Ротативный двигатель. — Российская авиация

Такие двигатели отличались плавностью и равномерностью хода. Зажигание производилось последовательно в каждом цилиндре через один по кругу.
Второй особенностью было хорошее охлаждение. Металлургическая промышленность в те времена была не настолько развита, как сейчас и качество сплавов (в плане термостойкости) было не слишком высоким. Поэтому требовалось хорошее охлаждение.

Скорости полета самолетов были не высокие, поэтому простое охлаждение набегающим потоком стационарного движка было недостаточным. А ротативный двигатель здесь находился в более выгодном положении, потому что сам вращался с достаточной для эффективного охлаждения скоростью и цилиндры хорошо обдувались воздухом. При этом они могли быть как гладкими, так и оребренными. Охлаждение было достаточно эффективным даже при работе двигателя на земле.

Расцвет ротативных двигателей пришелся на первую мировую войну. В то время авиация уже достаточно серьезно участвовала в боевых действиях и воздушные бои не были редкостью. Самолеты и двигатели для них производились всеми крупными участниками войны.

Из двигателестроительных одной из самых известных была французская фирма «Societe des Moteurs Gnome», в свое время занимавшаяся производством двигателей внутреннего сгорания для промышленного производства. В 1900 году она купила лицензию на производство маленького одноцилиндрового стационарного двигателя (мощность 4 л.с.) «Gnome» у немецой фирмы Motorenfabrik Oberursel. Это движок продавался во Франции под французским наименованием «Gnome» и при этом настолько успешно, что наименование это было использовано в названии фирмы — «Societe des Moteurs Gnome».

В Российской Империи двигатель «Gnome» послужил прототипом для двигателей Теодора-Фердинанда (Григорьевича) Калепа. Т.Г.Калеп в начале 1911 года сначала решил приступить к производству на своем заводе двигателей «Gnome», но попытка договориться с фирмой «Societe des Moteurs Gnome» окончилась неудачей, т. к. эта французская фирма поставила условие отдавать ей 2/3 чистого дохода.

Тогда Калеп решил спроектировать на своем заводе новый двигатель. Проект двигателя Калеп разрабатывал совместно с молодым инженером Шухгальтером. Конструкторам удалось значительно усовершенствовать конструкцию двигателя «Gnome» и создать двигатель, более надежный чем «Gnome». Прежде всего был изменен способ крепления цилиндров на картере. У двигателя «Gnome» картер состоял из нескольких частей, соединенных болтами — это весьма увеличивало массу двигателя. Калеп сделал картер всего из двух частей, причем плоскость разъема не совпадала с плоскостью, в которой лежали геометрические оси цилиндров, а была отнесена несколько в сторону. Это существенно упрощало сборку двигателя, т.к. можно было крепить цилиндры, защемляя их между двумя частями картера, причем цилиндры вставлялись в отверстия большей части картера.
Калеп усовершенствовал двигатель «Gnome», увеличив его прочность и в тоже время снизив на 7 кг его массу и уменьшив на 85 шт. число деталей. При этом размеры двигателя Калепа не превышали размеров двигателя «Gnome». 22 ноября 1911 г. Т.Г.Калеп подал заявку за № 50497 на получение патента на авиационный двигатель «внутреннего горения с радиально укрепленными на кривошипной камере вращающимися цилиндрами», которая была удовлетворена и автор получил патент на этот двигатель за № 25057.

Двигатели «Калеп» устанавливались на самолёты «Хиони», «Стеглау» и др. Впоследствии Т.Калеп создал ещё более мощные двигатели мощностью 80 л.с. и 100 л.с., которые устанавливались на лицензионные «Ньюпоры» и другие отечественные истребители и разведчики.
Увы, хоть слава и досталась Ф.Г.Калепу, моторы для российского Воздушного флота делались во Франции — нелегко было небольшому заводу соревноваться в рекламе с солидной иностранной фирмой.

В 1913 году, будучи больным, Теодор Калеп поехал на испытания своего мотора, проводимые в Риге военным ведомством. Мотор сочли хорошим, а 47-летний Калеп через несколько дней умер. Можно сказать, сгорел на работе…

Двигатель «Калеп-60».

Двигатель «Калеп-80» в музее ВВС Монино.

В дальнейшем на базе «Gnome» был разработан ротативный двигатель «Gnome Omega», имевший немалое количество модификаций и устанавливавшийся на самые различные самолеты. Известны так же другие массово производившиеся двигатели этой фирмы. Например, «Gnome 7 Lambda» – семицилиндровый, мощностью 80 л.с. и его продолжение «Gnome 14 Lambda-Lambda» (160 л.с.), двухрядный ротативный двигатель с 14-ю цилиндрами.

Ротативный двигатель «Gnome 7 Omega».

Двигатель «Gnome 7 Omega» на самолете.

Широко известен двигатель «Gnome Monosoupape» (один клапан), начавший выпускаться в 1913 году и считавшийся одним из лучших двигателей в начальный период войны. Этот «лучший двигатель» имел всего один клапан, использовавшийся и для выхлопа и для забора воздуха. Для поступления топлива в цилиндр из картера, в юбке цилиндра был сделан ряд специальных отверстий. Двигатель был безкарбюраторный и из-за упрощенной системы управления был легче и потреблял, к тому же меньше масла.

