Классификация электродвигателей

В зависимости от назначения, от предполагаемых режимов и условий работы, от типа питания и т. д., все электродвигатели можно классифицировать по нескольким параметрам: по принципу получения рабочего момента, по способу работы, по роду тока питания, по способу управления фазами, по типу возбуждения и т. д. Давайте же рассмотрим классификацию электродвигателей более подробно.

Возникновение вращающего момента

Вращающий момент в электродвигателях может быть получен одним из двух способов: по принципу магнитного гистерезиса либо чисто магнитоэлектрически. Гистерезисный двигатель получает вращающий момент посредством явления гистерезиса во время перемагничивания магнитно-твердого ротора, в то время как у магнитоэлектрического двигателя вращающий момент является результатом взаимодействия явных магнитных полюсов ротора и статора.

Магнитоэлектрические двигатели по праву составляют сегодня львиную долю всего обилия электродвигателей, применяемых в очень многих областях. Они подразделяются по роду питающего тока на: двигатели постоянного тока, двигатели переменного тока и универсальные двигатели.

В отличие от магнитоэлектрического двигателя, в гистерезисном двигателе допускается перемещение намагниченности ротора относительно его геометрических осей, и именно данная особенность не позволяет распространять на синхронный режим работы гистерезисного двигателя общие закономерности магнитоэлектрического преобразования. 

Двигатели постоянного тока 

У двигателя, который питается постоянным током, за переключение фаз отвечает сам двигатель. Это значит, что хотя на электрическую машину и подается постоянный ток, тем не менее, благодаря действию внутренних механизмов устройства, магнитное поле оказывается движущимся и становится в состоянии поддерживать вращающий момент ротора (как будто в обмотке статора действует переменный ток).

По способу создания движущегося магнитного поля, двигатели постоянного тока подразделяются на вентильные (бесколлекторные) и коллекторные. Бесколлекторные двигатели имеют в своей конструкции электронные инверторы, которые и осуществляют переключение фаз. Коллекторные же двигатели традиционно оснащены щеточно-коллекторными узлами, которые призваны чисто механически синхронизировать питание обмоток двигателя с вращением его движущихся частей.

Возбуждение коллекторных двигателей

Коллекторные двигатели по способу возбуждения бывают следующих видов: с независимым возбуждением от постоянных магнитов или от электромагнитов, либо с самовозбуждением. Двигатели с возбуждением от постоянных магнитов содержат магниты на роторе. Двигатели с самовозбуждением имеют на роторе специальную якорную обмотку, которая может быть включена параллельно, последовательно или смешано со специальной обмоткой возбуждения.

Двигатель пульсирующего тока

На двигатель постоянного тока похож двигатель пульсирующего тока. Отличие заключается в наличии шихтованных вставок на остове, а также дополнительных шихтованных полюсов. Кроме того, у двигателя пульсирующего тока имеется компенсационная обмотка. Применение такие двигатели находит в электровозах, где они обычно питается выпрямленным переменным током.

Двигатель переменного тока

Двигатели переменного тока, как ясно из названия, питаются током переменным. Бывают они синхронными и асинхронными. 

У синхронных двигателей переменного тока магнитное поле статора движется с той же угловой скоростью, что и ротор, а у асинхронных всегда есть некое отставание (характеризующееся величиной скольжения s) — магнитное поле статора в своем движении как бы опережает ротор, который в свою очередь все время стремится его догнать.

Синхронные двигатели больших мощностей (мощностью в сотни киловатт) имеют на роторе обмотки возбуждения. Роторы менее мощных синхронных двигателей оснащены постоянными магнитами, которые и образуют полюса. Гистерезисные двигатели тоже в принципе относятся к синхронным.

Шаговые двигатели — это особая категория синхронных двигателей с высокой точностью управления скоростью вращения, вплоть до дискретного счета шагов.

Вентильные синхронные реактивные двигатели получают питание через инвертор. Смотрите по этой теме: Современные синхронные реактивные двигатели

Асинхронные двигатели переменного тока отличаются тем, что у них угловая скорость вращения ротора всегда меньше чем угловая скорость вращения магнитного поля статора. Асинхронные двигатели бывают однофазными (с пусковой обмоткой), двухфазными (к ним относится и конденсаторный двигатель), трехфазными и многофазными.

