Содержание
2 х тактный двигатель принцип работы – 2 такта
«ДВУХТАКТНЫЙ ДВИГАТЕЛЬ.
ОБЩЕЕ УСТРОЙСТВО И РАБОТА»
Двигатели внутреннего сгорания (ДВС),
работающие по двухтактному рабочему циклу широко применяются на мототехнике и, так называемой, малой технике (мотопилы, снегоуборочная техника, газонокосилки и пр.). В автомобильной технике данный тип двигателей встречается реже, нежели четырёхтактные моторы но, тем не менее, бензиновыми двухтактниками серийно оснащали свои машины такие известные автопроизводители как, например: DKB, Trabant, SAAB, Wartburg, Barkas — в Европе и Suzuki Jimny — в Японии. Также двухтактные двигатели с противоположно движущимися поршнями использовались в поршневой авиации, например, двигатели Юнкерса ЮМО-205. Двигатели типа Фербенкс-Морзе серии Д100 широко применялись на тепловозах ТЭ 3 и ТЭ 10. На танки Т-64, Т-80УД, Т-84 и некоторые другие, ставились двухтактные двигатели 5ТДФ. Эти же моторы использовались и в качестве судовых двигателей. В советском автомобилестроении двухтактные четырёхцилиндровые дизельные двигатели ЯАЗ-204 устанавливались на автомобили семейства МАЗ-200, а двухтактные шестицилиндровые ЯАЗ-206 — на трёхосные грузовики семейства КрАЗ-214 и военную технику (плавающий транспортёр К-61, артиллерийский тягач АТ-Л, самоходная артиллерийская установка АСУ-85), а также на автобусах. Назначение двигателя и требуемые рабочие характеристики определяет его конструкцию.
Двигатель состоит из корпусных деталей, кривошипно-шатунного и газораспределительного механизмов, обеспечивающих рабочий цикл двигателя, а также системы смазки, охлаждения, питания, зажигания, пуска и др. вспомогательных систем, обеспечивающих работу его механической части.
Кривошипно-шатунный механизм
двухтактного двигателя состоит из деталей цилиндропоршневой группы (цилиндр, поршень, поршневой палец, поршневые кольца и др. детали) и шатунной группы (коленчатый вал, шатун, маховик и др. детали).
Газораспределительный механизм
двигателя может иметь как клапанную или золотниковую конструкцию, типичную для автомобильных четырёхтактных ДВС, так и щелевую конструкцию, распространённую на значительной части двухтактных двигателей и схематично показанную на рисунке. Очистка цилиндра в таких конструкциях осуществляется за счёт, так называемой, продувки, когда отработавшие газы удаляются из надпоршневой полости двигателя за счёт вытеснения их свежим топливовоздушным зарядом, поступающим в цилиндр под давлением через специальную щель, именуемую продувочным окном. По способу организации движения потоков продувочного воздуха (смеси) различают двухтактные двигатели с контурной и прямоточной продувкой. При прямоточной продувке газы продуваются вдоль оси цилиндра в одном направлении. При контурной продувке поток газов направлен по контуру цилиндра сначала от поршня к головке, потом в противоположном направлении. Так как воздух (смесь) в цилиндре чаще всего описывает петлю, такой тип продувки называется еще возвратно-петлевой или просто петлевой продувкой. Двигатели с прямоточной продувкой по сложности могут превосходить четырёхтактные, имеют большую литровую мощность и применяются в качестве «больших» двигателей (судовых, тепловозных). Если сравнивать конструкцию КШМ двухтактного и четырёхтактного двигателей, то различия не будут существенны. Конструкция самих деталей и материал их выполнения может иметь большие отличия.