Двигатель «Gnome Monosoupape» Type N.

Управления у него не было практически никакого. Был только топливный кран, подававший бензин через специальную форсунку (или распылитель) в полый неподвижный вал и далее в картер. Этим краном можно было пытаться обогащать или обеднять топливо-воздушную смесь в очень узком диапазоне, от чего было мало толку.

Подвод топлива в цилиндр двигателя «Gnome Monosoupape». Crank Case — картер, Ports — подводящие отверстия.

Пытались использовать с целью управления изменение фаз газораспределения, но быстро от этого отказались, потому что начали гореть клапана. В итоге движок постоянно работал на максимальных оборотах (как, впрочем и все ротативные двигатели) и управлялся только отключением зажигания (об этом чуть ниже).

Другой известной французской фирмой, производившей ротативный двигатели была фирма «Societe des Moteurs Le Rhone», начавшая свою работу с 1910 года. Одними из самых известных ее двигателей были «Le Rhone 9C» (мощность 80 л.с.) и «Le Rhone 9J» (110 л.с.). Характерной их особенностью было наличие специальных трубопроводов от картера к цилиндрам для подвода топливо-воздушной смеси (немного похоже на входные коллектора современных ДВС).

Двигатель «Le Rhone 9C».

«Le Rhone» и «Gnome» первоначально соперничали, но потом объединились и с 1915 года уже работали совместно под названием «Societe des Moteurs Gnome et Rhone». Двигатель 9J был, в общем-то, уже их совместным продуктом.

Ротативный двигатель «Le Rhone 9J».

Открытый картер двигателя «Le Rhone 9J».

Интересно, что вышеупомянутая германская фирма «Motorenfabrik Oberursel» в 1913 году закупила лицензии на производство теперь уже французских ротативных двигателей «Gnome» (хотя и была родоначальницей этого брэнда, можно сказать) и чуть позже двигателей «Le Rhone». Их она выпускала под своими наименованиями: «Gnome», как «U-серия» и «Le Rhone», как «UR-серия» ( от немецкого слова Umlaufmotor, обозначающего ротативный двигатель).

Например, двигатель «Oberursel U.0» был аналогом французского «Gnome 7 Lambda» и устанавливался первоначально на самолет Fokker E.I., а двигатель «Oberursel U.III» — это копия двухрядного «Gnome 14 Lambda-Lambda».

Германский двухрядный «Oberursel U.III», копия «Gnome 14 Lambda-Lambda».

Вообще фирма «Motorenfabrik Oberursel» всю войну в довольно большом количестве производила двигатели-клоны французских моделей, которые потом ставились на самолеты, являвшиеся противниками французов и их союзников в воздушных боях. Вот такие фокусы жизни…

Истребитель Fokker E.I с двигателем «Oberursel U.0».

Среди других известных двигателестроительных фирм значится также французская фирма «Societe Clerget-Blin et Cie» (интересное для русского уха слово Blin в названии означает фамилию одного из учредителей, промышленника Эжена Блина) со своим известным движком «Clerget 9B».

Двигатель «Clerget 9B».

Двигатель «Clerget 9B» на истребителе Sopwith 1½ «Strutter».

Истребитель Sopwith 1½ «Strutter» с двигателем «Clerget 9B».

Многие двигатели производились в Великобритании по лицензиям. На этих же заводах выпускали английские двигатели разработки «Walter Owen Bentley» (того самого Бентли) «Bentley BR.1» (заменившие «Clerget 9B» на истребителях Sopwith «Camel») и «Bentley BR.2» для истребителей Sopwith 7F.1 «Snipe».

На двигателях «Bentley» в конструкции поршней впервые были применены алюминиевые сплавы. До этого на всех движках цилиндры были чугунные.

Ротативный двигатель «Bentley BR.1».

Ротативный двигатель «Bentley BR.2».

Истребитель Sopwith 7F.1″Snipe» с двигателем «Bentley BR.2».

Теперь вспомним о других особенностях ротативного двигателя, которые, так сказать, плюсов ему не прибавляют (чаще всего как раз наоборот).

Немного об управлении. Современный (стационарный, конечно) поршневой двигатель, неважно рядный он или звездообразный, управляется относительно легко. Карбюратор (либо инжектор) формирует нужный состав топливо-воздушной смеси и с помощью дроссельной заслонки пилот может регулироват подачу ее в цилиндры и, тем самым, менять обороты двигателя. Для этого по сути дела существует ручка (или педаль, как хотите) газа.

У ротативного двигателя все не так просто. Несмотря на разницу конструкций, большинство ротативных двигателей имели на цилиндрах управляемые впускные клапана, через которые и поступала топливо-воздушная смесь. Но вращение цилиндров не позволяло применять обычный карбюратор, который бы поддерживал оптимальное соотношение воздух-топливо за дроссельной заслонкой. Состав смеси, поступающей в цилиндры нужно было корректировать для достижения оптимального соотношения и устойчивой работы двигателя.