ЭлектроВести (elektrovesti.net) — новости мировой энергетики и возобновляемой энергетики Украины 

 

Типы электродвигателей — Однофазные электродвигатели , электродвигатели постоянного тока, асинхронные двигатели

Заказать оборудование

Команда Electrodvigatel.com приглашает к сотрудничеству производителей двигателей

Электродвигатель – это электрическая машина, служащая для преобразования электрической энергии в механическую энергию. Электродвигатель работает на основе  принципа электромагнитной индукции.

Существует множество видов электродвигателей, различающихся по конструкции, принципу действия, исполнению и другим характеристикам. Различают основные виды электродвигателей:

По типу протекающего тока двигатели различают:

  • Электродвигатели постоянного тока. Широко используют в качестве промышленного оборудования, привода электротранспорта и микропривода исполнительных механизмов.
  • Электродвигатели переменного тока. Нашли широкое применение для приводов всех типов технологического оборудования, автоматических регуляторов, электроинструментов. 

По конструкции электрические машины различают с вертикально и горизонтально расположенным валом. Электродвигатели также классифицируют по мощности, климатическому исполнению, степени защиты, назначению и другим характеристикам.

Со всеми типами электродвигателей вы можете познакомиться на информационном портале по электродвигателям electrodvigatel.com. Здесь вы найдете преимущества и недостатки, того или иного электродвигателя, полный список производителей электродвигателей, а также сможете узнать стоимость на электродвигатели.

Виды электродвигателей

Однофазные электродвигатели

Трехфазные электродвигатели

Крановые электродвигатели

Лифтовые электродвигатели

Электродвигатели для частотного регулирования

Общепромышленные электродвигатели

Синхронные электродвигатели

Взрывозащищенные электродвигатели

Электродвигатели постоянного тока

Стоимость электродвигателя в основном зависит от следующих параметров:

  • Габарит (высота оси вращения)
  • Мощность
  • Климатическое исполнение

Стоит отметить, что с увеличением габарита электродвигателя усложняется технология изготовления электрических машин, уменьшается серийность выпуска и, соответственно, меняется экономика и ценообразование двигателей. Чем больше габарит двигателя – тем меньше производителей на рынке.

Конструкция электродвигателя

Вращающийся электродвигатель состоит из двух главных деталей:

  • статора — неподвижная часть
  • ротора — вращающаяся часть

У большинства двигателей внутри статора располагается ротор. Электродвигатели у которых ротор находится снаружи статора называются электродвигателями обращенного типа.

Электродвигатель в разрезе — 1 статор, 2 ротор, 3 подшипник

 

Условное обозначение электродвигателей

1 – тип электродвигателя:
общепромышленные электродвигатели:
АИ — обозначение серии общепромышленных электродвигателей
Р, С (АИР и АИС) — вариант привязки мощности к установочным размерам, т.е.
АИР (А, 5А, 4А, АД) — электродвигатели, изготавливаемые по ГОСТ
АИС (6А, IMM, RA) — электродвигатели, изготавливаемые по евростандарту DIN (CENELEC)
взрывозащищенные электродвигатели: ВА, АВ, АИМ, АИМР, 2В, 3В и др

2 — электрические модификации:










Электрические модификации

Определение

М

модернизированный электродвигатель: 5АМ

Н

электродвигатель защищенного исполнения с самовентиляцией: 5АН

Ф

электродвигатель защищенного исполнения с принудительным охлаждением: 5АФ

К

электродвигатель с фазным ротором: 5АНК

С

электродвигатель с повышенным скольжением: АС, 4АС  и др.

Е

однофазный электродвигатель 220V: АДМЕ, 5АЕУ

В

встраиваемый электродвигатель: АИРВ 100S2

П

электродвигатель для привода осевых вентиляторов в птицеводческих хозяйствах и т. д.

