрических машин

Асинхронный двигатель — принцип работы и устройство

Асинхронный двигатель

8 марта 1889 года величайший русский учёный и инженер Михаил Осипович Доливо-Добровольский изобрёл трёхфазный асинхронный двигатель с короткозамкнутым ротором.


Современные трёхфазные асинхронные двигатели являются преобразователями электрической энергии в механическую. Благодаря своей простоте, низкой стоимости и высокой надёжности асинхронные двигатели получили широкое применение. Они присутствуют повсюду, это самый распространённый тип двигателей, их выпускается 90% от общего числа двигателей в мире. Асинхронный электродвигатель поистине совершил технический переворот во всей мировой промышленности.

Огромная популярность асинхронных двигателей связана с простотой их эксплуатации, дешивизной и надежностью.

Асинхронный двигатель это асинхронная машина, предназначенная для преобразования электрической энергии переменного тока в механическую энергию. Само слово “асинхронный” означает не одновременный. При этом имеется ввиду, что у асинхронных двигателей частота вращения магнитного поля статора всегда больше частоты вращения ротора. Работают асинхронные двигатели, как понятно из определения, от сети переменного тока.

Устройство

 

На рисунке: 1 — вал, 2,6 — подшипники, 3,8 — подшипниковые щиты, 4 — лапы, 5 — кожух вентилятора, 7 — крыльчатка вентилятора, 9 — короткозамкнутый ротор, 10 — статор, 11 — коробка выводов.

Основными частями асинхронного двигателя являются статор (10) и ротор (9).

Статор имеет цилиндрическую форму, и собирается из листов стали. В пазах сердечника статора уложены обмотки статора, которые выполнены из обмоточного провода. Оси обмоток сдвинуты в пространстве относительно друг друга на угол 120°. В зависимости от подаваемого напряжения концы обмоток соединяются треугольником или звездой.

Роторы асинхронного двигателя бывают двух видов: короткозамкнутый и фазный ротор.

Короткозамкнутый ротор представляет собой сердечник, набранный из листов стали. В пазы этого сердечника заливается расплавленный алюминий, в результате чего образуются стержни, которые замыкаются накоротко торцевыми кольцами. Эта конструкция называется «беличьей клеткой«. В двигателях большой мощности вместо алюминия может применяться медь. Беличья клетка представляет собой короткозамкнутую обмотку ротора, откуда собственно название.

Фазный ротор имеет трёхфазную обмотку, которая практически не отличается от обмотки статора. В большинстве случаев концы обмоток фазного ротора соединяются в звезду, а свободные концы подводятся к контактным кольцам. С помощью щёток, которые подключены к кольцам, в цепь обмотки ротора можно вводить добавочный резистор. Это нужно для того, чтобы можно было изменять активное сопротивление в цепи ротора, потому что это способствует уменьшению больших пусковых токов. Подробнее о фазном роторе можно прочитать в статье — асинхронный двигатель с фазным ротором.

Принцип работы

При подаче к обмотке статора напряжения, в каждой фазе создаётся магнитный поток, который изменяется с частотой подаваемого напряжения. Эти магнитные потоки сдвинуты относительно друг друга на 120°, как во времени, так и в пространстве. Результирующий магнитный поток оказывается при этом вращающимся.

Результирующий магнитный поток статора вращается и тем самым создаёт в проводниках ротора ЭДС. Так как обмотка ротора, имеет замкнутую электрическую цепь, в ней возникает ток, который в свою очередь взаимодействуя с магнитным потоком статора, создаёт пусковой момент двигателя, стремящийся повернуть ротор в направлении вращения магнитного поля статора. Когда он достигает значения, тормозного момента ротора, а затем превышает его, ротор начинает вращаться. При этом возникает так называемое скольжение.

Скольжение s — это величина, которая показывает, насколько синхронная частота n1 магнитного поля статора больше, чем частота вращения ротора n2, в процентном соотношении.

Скольжение это крайне важная величина. В начальный момент времени она равна единице, но по мере возрастания частоты вращения n2 ротора относительная разность частот n1-n2 становится меньше, вследствие чего уменьшаются ЭДС и ток в проводниках ротора, что влечёт за собой уменьшение вращающего момента. В режиме холостого хода, когда двигатель работает без нагрузки на валу, скольжение минимально, но с увеличением статического момента, оно возрастает до величины sкр — критического скольжения. Если двигатель превысит это значение, то может произойти так называемое опрокидывание двигателя, и привести в последствии к его нестабильной работе. Значения скольжения лежит в диапазоне от 0 до 1, для асинхронных двигателей общего назначения оно составляет в номинальном режиме — 1 — 8 %.