Для этого обычно существовал дополнительный воздушный клапан («bloctube») . Пилот устанавливал рычаг газа в нужное положение (чаще всего полностью открывая дроссель) и потом рычагом регулировки подачи воздуха добивался устойчивой работы двигателя на максимальных оборотах, производя так называемую тонкую регулировку. На таких оборотах обычно и проходил полет.

Из-за большой инерционности двигателя (масса цилиндров все же немаленькая), такая регулировка часто делалась «методом тыка», то есть определить нужную величину регулировки можно было только на практике, и эта практика была необходима для уверенного управления. Все зависело от конструкции двигателя и опыта пилота.

Весь полет проходил на максимальной частоте вращения движка и если ее по какой-либо причине надо было снизить, например для посадки, то действия по управлению должны были быть обратного направления. То есть пилоту нужно было прикрыть дроссель и потом опять регулировать подачу воздуха в двигатель.

Но такое «управление» было, как вы понимаете, достаточно громоздким и требующим времени, которое в полете не всегда есть, особенно на посадке. Поэтому гораздо чаще применялся метод отключения зажигания. Чаще всего это делалось через специальное устройство, позволяющее отключать зажигание полностью или в отдельных цилиндрах. То есть цилиндры без зажигания переставали работать и двигатель в целом терял мощность, что и нужно было пилоту.

Этот метод управления широко применялся на практике, но тянул за собой и кучу проблем. Топливо, вместе, кстати, с маслом, несмотря на отключение зажигания, продолжало поступать в двигатель и, не сгорев, благополучно его покидало и затем скапливалось под капотом. Так как движок очень горячий, то опасность серьезного пожара налицо. Тогдашние «легкие этажерки» горели очень легко и быстро.

Пример защитных капотов на (защита от масла двигатель «Gnome 7 Lambda») Sopwith «Tabloid».

Поэтому капоты для двигателей имели внизу вырез примерно на одну треть периметра или на худой конец серьезные дренажные отводы, чтобы вся эта гадость могла быть удалена набегающим потоком. Чаще всего, конечно, она размазывалась по фюзеляжу.

Кроме того свечи в неработающих цилиндрах могли оказаться залитыми и замасленными и повторный запуск поэтому был не гарантирован.

К 1918 году французская двигателестроительная фирма «Societe Clerget-Blin et Cie» (ротативные двигатели «Clerget 9B»), исходя из очевидной опасности использования способа снижения мощности путем отключения зажигания, в руководстве по эксплуатации своих двигателей рекомендовала следующий метод управления.

При необходимости снижения мощности двигателя пилот перекрывает подачу топлива закрытием дросселя (ручкой газа). При этом зажигание не отключается и свечи продолжают «искрить» (предохраняя себя от замасливания). Винт вращается в результате эффекта авторотации и при необходимости запуска топливный клапан просто открывается в то же положение, что и до закрытия. Двигатель запускается…

Однако, по отзывам пилотов, которые в наши дни летают на восстановленных или точных копиях самолетов того времени, все-таки самый удобный режим снижения мощности — это отключение зажигания, несмотря на всю «грязь», которую при этом извергают ротативные двигатели.

Самолеты с такими движками вообще особой чистотой не отличались. Про топливо в отключенных цилиндрах я уже сказал, но ведь было еще и масло. Дело в том, что из-за вращающегося блока цилиндров, возможность откачки топлива из картера была весьма проблематична, поэтому организовать полноценную систему смазки было нельзя.

Схема топливо- и маслопитания ротативного двигателя «Gnome 7 Omega».

Но без смазки никакой механизм работать не будет, поэтому она, конечно, существовала, но в о-о-очень упрощенном виде. Масло подавалось прямо в цилиндры, в топливо-воздушную смесь. На большинстве двигателей для этого существовал небольшой насос, подававший масло через полый (неподвижный, как уже известно) вал по специальным каналам.

В качестве смазывающего масла использовалось касторовое, самое лучшее по тем временам масло (природное растительное) для этих целей. Оно, кроме того не смешивалось с топливом, что улучшало условия смазки. Да и сгорало в цилиндрах оно только частично.

Пример замасливания (темные пятна) двигателя «Gnome 7 Omega» полусгоревшим касторовым маслом.

А удалялось оно оттуда после выполнения своих функций вместе с отработанным газами через выпускной клапан. И расход его при этом был очень даже немаленький. Средний движок, мощностью около 100 л.с. (75 кВт, 5-7 цилиндров) за час работы расходовал более двух галлонов (английских) масла. То есть около 10 литров вылетало «на ветер».

Ну что тут скажешь… Бедные механики. Масло, сгоревшее и несовсем, топливная смесь, оставшаяся после дросселирования движка, сажа… все это оседало на самолете и все это нужно было отмывать. Причем масло это отмывалось очень плохо. Из-за этого на старых снимках самолеты частенько «щеголяют» грязными пятнами на крыле и фюзеляже.