3 — габарит электродвигателя (высота оси вращения):
габарит электродвигателя равен расстоянию от низа лап до центра вала в миллиметрах 
50, 56, 63, 71, 80, 90, 100, 112, 132, 160, 180, 200, 225, 250, 280, 315, 355, 400, 450 и выше

4 — длина сердечника и/или длина станины:





Длина сердечника

Определение

А, В, С

длина сердечника (первая длина, вторая длина, третья длина) 

XK, X, YK, Y

длина сердечника статора высоковольтных двигателей 

S, L, М

установочные размеры по длине станины

 

5 — количество полюсов электродвигателя:
2, 4, 6, 8, 10, 12, 4/2, 6/4, 8/4, 8/6, 12/4, 12/6, 6/4/2, 8/4/2, 8/6/4, 12/8/6/4 и др.

6 — конструктивные модификации электродвигателя:











Модификации электродвигателя

Определение

Л

электродвигатель для привода лифтов: 5АФ 200 МА4/24 НЛБ УХЛ4

Е

электродвигатель с встроенным электромагнитным тормозом и ручкой расторможения: АИР 100L6 Е2 У3

Е2

со встроенным датчиком температурной защиты: АИР 180М4 БУ3 

Б

со встроенным датчиком температурной защиты: АИР 180М4 БУ3 

Ж

электродвигатель со специальным выходным концом вала для моноблочных насосов: АИР 80В2 ЖУ2

П

электродвигатель повышенной точности по установочным размерам: АИР 180М4 ПУ3 

Р3

электродвигатель для мотор-редукторов: АИР 100L6 Р3

С

электродвигатель для станков-качалок: АИР 180М8 СНБУ1 

Н

электродвигатель малошумного исполнения: 5АФ 200 МА4/24 НЛБ УХЛ4 

7 — климатическое исполнение электродвигателя:







Категория размещения

Определение

У

умеренного климатического исполнения

Т

тропического исполнения 

УХЛ

умеренно холодного климата 

ХЛ

холодного климата 

ОМ

для судов морского и речного флота

8 — категория размещения: 







Категория размещения

Определение

1

на открытом воздухе

2

на улице под навесом 

3

в помещении 

4

в помещении с искусственно регулируемыми климатическими условиями 

5

в помещении с повышенной влажностью 

9 — степень защиты электродвигателя:
первая цифра: защита от твердых объектов

  вторая цифра: защита от жидкостей








Степень защиты IP

Определение первой цифры  —

защита от твердых объектов

Определение второй цифры  — защита от жидкостей

0

без защиты

без защиты

1

защита от твердых объектов размерами свыше 50мм (например, от случайного касания руками)

защита от вертикально падающей воды (конденсация)

2

защита от твердых объектов размерами свыше 12 мм (например, от случайного касания пальцами)

защита от воды, пдпющей под углом 15º к вертикали

3

защита от твердых объектов размерами свыше 2,5 мм (например, инструментов, проводов)

защита от воды, падающей под углом 60º к вертикали

4

защита от твердых объектов размерами свыше 1мм (например, тонкой проволоки)

защита от водяных брызг со всех сторон

5

защита от пыли (без осаждения опасных материалов)

защита от водяных струй со всех сторон

10 – мощность электродвигателя

11 – обороты электродвигателя

12 — Монтажное исполнение электродвигателя

Двигатели переменного тока

            Двигатели переменного тока подразделяются на две группы: асинхронные и синхронные. Синхронные двигатели в свою очередь делятся на основные исполнения групп двигателей:

  • общепромышленное
  • специальное (крановые, для дробилок, лифтовые и другие)
  • взрывозащищенное. Дальнейшее подразделение — для химической отрасли и рудничные, рудничные специальные.

Асинхронными двигателями (АД) называют машины переменного тока, в которых основное магнитное поле создается переменным током и частота вращения ротора, не связанная жестко с частотой тока в обмотке статора, меняется с нагрузкой. Наибольшее применение получили бесколлекторные асинхронные машины, используемые главным образом в качестве электродвигателей. Значительно реже применяются коллекторные асинхронные электродвигатели — более дорогие и менее надежные в эксплуатации, чем бесколлекторные.

По количеству фаз двигатели переменного тока подразделяются:

Асинхронные двигатели наиболее распространены в настоящее время, чем другие виды электродвигателей.

Синхронные и асинхронные машины переменного тока обладают свойством обратимости — они могут работать как в режиме генератора, так и в режиме двигателя.