Как только наступит равновесие между электромагнитным моментом, вызывающим вращение ротора и тормозным моментом создаваемым нагрузкой на валу двигателя процессы изменения величин прекратятся.

Выходит, что принцип работы асинхронного двигателя заключается во взаимодействии вращающегося магнитного поля статора и токов, которые наводятся этим магнитным полем в роторе. Причём вращающий момент может возникнуть только в том случае, если существует разность частот вращения магнитных полей.

Рекомендуем к прочтению — однофазный асинхронный двигатель. 

  • Просмотров: 116043
  • В чем разница между асинхронными и синхронными двигателями?

    Загрузите эту статью в формате .PDF

    Растущее значение энергоэффективности побудило производителей электродвигателей продвигать различные схемы, улучшающие характеристики двигателя. К сожалению, терминология, связанная с моторными технологиями, может сбивать с толку, отчасти потому, что несколько терминов иногда могут использоваться взаимозаменяемо для обозначения одной и той же базовой конфигурации мотора. Среди классических примеров этого явления — асинхронные и асинхронные двигатели.

    Все асинхронные двигатели являются асинхронными. Асинхронный характер работы асинхронного двигателя возникает из-за скольжения между скоростью вращения поля статора и несколько более низкой скоростью вращения ротора. Более конкретное объяснение того, как возникает это скольжение, касается деталей внутреннего устройства двигателя.

    Большинство современных асинхронных двигателей содержат вращающийся элемент (ротор), называемый беличьей клеткой. Цилиндрическая беличья клетка состоит из тяжелых медных, алюминиевых или латунных стержней, вставленных в канавки и соединенных с обоих концов проводящими кольцами, которые электрически закорачивают стержни друг с другом. Сплошной сердечник ротора состоит из пакетов пластин из электротехнической стали. В роторе меньше пазов, чем в статоре. Количество пазов ротора также должно быть нецелым кратным пазам статора, чтобы предотвратить магнитную блокировку зубьев ротора и статора при запуске двигателя.

    Также можно найти асинхронные двигатели, роторы которых состоят из обмоток, а не из беличьей клетки. Смысл этой конфигурации с фазным ротором состоит в том, чтобы обеспечить средства снижения тока ротора, когда двигатель впервые начинает вращаться. Обычно это достигается путем последовательного соединения каждой обмотки ротора с резистором. Обмотки получают ток через какое-то контактное кольцо. Как только ротор достигает конечной скорости, полюса ротора переключаются на короткое замыкание, таким образом, электрически он становится таким же, как ротор с короткозамкнутым ротором.

    Неподвижная часть обмоток двигателя называется якорем или статором. Обмотки статора подключаются к сети переменного тока. Приложение напряжения к статору вызывает протекание тока в обмотках статора. Протекание тока индуцирует магнитное поле, которое воздействует на ротор, создавая напряжение и ток в элементах ротора.

    Северный полюс статора индуцирует южный полюс ротора. Но полюс статора вращается при изменении амплитуды и полярности переменного напряжения. Индуцированный полюс пытается следовать за вращающимся полюсом статора. Однако закон Фарадея гласит, что электродвижущая сила возникает, когда петля провода перемещается из области с низкой напряженностью магнитного поля в область с высокой напряженностью магнитного поля и наоборот. Если бы ротор точно следовал за движущимся полюсом статора, напряженность магнитного поля не изменилась бы. Таким образом, ротор всегда отстает от вращения поля статора. Поле ротора всегда отстает от поля статора на некоторую величину, поэтому оно вращается со скоростью, несколько меньшей, чем скорость статора. Разница между ними называется скольжением.

    Величина скольжения может варьироваться. Это зависит в основном от нагрузки, которую приводит двигатель, но также зависит от сопротивления цепи ротора и силы поля, которое индуцирует поток статора.

    Несколько простых уравнений проясняют основные взаимосвязи.

    Когда переменный ток изначально подается на статор, ротор неподвижен. Напряжение, индуцируемое в роторе, имеет ту же частоту, что и в статоре. Когда ротор начинает вращаться, частота наведенного в нем напряжения f r , капли. Если f — частота напряжения статора, то скольжение, с, связывает два через f r = с f . Здесь s выражается в виде десятичной дроби.