Но и летчики — люди мужественные. Ведь из движка выходила касторка. А это, как известно, очень хорошее слабительное (в аптеках раньше продавалась, не знаю, как сейчас). Конечно, двигатель был закрыт капотом и снизу, как я уже говорил, был вырез для удаления всей грязи. Но ведь кабина открытая и воздушный поток — штука не всегда управляемая. Если чистая касторка попадала на лицо и потом внутрь… Последствия предугадать… наверное было не сложно…

Следующая особенность ротативных двигателей, которую я бы тоже не назвал положительной была связана с управляемостью аэропланов, на которых стояли такие движки. Немалая масса вращающегося блока представляла собой по сути дела большой гироскоп, поэтому гироскопический эффект был неизбежен.

Пока самолет летел прямолинейно, его влияние не было сильно заметно, но стоило начать совершать какие-либо полетные эволюции, как сразу проявлялась гироскопическая прецессия. Из-за этого и вкупе с большим крутящим моментом массивного блока цилиндров при выбранном правом вращении винта самолет очень неохотно поворачивал влево и при этом задирал нос, но зато быстро делал правые развороты с большой тенденцией к опусканию носа. Такой эффект с одной стороны очень мешал (особенно молодым и неопытным пилотам), а с другой был полезен при проведении воздушных боев, в так называемых «собачьих свалках» (dogfights). Это, конечно, для опытных летчиков, которые могли с толком использовать эту особенность.

Очень характерен в этом плане был известный самолет Sopwith F.1 «Camel» Королевских ВВС, считавшийся лучшим истребителем Первой Мировой. На нем стоял ротативный двигатель «Clerget 9B» (как примечание добавлю, что в последствии также ставился и английский «Bentley BR.1» (150 л.с.)). Мощный (130 л. с.), но достаточно капризный двигатель, чувствительный к составу топлива и к маслу. Мог запросто отказать на взлете. Но именно благодаря ему и особенностям компоновки фюзеляжа (рассредоточению полезного оборудования) «Camel» был очень маневренен.

Истребитель Sopwith F.1 «Camel» с двигателем «Clerget 9B».

Маневренность эта, правда, доходила до крайности. В управлении истребитель был необычайно строг и вообще имел кое-какие неприятные особенности. Например, большое желание войти в штопор на малой скорости. Он абсолютно не подходил для обучения молодых пилотов. По некоторой статистике за время войны в боевых действиях на этом аэроплане погибло 415 пилотов, а в летных происшествиях — 385. Цифры красноречивые…

Однако опытные пилоты, хорошо его освоившие, могли извлечь большую пользу из его особенностей и делали это. Интересно, что из-за нежелания истребителя «Camel» быстро разворачиваться влево, многие пилоты предпочитали делать это, так сказать, «через правое плечо». Поворот вправо на 270° получался значительно быстрее, чем влево на 90°.

Основным и достойным противником для Sopwith F.1 «Camel» был немецкий триплан Fokker Dr.I с двигателем «Oberursel UR.II» (полный аналог французского «Le Rhone 9J»). На таком воевал Барон Манфред Альбрехт фон Рихтгофен (Manfred Albrecht Freiherr von Richthofen), знаменитый «Красный барон».

Триплан Fokker Dr.I.

Германский двигатель «Oberursel-UR-2» (копия «Le Rhone 9J»).

За время войны ротативные двигатели достигли своего полного расцвета. При имеющихся запросах армии, несмотря на свои недостатки они очень хорошо подходили для решения, так сказать, триединой задачи «мощность — вес — надежность». Особенно, что касается легких истребителей. Ведь именно на них в подавляющем большинстве такие движки стояли.

Более крупные и тяжелые самолеты продолжали летать, используя традиционные рядные движки.

Однако авиация развивалась бурными темпами. Требовалась все большая мощность двигателей. Для стационарных рядных это достигалось путем увеличения максимального количества оборотов. Возможности совершенствования в этом направлении были. Улучшались системы зажигания и газораспределения, принципы образования топливовоздушной смеси. Применялись все более совершенные материалы.

Это позволило к концу Первой Мировой войны поднять максимальную величину оборотов стационарного двигателя с 1200 до 2000 об/мин.

Однако, для ротационного двигателя этот было невозможно. Организовать правильное смесеобразование было нельзя. Все приходилось делать «на глазок», поэтому расход топлива (как и масла) был, мягко говоря, немаленьким (в том числе, кстати, из-за постоянной работы на больших оборотах).

Какие-либо внешние регулировочные работы на двигателе, пока он находится в запущенном состоянии само собой были невозможны.

Повысить частоту вращения тоже не получалось, потому что сопротивление воздуха быстро вращающемуся блоку цилиндров было достаточно большим. Более того, при увеличении скорости вращения, сопротивление росло еще быстрее. Ведь, как известно, скоростной напор пропорционален квадрату скорости. То есть если скорость просто растет, то сопротивление растет в квадрате (примерно).

При попытках на некоторых моделях двигателей начала войны поднять обороты с 1200 об/мин до 1400 об/мин сопротивление поднималось на 38%. То есть получалось, что возросшая мощность двигателя больше тратилась на преодоление сопротивления, чем на создание полезной тяги воздушного винта.