Типы двигателей постоянного тока — Шунтовые, серийные и двигатели со смешанной обмоткой

A Постоянный ток Moto r, DC назван в соответствии с соединением обмотки возбуждения с якорем. В основном существует два типа двигателей постоянного тока. Один из них представляет собой двигатель постоянного тока с независимым возбуждением , а другой — двигатель постоянного тока с самовозбуждением .

Двигатели с самовозбуждением далее классифицируются как Шунтовая обмотка или параллельный двигатель, Серийная обмотка или серийный двигатель и Комбинированная обмотка или составной двигатель.

Двигатель постоянного тока преобразует электрическую энергию в механическую. Конструкция двигателя постоянного тока и генератора одинакова. Но двигатель постоянного тока имеет широкий диапазон скоростей и хорошую регулировку скорости в электрической тяге.

Принцип работы двигателя постоянного тока основан на том, что проводник с током помещается в магнитное поле и на него действует механическая сила.

Двигатель постоянного тока обычно используется в местах, где требуется защитный кожух, например, влагонепроницаемый, огнестойкий и т. д. в соответствии с требованиями. Подробное описание различных типов двигателей приведено ниже.

Комплектация:

  • Двигатель постоянного тока с независимым возбуждением
  • Двигатель постоянного тока с самовозбуждением
  • Двигатель с параллельным возбуждением
  • Двигатель с обмоткой серии

  • Двигатель с комбинированной обмоткой

Двигатель постоянного тока с независимым возбуждением

Как видно из названия, катушки возбуждения или обмотки возбуждения питаются от отдельного источника постоянного тока, как показано на принципиальной схеме ниже:

Двигатель постоянного тока с независимым возбуждением

Двигатель постоянного тока с самовозбуждением

Как следует из названия подразумевает самовозбуждение, следовательно, в этом типе двигателя ток в обмотках подается самой машиной или двигателем. Двигатель постоянного тока с самовозбуждением подразделяется на двигатель с параллельной обмоткой и двигатель с последовательной обмоткой. Они подробно объясняются ниже.

Двигатель с параллельным возбуждением

Это наиболее распространенный тип двигателя постоянного тока. Здесь обмотка возбуждения подключена параллельно якорю, как показано на рисунке ниже:

Двигатель постоянного тока с параллельной обмоткой

Уравнения тока, напряжения и мощности для параллельного двигателя записываются следующим образом.

Применяя KCL на развязке A на рисунке выше.

Сумма входящих токов в A = сумма исходящих токов в A.

Где,

I — входной линейный ток
Ia — ток якоря
Ish — ток возбуждения шунта

Уравнение (1) — это уравнение тока.

Уравнения напряжения записываются с использованием закона напряжения Кирхгофа (KVL) для цепи обмотки возбуждения.

Для цепи обмотки якоря уравнение будет иметь вид:

Уравнение мощности будет иметь вид:

Потребляемая мощность = развиваемая механическая мощность + потери в якоре + потери в возбуждении.

Умножая уравнение (3) на Ia, получаем следующие уравнения.

Где,

VI a – электрическая мощность, подводимая к якорю двигателя.

Серийный двигатель с обмоткой

В последовательном двигателе обмотка возбуждения соединена последовательно с обмоткой якоря. Схема подключения показана ниже: Двигатель с обмоткой серии

Применяя KCL на рисунке выше:

Где,

I se — последовательный ток возбуждения

Уравнение напряжения можно получить, применив KVL на приведенном выше рисунке.

Уравнение мощности получается умножением уравнения (8) на I получаем

Потребляемая мощность = развиваемая механическая мощность + потери в якоре + потери в поле

Сравнивая уравнение (9) и (10), мы получим уравнение, показанное ниже:

Двигатель с комбинированной обмоткой

Двигатель постоянного тока, имеющий как шунтирующую, так и последовательную обмотку возбуждения, называется составным двигателем . Схема соединения составного двигателя показана ниже: Составной двигатель

Составной двигатель далее подразделяется на составной двигатель и дифференциальный двигатель . В комбинированном двигателе поток, создаваемый обеими обмотками, имеет одинаковое направление, т.е.0009

Положительный и отрицательный знаки указывают на направление потока, создаваемого в обмотках возбуждения.

Типы двигателей постоянного тока — шунтовые, комбинированные и серийные

Электродвигатели постоянного тока являются основным сервисным предложением Mawdsleys с момента основания компании в 1959 году.