    Когда ротор стоит на месте, ротор и статор эффективно образуют трансформатор. Таким образом, напряжение E , индуцированное в роторе, определяется уравнением трансформатора0022 м

    где N = количество проводников под одним полюсом статора (обычно небольшое для двигателя с короткозамкнутым ротором) и Ñ„ м = максимальный магнитный поток, Webers . Таким образом, напряжение E r , индуцированное при вращении ротора, зависит от скольжения: 0021 м = с E

    Описание синхронных двигателей

    Синхронный двигатель имеет специальную конструкцию ротора, которая позволяет ему вращаться с той же скоростью, то есть синхронно, с полем статора. Одним из примеров синхронного двигателя является шаговый двигатель, широко используемый в приложениях, связанных с управлением положением. Однако недавние достижения в области схем управления мощностью привели к появлению конструкций синхронных двигателей, оптимизированных для использования в таких ситуациях с более высокой мощностью, как вентиляторы, воздуходувки и ведущие мосты во внедорожных транспортных средствах.

    В основном существует два типа синхронных двигателей:

    • С самовозбуждением — Принципы аналогичны асинхронным двигателям, и

    • С прямым возбуждением — обычно с постоянными магнитами, но не всегда

    Синхронный двигатель с самовозбуждением , также называемый вентильным реактивным двигателем, содержит стальной литой ротор с прорезями или зубьями, получившими название явно выраженных полюсов. Именно выемки позволяют ротору зафиксироваться и работать с той же скоростью, что и вращающееся магнитное поле.

    Чтобы переместить ротор из одного положения в другое, схема должна последовательно переключать питание на последовательные обмотки/фазы статора аналогично шаговому двигателю. Синхронный двигатель с прямым возбуждением может называться по-разному. Обычные названия включают ECPM (постоянный магнит с электронной коммутацией), BLDC (бесщеточный двигатель постоянного тока) или просто бесщеточный двигатель с постоянными магнитами. В этой конструкции используется ротор с постоянными магнитами. Магниты могут устанавливаться на поверхности ротора или вставляться в узел ротора (в этом случае двигатель называется внутренним двигателем с постоянными магнитами).

    Постоянные магниты являются выступающими полюсами этой конструкции и предотвращают скольжение. Микропроцессор управляет последовательным переключением питания на обмотках статора в нужное время с помощью полупроводниковых переключателей, сводя к минимуму пульсации крутящего момента. Принцип работы всех этих типов синхронных двигателей в основном одинаков. Энергия подается на катушки, намотанные на зубья статора, которые создают значительный магнитный поток, пересекающий воздушный зазор между ротором и статором. Поток течет перпендикулярно воздушному зазору. Если выступающий полюс ротора идеально совмещен с зубцом статора, крутящий момент не возникает. Если зубец ротора находится под некоторым углом к ​​зубу статора, по крайней мере часть потока пересекает зазор под углом, не перпендикулярным поверхностям зубьев. Результатом является крутящий момент на роторе. Таким образом, переключение питания на обмотки статора в нужное время вызывает картину потока, которая приводит к движению по часовой стрелке или против часовой стрелки.

    Еще один тип синхронного двигателя называется вентильным реактивным двигателем (SR).

    Его ротор состоит из стальных пластин с набором зубьев. Зубцы магнитопроницаемы, а окружающие их участки слабопроницаемы в силу прорезанных в них пазов. Таким образом, ротору не нужны обмотки, редкоземельные материалы или магниты.

    В отличие от асинхронных двигателей, в роторе отсутствуют стержни ротора и, следовательно, в роторе не протекает ток, создающий крутящий момент. Отсутствие проводника какой-либо формы на роторе SR означает, что общие потери в роторе значительно ниже, чем в других двигателях с роторами, несущими проводники. Крутящий момент, создаваемый двигателем SR, регулируется путем регулировки величины тока в электромагнитах статора. Затем скорость регулируется путем модуляции крутящего момента (посредством тока обмотки). Этот метод аналогичен тому, как скорость регулируется током якоря в традиционном щеточном двигателе постоянного тока.

    Двигатель SR создает крутящий момент, пропорциональный величине тока, подаваемого на его обмотки. Производство крутящего момента не зависит от скорости двигателя. Это отличается от асинхронных двигателей переменного тока, где при высоких скоростях вращения в области ослабления поля ток ротора все больше отстает от вращающегося поля по мере увеличения оборотов двигателя.

    Асинхронный двигатель | Асинхронный двигатель

    Наиболее часто используемым двигателем в мире является асинхронный двигатель или асинхронный двигатель. Это двигатель, который может работать без электрического подключения к ротору. В этом посте будут обсуждаться асинхронные двигатели (асинхронные двигатели), их типы, т. е. однофазные, трехфазные, короткозамкнутые, токосъемные и т. д., особенности, принципы работы, области применения, преимущества и недостатки.