Немецкой фирмой Siemens AG была сделана попытка обойти эту проблему с другой стороны. Был выполнен 11-цилиндровый двигатель так называемой биротативной схемы (наименование Siemens-Halske Sh.III). В нем блок цилиндров вращался в одну сторону с частотой 900 об/мин., а вал (ранее неподвижный) в другую с той же частотой. Суммарная относительная частота составила 1800 об/мин. Это позволило достичь мощности в 170 л.с.

Биротативный двигатель «Siemens-Halske Sh. III».

Истребитель «Siemens-Schuckert D.IV».

Истребитель «Siemens-Schuckert D.IV» в берлинском авиамузее.

Этот двигатель имел меньшее сопротивление воздуху при вращении и меньший крутящий момент, мешающий управлению. Устанавливался на истребителе «Siemens-Schuckert D.IV» , который по мнению многих специалистов стал одним из лучших маневренных истребителей времен войны. Однако производиться начал поздно и сделан был в небольшом количестве экземпляров. Существующее положение Siemens-Halske Sh.III не поправил и не смог опять поднять ротативные двигатели на должную высоту.

Здесь следует упомянуть о работах русского инженера Анатолия Георгиевича Уфимцева. А.Г.Уфимцев работы по биротативным авиационным двигателям начал ещё в 1909 году. Им был спроектирован четырехцилиндровый биротативный двигатель с воспламенением смеси при высокой степени сжатия в цилиндрах, диаметр которых составлял 90 мм, ход поршня — 120 мм. На это изобретение А. Г.Уфимцев получил патент. Специального станка для замера мощности биротативного двигателя у конструктора не было. По его расчетам мощность двигателя массой 40 кг могла достигать 35-40 л.с. Для запуска двигателя предполагалось использовать сжатый воздух от баллона на борту самолета. В Главном инженерном управлении дали отрицательное заключение на этот проект, считая невозможным запуск двигателя сжатым воздухом (в дальнейшем практика развития авиации подтвердила целесообразность воздушного запуска).

Тем не менее А.Г.Уфимцев не оставил намерения осуществить свою идею. Четырехцилиндровый двигатель с самовоспламенением не удовлетворял автора и в новом проекте была применена электрическая система зажигания топливовоздушной смеси при меньшей степени сжатия.
Получив небольшой кредит от частных лиц, заложив дом и используя все наличные средства, изобретатель построил шестицилиндровый биротативный двигатель. При этом диаметр цилиндра равнялся 80 мм, ход поршня — 110 мм, частота вращения — 1000 об/мин. Масса двигателя — 50 кг, расчетная мощность — 40 л.с. Этот двигатель А.Г.Уфимцев установил на самолете собственной конструкции «Сфероплан-2», который был построен в 1910 году. Во время испытаний самолет не взлетел из-за передней центровки.

Аппарат А.Г.Уфимцева «Сфероплан-II». 1910 г.

В 1912 году А.Г.Уфимцев спроектировал новый шестицилиндровый двухтактный биротативный двигатель с улучшенной продувкой цилиндров. Были устранены недостатки предыдущих двигателей, существенно изменены параметры и конструкция основных узлов, расчетная мощность — в пределах 65-70 л.с. при массе 58 кг. Двигатель был построен на Брянском паровозостроительном заводе и получил наименование АДУ-4. Его испытание, доводка не были завершены, завод отказался от производства этого двигателя. В настоящее время двигатель АДУ-4 экспонируется в музее ВВС.

А.Г.Уфимцев у своего первого биротативного двигателя.

Двигатель АДУ-4 в музее ВВС Монино.

Недостатков у всех видов ротативных двигателей, как видите, хватало. Ко всему прочему могу еще добавить, что движки эти были достаточно дороги. Ведь из-за большой быстро вращающейся массы все детали двигателя должны были быть хорошо отбалансированы и четко подогнаны. Плюс сами материалы были недешевы. Это приводило к тому, что, например, двигатель Monosoupape по ценам 1916 года стоил порядка 4000$ (что в переводе на курс года 2000-го составляет примерно 65000$). Это при том, что в движке-то, вобщем-то, по нынешним понятиям, ничего особенного-то нет.

Ко всему прочему моторесурс всех таких двигателей был невысок (вплоть до 10-ти часов между ремонтами) и менять их приходилось часто, несмотря на высокую стоимость.

Все эти недостатки копились и в конце концов чаша оказалась переполнена. Ротативный двигатель широко использовался и совершенствовался (по мере возможности) вплоть до конца войны. Самолеты с такими движками некоторое время использовались во время гражданской войны в России и иностранной интервенции. Но в целом их популярность быстро пошла на спад.

Совершенствование науки и производства привели к тому, что на сцену уверенно вышел последователь ротативного двигателя — радиальный или звездообразный двигатель с воздушным охлаждением, который не сходит с нее и по сей день, работая, между прочим, в содружестве с рядным поршневым авиационным двигателем с жидкостным охлаждением.