Доступны 3 основных типа двигателей постоянного тока: серийные, шунтовые и комбинированные. . Эти термины относятся к типу соединения обмоток возбуждения по отношению к цепи якоря.

В нашем блоге рассматриваются эти три типа двигателей постоянного тока, объясняются их уникальные свойства и возможности их использования.

Двигатели постоянного тока

У двигателей постоянного тока обмотки возбуждения соединены последовательно с якорем. Последовательная обмотка будет иметь относительно небольшое количество витков более крупного провода или медной полосы, которые способны выдерживать полный ток нагрузки двигателя. При запуске, поскольку обмотки имеют низкое сопротивление, может потребляться большой ток, создавая высокий пусковой момент.

Это преимущество для высоких пусковых нагрузок, таких как тяга, кран и другие тяжелые приложения. Скорость последовательного двигателя зависит от нагрузки, поэтому, когда ток полной нагрузки, протекающий через цепь, уменьшается, скорость увеличивается.

В некоторых случаях скорость двигателей потенциально может увеличиться до уровня, превышающего рекомендуемый максимум. По этой причине серийный двигатель не следует соединять с нагрузкой ремнем.

Шунтирующие двигатели постоянного тока

В шунтирующем двигателе постоянного тока обмотка возбуждения соединена параллельно (шунтирую) с якорем. Шунтирующая обмотка намотана из множества витков тонкого медного провода, и, поскольку она подключена к источнику возбуждения постоянного тока, ее ток возбуждения будет постоянным.

Двигатель будет работать до номинальной скорости, и изменение нагрузки не будет сильно влиять на него. Пусковой крутящий момент будет меньше, чем у серийного двигателя аналогичного размера, но если это не требуется, то для применения может быть предпочтительнее параллельный двигатель с постоянной скоростью.

Шунтирующие двигатели постоянного тока могут использоваться во многих областях, таких как производство пластика или экструзия проволоки. У нас есть запас небольших двигателей постоянного тока с параллельным возбуждением в формате IP23 IC06 (капленепроницаемые, вентилируемые). Другие двигатели постоянного тока могут быть изготовлены по запросу.

Составные двигатели постоянного тока

В составном двигателе постоянного тока большая часть поля намотана для шунтирующего поля, но с несколькими витками последовательной обмотки сверху. Шунт подключается к источнику возбуждения, а последовательные витки подключаются последовательно с якорем. Это обеспечивает двигатель с комбинацией параллельных и последовательных характеристик.

Пусковой момент будет выше, чем у параллельного двигателя, но не так высок, как у последовательного двигателя. Скорость будет меняться в зависимости от нагрузки, и величина будет зависеть от % площади возбуждения, выделенной для последовательной обмотки. Поле серии может быть настроено либо на увеличение, либо на уменьшение скорости с нагрузкой. Области применения этих двигателей различаются, но чаще всего они предназначены для более крупных устройств, таких как тормозные генераторы, конвейеры, смесители и т. д.

Тип составного двигателя постоянного тока также может использоваться там, где питание осуществляется от батарей с широким диапазоном напряжения. В этом случае и поле, и якорь имеют одинаковое напряжение, и использование составной обмотки помогает поддерживать скорость в приемлемом диапазоне.

Общие неисправности двигателей постоянного тока

Отказ двигателя постоянного тока может привести к снижению эффективности и даже к полному простою некоторых операций. Некоторые из наиболее распространенных проблем, которые приводят к выходу из строя двигателей постоянного тока, включают:

  • Износ угольных щеток
  • Угольная пыль
  • Износ поверхности коллектора
  • Неисправность коммутатора
  • Чрезмерный шум и вибрация
  • Скачки напряжения
  • Ослабленные подшипники или катушки
  • Свободная основа

Срок службы двигателя постоянного тока можно продлить, если его регулярно проверять и обслуживать профессионал. Это снижает риск поломки и экономит ваши деньги в долгосрочной перспективе.

Последние исследования двигателей постоянного тока

Полное обслуживание двигателей постоянного тока

Независимо от типа двигателя постоянного тока мы можем предложить либо новую сборку, либо полную перемотку и ремонт, все наши перемотки и ремонты выполняются в нашу современную мастерскую, чтобы сократить время выполнения заказа и снизить затраты.