    Содержание

    Что такое асинхронный двигатель (асинхронный двигатель)

    Асинхронный двигатель или асинхронный двигатель — это самый простой и распространенный тип электродвигателя, который имеет только Armortisseur обмотку , что означает вспомогательную обмотку только на арматура. В асинхронном двигателе (или асинхронном двигателе) статорная часть двигателя обеспечивает электромагнитное поле своей обмоткой роторной части двигателя. Это генерирует электрический ток в роторе. Электрический ток создает крутящий момент, который приводит в движение. 9Рис. 1. Знакомство с асинхронным двигателем Синхронная скорость определяется как скорость магнитного поля вращающейся машины, которая снова определяется количеством полюсов и частотой в машине.

    Поскольку в этом типе двигателя ротор получает поток и вращение за счет магнитного поля в статоре, между токами в статоре и роторе возникает задержка. Из-за этого ротор никогда не достигает своей синхронной скорости. Отсюда и термин «асинхронный двигатель». На рис. 2 показаны части асинхронного двигателя.

    Первая помощь при поражении электрическим током…

    Пожалуйста, включите JavaScript

    Первая помощь при поражении электрическим током – причины, источники, тяжесть

    Рис. 2 – Детали асинхронного двигателя (асинхронного двигателя) 9000 3

    Конструкция асинхронного двигателя (асинхронного двигателя)

    Он состоит в основном из двух частей, а именно:

    • Статор
    • Ротор

    Статор

    Стационарная часть электродвигателя. Эта часть обеспечивает электромагнитное поле, необходимое для привода вращающейся части двигателя. Он состоит из ряда штамповок с прорезями для трехфазной обмотки. Каждая обмотка отделена на 120 градусов от другой обмотки.

    Ротор

    Это вращающаяся часть двигателя. Более распространенным типом ротора в асинхронных двигателях (или асинхронных двигателях) является короткозамкнутый ротор. Ротор выполнен в виде якоря с сердечником цилиндрической формы. Вокруг сердечника расположены параллельные щели, через которые проходит проводимость. Сердечник имеет стержень из алюминия, меди или сплава.

    Рис. 3 – Основной ротор и статор

    Типы асинхронных двигателей (асинхронных двигателей)

    Он подразделяется на два типа:

    • Однофазный асинхронный двигатель
    • Трехфазный асинхронный двигатель

    Однофазный асинхронный двигатель

    Однофазный асинхронный двигатель не является самозапускающимся двигателем. Здесь двигатель подключен к однофазному источнику питания, который передает переменный ток на основную обмотку. Поскольку переменный ток представляет собой синусоидальную волну, он создает пульсирующее магнитное поле в обмотке статора.

    Пульсирующие магнитные поля представляют собой два магнитных поля, вращающихся в противоположных направлениях; следовательно, крутящий момент не создается. Таким образом, после подачи тока ротор должен двигаться в любом направлении извне, чтобы двигатель начал работать. Следовательно, однофазный индуктор; могут иметь разные разновидности в зависимости от устройства, которое используется для пуска двигателя и составляют:

    • Двигатель с расщепленной фазой
    • Двигатель с экранированными полюсами
    • Пусковой двигатель с конденсатором
    • Пусковой двигатель с конденсатором и рабочий двигатель с конденсатором

    Рис. 4 – Принципиальная схема (а) однофазного (б) Трехфазный асинхронный двигатель

    Трехфазный асинхронный двигатель (асинхронный двигатель)

    Это двигатели, для запуска которых не требуется никаких внешних устройств, таких как конденсатор, центробежный переключатель или пусковая обмотка. Принцип работы этого двигателя основан на трех одиночных фазах, между которыми разность фаз составляет 120 градусов. Таким образом, магнитное поле, вызывающее вращение, будет иметь одинаковую разницу фаз между ними, что заставит ротор двигаться без какого-либо внешнего крутящего момента.

    Для дальнейшего упрощения предположим, что есть три фазы: фаза 1, фаза 2 и фаза 3. Таким образом, первая фаза 1 намагничивается, и ротор начинает двигаться в этом направлении, вскоре после этого возбуждается фаза 2, и затем ротор притягивается к фазе 2 и, наконец, к фазе 3. Таким образом, ротор будет продолжать вращаться.

    Далее они делятся на категории в зависимости от типа используемого ротора:

    • Асинхронный двигатель с короткозамкнутым ротором
    • Асинхронный двигатель с контактным кольцом или двигатель с фазным ротором
    Асинхронный двигатель с короткозамкнутым ротором

    В этом типе ротор имеет форму короткозамкнутого ротора, отсюда и название. Ротор изготовлен из стали с металлами с очень высокой проводимостью, такими как алюминий и медь, на его поверхности. Очень легко изменить скорость этого типа асинхронного двигателя, просто изменив форму стержней в роторе.