Ротативный двигатель, оставив яркий след в истории авиации, занимает теперь почетное место в музеях и на исторических выставках.

В заключении ролик — запуск восстановленного двигателя «Gnome» 1918 года выпуска:

.

.

Источник:
Сайт «Авиация понятная всем». Юрий Тарасенко. Ротативный двигатель. Чумазый вояка… 
Андрей Бондаренко. Моторы пламенных сердец.
П.Д.Дузь. История воздухоплавания и авиации в России (период до 1914 г.).
Д. Я.Зильманович. Теодор Калеп. 1866-1913.

знакомимся с двигателями необычных конструкций – Автоцентр.ua

Автоцентр
Сервис
Технологии
Не такие, как все: знакомимся с двигателями необычных конструкций

Марка

Модель

Оставьте ваши контактные данные:

По телефону

На почту

Уточните удобное время для звонка:

День/дата

  • День/дата
  • Сегодня
  • Завтра
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16

Часы

  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20

Минуты

  • 10
  • 20
  • 30
  • 40
  • 50

Отправляя заявку я предоставляю свое согласие на сбор и обработку предоставленных мною личных персональных данных в соответствии с Законом Украины «О защите персональных данных»

Оставьте ваши контактные данные:

Уточните удобное время для звонка:

День/дата

  • День/дата
  • Сегодня
  • Завтра
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16

Часы

  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20

Минуты

  • 10
  • 20
  • 30
  • 40
  • 50

Прямо сейчас

Отправляя заявку я предоставляю свое согласие на сбор и обработку предоставленных мною личных персональных данных в соответствии с Законом Украины «О защите персональных данных»

Оставьте ваши контактные данные:

Выберите машину:

Марка

  • Сначала выберите дилера

Модель

  • Сначала выберите марку

Отправляя заявку я предоставляю свое согласие на сбор и обработку предоставленных мною личных персональных данных в соответствии с Законом Украины «О защите персональных данных»

Sample Text

Оставьте ваши контактные данные:

Выберите машину:

Марка

  • Сначала выберите дилера

Модель

  • Сначала выберите марку

Уточните удобное время для тест-драйва:

День/дата

  • День/дата
  • Сегодня
  • Завтра
  • 11
    марта

  • 12
    марта

  • 13
    марта

  • 14
    марта

  • 15
    марта

  • 16
    марта

  • 17
    марта

  • 18
    марта

  • 19
    марта

  • 20
    марта

  • 21
    марта

  • 22
    марта

  • 23
    марта

Часы

  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20

Минуты

  • 00
  • 10
  • 20
  • 30
  • 40
  • 50

Отправляя заявку я предоставляю свое согласие на сбор и обработку предоставленных мною личных персональных данных в соответствии с Законом Украины «О защите персональных данных»

X

Оберіть мовну версію сайту.
За замовчуванням autocentre.ua відображається українською мовою.

Слава Україні! Героям слава!

Ви будете перенаправлені на українську версію сайту через 10 секунд

Как работает роторный двигатель?

► Как работает двигатель Ванкеля
► Чем они отличаются от четырехтактных
► Почему они возвращаются

Как и другие обычные бензиновые двигатели, искрой для производства энергии, но, помимо этого, он во многом отличается от обычного автомобильного двигателя; особенно то, как он берет расширяющиеся газы и теплоту сгорания и превращает их в движение, чтобы подтолкнуть ваш автомобиль.

В обычном двигателе процесс сгорания воздействует на набор поршней, которые производят линейное движение внутри цилиндров двигателя. Поршни движутся вверх и вниз, как ноги велосипедиста, и они прикреплены к коленчатому валу, который является компонентом, который преобразует это движение вверх и вниз в круговое движение, приводящее в движение колеса.

В роторном двигателе все основные внутренние компоненты вращаются преимущественно по кругу, что обеспечивает более простую и эффективную передачу энергии от сжигания бензина к вращению колес. Таким образом, роторный двигатель имеет меньше движущихся частей, меньше по размеру, легче и мощнее для своей мощности.

Несмотря на то, что Mazda, без сомнения, является чемпионом среди роторных автомобилей, японский бренд — не единственный производитель, придумавший эту идею.

Также, как и в обычных поршневых двигателях, расположение ротора роторного двигателя может быть продублировано для большей производительности и большей мощности. Большинство роторных моделей были с двумя роторами, но Mazda создала версии с тремя и четырьмя роторами.

Однако, как и следовало ожидать, у этой блестящей идеи есть недостатки.

Запечатанная судьба

Во-первых, специальные уплотнения (вы можете услышать, как они называются торцевыми, лепестковыми или вершинными уплотнениями), которые помогают создать сжатие, необходимое для сгорания, подвержены износу. Когда это происходит, роторные двигатели начинают терять мощность и также могут сжигать масло. Замена сальников — большая работа.

Выбросы и экономичность

Несмотря на то, что характеристики мощности роторного двигателя очень хорошие, они не так хороши, когда речь идет об экономии топлива, а влияние на выбросы также отрицательное. Турбонаддув и каталитические нейтрализаторы в более поздних конструкциях отчасти помогали, но не настолько, чтобы сохранить принцип с сегодняшними строгими правилами.