Корпус двигателя
как правило, неразъёмный и имеет моноблочную конструкцию (т.е., головка блока и блок цилиндров выполнены как одно целое в виде единой отливки). В качестве материалов, используемых для изготавления корпусов двигателей, применяются алюминиевые сплавы, легированные кремнием и др. металлами и иногда (для «больших» двигателей) специальный чугун. Внешняя часть корпуса двигателя с воздушным охлаждением оребрена для увеличения площади охлаждения и лучшего отвода тепла от цилиндров. Корпус, через уплотнительную прокладку крепится к картеру, в опорах которого устанавливается коленчатый вал. В качестве опорных подшипников одинаково широко применяются как подшипники качения, так и скольжения. Применение того или иного типа опор КВ часто обуславливает способ их смазки (под давлением или маслом, добавленным в топливо) и конструкцию системы смазки.
Цилиндры
выполняются заодно с легкосплавным алюминиевым блоком, но могут изготавливаться и в виде отдельных вставных чугунных или вплавленных в материал блока стальных тонкостенных гильз. Рабочая поверхность (зеркало) алюминиевых цилиндров покрывается слоем хрома, никасила или на поверхность наносится иное покрытие, имеющее высокую износостойкость. В стенках цилиндра выполняются впускные и выпускные отверстия (щели) системы газораспределения. Щели могут быть снабжены клапанами мембранного типа, представляющими собой тонкие, упругие металлические пластины которые под воздействием на них разряжения или давления, создаваемого поршнем, открывают или закрывают щелевые отверстия. Также, открытие и перекрытие щелей может осуществляться непосредственно телом поршня. В головке поршня выполнены кольцевые канавки для установки поршневых колец. В канавке может присутствовать вертикальная перемычка, являющаяся установочным элементом для поршневого кольца (кольцо в канавке ориентируется таким образом, чтобы перемычка находилась в разрезе кольца). На поршень устанавливается три кольца – два компрессионных и одно маслосъёмное – если детали двигателя смазываются принудительно, и два компрессионных кольца – если масло для смазки добавляется в топливо.
Двухтактные двигатели могут иметь, «привычную» для автомобильных моторов, комбинированную систему смазки или не иметь её вовсе. В последнем случае смазка деталей осуществляется маслом, добавляемым в определённой пропорции к топливу при заправке двигателя. Масла для двухтактных двигателей имеют ряд специфических свойств, определяющих их назначение. Эти свойства отличаются от свойств моторных масел для четырёхтактных двигателей в первую очередь устойчивостью к высоким температурам и пониженной зольностью. Значительная часть двухтактных ДВС имеет воздушную систему охлаждения.
Рабочий цикл двигателя
осуществляется за два хода поршня (один оборот коленчатого вала), что теоретически, должно обуславливать большую литровую мощность двухтактных двигателей, нежели четырёхтактных (при условии равности сравниваемых конструкций, в частности – диаметра цилиндра, хода поршня, рабочего объёма, частоты вращения КВ, устройства ГРМ и пр. ). Однако, вследствие таких причин как неполное использование хода поршня при такте расширения, относительно низкая степень очистки цилиндров от отработавших газов, малый коэффициент их наполнения, расходование части энергии на продувку цилиндров и, как следствие перечисленного, уменьшенный кпд, приводит к преимуществу в мощности не более чем на 70%. Особенностью двухтактных двигателей является то, что за один ход поршня (такт) в его цилиндрах одновременно совершается несколько процессов. Например, при движении поршня вверх происходит процесс удаления из цилиндра отработавших газов, сжатие смеси и впуск новой порции топливовоздушной смеси. При движении поршня вниз происходит процесс расширения горючих газов и наполнение цилиндра топливовоздушной смесью с одновременной продувкой (очисткой) цилиндра от сгоревших газов.
Такое возможно в силу того, что при организации рабочего цикла двухтактного двигателя используется как объём надпоршневого пространства цилиндра (I), так и объём картерной (кривошипной) полости двигателя (II). Рабочий цикл рассмотрим на примере двигателя . Данный двигатель устанавливался на скутер Honda Dio ZX AF35. Конструкция двигателя показана схематично на рисунке 1 (для увеличения, кликни на рисунок) .