    Рис. 5 – Асинхронный двигатель с короткозамкнутым ротором

    Асинхронный двигатель с контактным кольцом или двигатель с фазным ротором

    Также известен как асинхронный двигатель с фазовой обмоткой. Здесь ротор подключен к внешнему сопротивлению через токосъемные кольца. Скорость ротора регулируется путем регулировки внешнего сопротивления. Поскольку этот двигатель имеет больше обмоток, чем асинхронный двигатель с короткозамкнутым ротором, его также называют асинхронным двигателем с фазным ротором.

    Рис. 6 – Асинхронный двигатель с контактными кольцами

    Особенности асинхронного двигателя

    Ниже приведены характеристики двух различных типов асинхронных двигателей.

    Особенности однофазного асинхронного двигателя

    • Здесь мы выделим некоторые характеристики, применимые только к однофазным асинхронным двигателям:
    • Однофазные асинхронные двигатели не запускаются самостоятельно и используют однофазное питание. для вращения.
    • Чтобы изменить направление вращения в однофазных двигателях, лучше всего остановить двигатель и изменить его, иначе существует вероятность повреждения двигателя из-за момента инерции, который действует против направления, на которое необходимо изменить вращение.
    • Для запуска двигателя вам потребуется конденсатор и/или центробежный переключатель.
    • У этих двигателей низкий пусковой момент.
    • Они в основном используются дома или в бытовых приборах из-за низкого коэффициента мощности и эффективности.

    Особенности трехфазного асинхронного двигателя

    Ниже перечислены некоторые особенности трехфазного асинхронного двигателя, отличающие его от однофазного двигателя:

    • Это двигатели с автоматическим запуском и не требуют специальных стартеров.
    • Имеется три однофазных линии с разностью фаз 120 градусов.
    • Имеет более простое подключение и более надежен, чем однофазные асинхронные двигатели.
    • Пусковой момент этих двигателей выше, чем у однофазных двигателей.
    • Они в основном используются на заводах и в промышленности из-за высокого коэффициента мощности и эффективности.

    Как работает асинхронный двигатель (асинхронный двигатель)  Работа

    Явление, благодаря которому работают асинхронные или асинхронные двигатели, весьма интересно. Двигатели постоянного тока нуждаются в двойном возбуждении для вращения, одно к статору, а другое к ротору. Но в этих двигателях нам нужно дать его только статору, что делает его уникальным. Как следует из названия, принцип работы этого двигателя основан на индукции. Давайте выполним ряд шагов, которые происходят при вращении этого двигателя:

    • Питание подается на обмотки статора, протекает ток и создается магнитный поток.
    • Обмотка в роторе устроена таким образом, что каждая катушка замыкается накоротко.
    • Короткозамкнутая обмотка ротора разрезается магнитным потоком статора.

    Рис. 7 – Работа асинхронного двигателя

    Согласно законам электромагнитной индукции Фарадея, магнитное поле взаимодействует с электрической цепью, создавая ЭДС (электродвижущую силу). Итак, на основании этого закона в обмотках ротора начинает течь ток.

    • Ток в роторе создает другой поток.
    • Теперь есть два потока, один в статоре, а другой в роторе.
    • Поток ротора отстает от потока статора, что может создать крутящий момент в роторе в направлении магнитного поля.

    Применение асинхронных двигателей

    Области применения включают:

    • Они широко используются в миксерах, игрушках, вентиляторах и т. д.
    • Они также используются в насосах и компрессорах.
    • Малые асинхронные двигатели используются в электробритвах.
    • Они используются в буровых машинах, лифтах, кранах и дробилках.
    • Они подходят для приводов текстильных фабрик и маслоэкстракционных мельниц.

    Преимущества асинхронного двигателя

    Ниже приведены некоторые преимущества асинхронных двигателей:

    • Высокая эффективность и простота конструкции.
    • Очень прочный и может работать в любых условиях.
    • Низкие эксплуатационные расходы, так как в них нет многих деталей, таких как коллекторы или щетки.
    • Они могут развивать очень высокую скорость, не беспокоясь об износе, так как у них нет щеток.
    • Они просты в эксплуатации, так как не имеют электрических разъемов для ротора.
    • Поскольку у них нет щеток, искры не опасны, поэтому их можно использовать в загрязненных или взрывоопасных средах.
    • Изменение скорости от малой нагрузки до номинальной очень мало.

    Недостатки асинхронного двигателя

    Асинхронные двигатели имеют простую конструкцию, которая может иметь несколько недостатков, указанных ниже: .