Абсолютная мощность

Несмотря на то, что свободно вращающийся двигатель делает автомобили с его приводом привлекательными и веселыми, за это приходится платить низкой мощностью и особенно крутящим моментом. Эта уникальная производительность ограничивает двигатель конкретными приложениями и в основном спортивными автомобилями.

Многие автопроизводители экспериментировали с роторными двигателями, но только Mazda приступила к их крупносерийному производству. И когда это произошло в 1960-х и 70-х годах, плохая надежность роторного двигателя чуть не поставила компанию на колени. Но современные технологии и материалы означают, что у роторных двигателей может быть будущее, и если вы когда-либо водили их, вы знаете, насколько они восхитительно плавны и полны характера.

Детали все еще очень легкие, и модель, возвещающая о возрождении, еще не объявлена, но вы, возможно, снова сможете путешествовать под управлением этой необычной силовой установки.

Как работает роторный двигатель?

Всегда хотели знать, о чем все говорят, вращая Doritos? Давайте погрузимся в

Что такое роторный двигатель?

Говоря простым языком (на грани упрощения), это двигатель с одним или несколькими роторами, которые вращаются — поди пойми — вместо поршней, совершающих возвратно-поступательное движение. Основные принципы внутреннего сгорания — всасывать, сжимать, хлопать, дуть — по-прежнему применимы, но разница заключается в методе, с помощью которого это осуществляется на практике. Подробнее об этом чуть позже.

Он также используется для обозначения больших двигателей старых самолетов, в которых целая куча поршней расположена по кругу вокруг эксцентричного центрального коленчатого вала и фактически вращается вокруг него. Без сомнения, это зрелище, но не то, о чем мы здесь говорим.

Хотя вы, вероятно, ассоциируете роторный двигатель с Mazda, учитывая, что это единственная автомобильная компания, добившаяся заметного потребительского успеха, роторный двигатель использовался в автомобилях от Citroen до NSU, а также в мотоциклах, вертолетах. , легкие самолеты, беспилотники, водные мотоциклы — вы называете это. Мы уверены, что если бы вы искали достаточно внимательно, вы могли бы найти кого-то, кто прикрепил его к газонокосилке (теперь есть идея) или к рыбацкой лодке, но, тем не менее, это довольно широкое распространение.

Роторный двигатель на самом деле особенный, учитывая, что это один из трех типов двигателей, когда-либо изобретенных человечеством. Первый — это тот, с которым вы больше всего знакомы — поршни — которые затем можно разделить на четырехтактные и двухтактные, дизельные, бензиновые и так далее. Во-вторых, это турбины, с которыми вы хорошо знакомы по последнему полету Ryanair/Jetstar/Delta. И третье — роторные. Вот примерно так, если только не начать считать ракеты.

Как работает роторный двигатель?

О, мы можем просто сказать «феиная пыль и слезы гонщиков» и двигаться дальше?

Нет? Отлично. Это будет немного концептуально, так что пристегнитесь.

Представьте себе овал, слегка сжатый посередине, чтобы получилась едва заметная восьмерка. Теперь представьте себе треугольник с выпуклыми сторонами внутри этой восьмерки, совершающий что-то вроде вальса вокруг и вокруг так, что длинная изогнутая сторона выпуклого треугольника создает четыре отдельные «зоны» в восьмерке, когда она танцует.

Эти четыре зоны являются четырьмя частями цикла сгорания – впуск, сжатие, зажигание, выпуск. Гениальность роторного двигателя заключается в том, что один оборот означает три отдельных рабочих такта, в отличие от четырехтактных поршневых двигателей, которые, как следует из названия, производят мощность только при одном движении из четырех.

Поскольку одна сторона треугольника удаляется от воздухозаборника, происходит всасывание топливно-воздушной смеси. И по мере его удаления соседняя сторона сжимает смесь. Который затем воспламеняется, а) позволяя расширяющемуся газу толкать ротор, и б) создавая мощность. Но поскольку эта сторона ротора толкается горением, она толкает следующую сторону треугольника, чтобы выпустить выхлопные газы. Удивительные вещи, на самом деле.

Внутри треугольника находится шестерня, которая как бы крутится вокруг меньшей шестерни, прикрепленной к чему-то, что называется эксцентриковым валом. Да, много танцев составляет роторный двигатель. Во всяком случае, этот эксцентриковый вал, или буква «Е», немного похож на большой распределительный вал с гигантскими кулачками. И он действует аналогичным образом, но с другой целью. В то время как лепестки на распределительных валах преобразуют вращательное движение в возвратно-поступательное — толкают клапаны вверх и вниз, когда идеально круглая часть вала вращается нормально — «лепестки» на эксцентриковом валу позволяют ротору совершать пируэты внутри корпуса, преобразовывая энергию от Dorito. танцуйте в регулярных вращениях.

На фото: роторный двигатель Mazda Renesis

Чем отличается роторный двигатель?

Во многом это та же идея, что и у любого другого бензинового двигателя. Ротари по-прежнему берут топливо, смешивают его с воздухом, сжимают смесь, поджигают ее свечами зажигания, используют расширяющийся газ для выполнения механической работы и вращения вала, а затем выбрасывают отработанный газ из камеры сгорания.

Роторный двигатель отличается… примерно везде. Поскольку мы уже говорили о том, как вальсировать Doritos с хулахупом вокруг эксцентрикового стержня, можно с уверенностью сказать, что здесь есть над чем подумать.

Количество деталей, необходимых для создания роторного двигателя, составляет лишь часть поршневого двигателя, и многие проблемы, присущие поршневым двигателям, и сложные инженерные решения, необходимые для их преодоления, устраняются исключительно благодаря конструкции роторного двигателя. Подробнее об этом. .. ну, а теперь, собственно.

Чем хорош роторный двигатель?

Ну, BRAP, есть множество положительных моментов BRAAAP о роторном двигателе BRAP-BAP-BAP-BAP, таких как небольшой размер, малый вес, малое количество деталей, простота изготовления, BRAAAAAP… И, конечно же, уникальный, хриплый и, в конечном счете, непревзойденный звук, если мы еще не сообщили об этом ранее. Звук наполовину мотоцикл, наполовину болид F1, и все хорошо. Даже турбины — печально известные шумоглушители — не могут подавить ярость ротора в полном полете.

И это тоже будет на полном ходу — роторные машины легендарны тем, как они набирают обороты, и действительно, как высоко они могут вращаться. Это потому, что ротор… ну, вращается, а не совершает возвратно-поступательные движения. Таким образом, каждая часть цикла сгорания продолжает двигать ротор в одном и том же направлении, а не преодолевать инерцию поршня, чтобы остановить его и отправить обратно в том же направлении, в котором он пришел. Во время вождения это означает четкую реакцию на нажатие педали газа; при сборке, обслуживании и восстановлении это означает некую простоту, с которой не могут сравниться даже старые детройтские V8.

Роторному двигателю не нужны коленчатые валы, шатуны или сложные клапанные механизмы. На самом деле, в клапанах нет необходимости — ротор берет на себя всю работу с несколькими портами.

Итак, когда приходит время настраивать роторный двигатель, это означает доставать Дремель и веселиться с впускными и выпускными отверстиями. Хотя это, очевидно, возможность настройки поршневого двигателя с возвратно-поступательным движением, вы делаете больше, чем вы думаете, изменяя порты на роторном — вы также фактически меняете синхронизацию.

Так что, если вам нужны вышеупомянутые BRAP-BAP-BAP и так далее, они появятся только после того, как вы повозитесь с впускным и выпускным отверстиями для большего потока воздуха и большего перекрытия. Итак, теперь вы знаете — за бредом стоит наука.

Чем плох роторный двигатель?

Не слишком ли сильно мы ударим по ротору, если скажем, что расход топлива не уступает Concorde, срок службы можно измерить секундомером, а крутящего момента едва хватает, чтобы сорвать винт с крестообразным шлицем? Ну, да. Не хочу звучать как апологеты Spinning Dorito или что-то в этом роде, но все не так уж и плохо.

Здесь применима часто повторяемая поговорка «ничто в жизни не бывает бесплатным» — роторные двигатели имеют ряд преимуществ перед поршневыми двигателями, но это означает принятие определенных сопутствующих недостатков. В двух словах, это обычно расход топлива (и масла), более короткие интервалы между необходимостью серьезного механического вмешательства и просто ощущение того, что вы управляете чеховским пистолетом конфигураций двигателя. Это будет взрыв; именно там, где в пятом акте происходит тревожная часть.

В интересах баланса мы должны указать, что любой механически склонный к управлению а) классическим автомобилем или б) мотоциклом для бездорожья сможет управлять автомобилем с роторным двигателем без каких-либо проблем. Конечно, полный двухроторный двигатель (или тройной, если вы удачливый нищий с Cosmo начала девяностых) будет более сложным, чем стандартный классический карбюраторный или одноцилиндровый двигатель, но образ мышления, который восстанавливает являются лишь частью опыта владения, уже есть у владельцев Triumph TR3 и трейлрайдеров.

Но, если вас интересует немного больший промежуток между заменой апексных уплотнений (самая распространенная большая работа на любом роторном двигателе, которая каждый раз включает в себя эквивалент операции на открытом сердце) (совершенно неофициальный) экспертный совет часто заключается в том, чтобы предварительно смешать немного масла для двухтактных двигателей в топливном баке. Да, действительно.

Это, по-видимому, для продления срока службы верхних уплотнений с дополнительной смазкой, хотя роторные двигатели уже имеют впрыск масла. Очевидно, недостаточно, или в достаточно равномерном распределении по верхнему уплотнению.Кроме того, давайте рассмотрим очевидные опасения, которые могут возникнуть у вас по поводу работы вашего RX-8 на двухтактном: при соотношениях, которые, по словам эксперта, которого мы спросили, соотношение было около 1: 400.