При движении поршня вверх от нмт до вмт (Позиция 1), за счёт разрежения, создаваемого нижней частью поршня в картерной полости двигателя (II), полость заполняется новой порцией топливовоздушной смеси, поступающей через открытое впускное отверстие (3) цилиндра. Одновременно поршень способствует вытеснению остатков отработавших газов из надпоршневой части цилиндра (I) через открытое выпускное отверстие (1) и сжимает топливовоздушную смесь, ранее поступившую в надпоршневое пространство через продувочное окно (2). При этом часть топливовоздушной смеси выдавливается в выпускную систему вместе с отработавшими газами. По мере движения к вмт поршень перекрывает сначала продувочное (2), а затем выпускное (1) отверстие. После закрытия поршнем выпускного окна в цилиндре начинается непосредственно процесс сжатия (рост давления в цилиндре). Немногим ранее прихода поршня в вмт (за несколько градусов, выраженных в углах поворота кривошипа КВ) смесь воспламеняется от электрической искры и сгорает (Позиция 2).
Рабочая смесь ДВС
Само название ДВС — двигатель ВНУТРЕННЕГО СГОРАНИЯ — намекает на то, что чего-то там горит. И горит, конечно, не само топливо, а лишь его пары, смешанные с воздухом. Такую смесь обычно называют рабочей. Горение этой смеси имеет особенность — она сгорает, значительно увеличиваясь в объеме, создавая, так сказать, ударную волну для поршней цилиндров.
За создание рабочей смеси отвечает карбюратор или инжектор соответственно, в зависимости от типа двигателя.
Устройство и принцип действия двухтактного двигателя внутреннего сгорания
За счёт большого количества тепла, выделяемого при горении топлива, газы расширяются, давление в цилиндре возрастает и поршень под воздействием давления начинает двигаться вниз, совершая полезную работу (вращает коленчатый вал).
При движении к нмт под давлением газов (Позиция 3), поршень нижней частью, воздействуя на находящуюся в кривошипной полости двигателя топливовоздушную смесь, повышает в полости давление. При этом пластинчатый клапан впускного отверстия (3) закрывается, препятствуя выдавливанию топливовоздушной смеси обратно во впускной коллектор двигателя. Когда поршень откроет выпускное отверстие (1), давление рабочих газов в цилиндре резко снижается. При последующем открытии продувочного отверстия (2) в цилиндр под давлением устремляется топливовоздушная смесь из кривошипной полости (II) и заполняет его, осуществляя продувку цилиндра от отработавших газов, которые выдавливаются в атмосферу через открытое выпускное отверстие (Позиция 4).
При дальнейшем вращении коленчатого вала процесс повторяется.
Такты работы ДВС
Вышеописанная схема — крайне упрощена. Теперь рассмотрим все происходящее в ДВС подробнее. Классической схемой работы ДВС является разделение его на такты. Для того чтобы рассмотреть каждый такт работы двигателя нужно усвоить несколько определений:
Верхняя мертвая точка (ВМТ) — самое верхнее положение поршня в цилиндре.
Нижняя мертвая точка (НМТ) — самое нижнее положение поршня в цилиндре.
Ход поршня — расстояние между ВМТ и НМТ.
Камера сгорания — объем в цилиндре над поршнем, когда он находится в ВМТ.
Рабочий объем цилиндра — объем над поршнем цилиндра, когда он находится в НМТ.
Рабочий объем двигателя — это суммарный рабочий объем всех цилиндров.
Степень сжатия ДВС — это отношение полного объема цилиндра к объему камеры сгорания.
Главное отличие
Как было отмечено выше, два вида мотора имеют принципиальное различие, которое заключается в смазке двухтактных механизмов, осуществляющейся смесью бензина и масла, которая впоследствии сгорает. Некоторые из них обладают специальной системой, осуществляющей подачу масла в картер, но смысл остается прежним – бензин сгорает вместе с маслом. В то время как китайский 4-тактный двигатель “Лифан”, как и любой другой подобного плана, оснащается приспособлениями для возвращения масла в специальный отсек.
Способы продувки цилиндров
Очевидно, что процесс продувки, механизм, квалифицирующийся, как сложный. Правильно выполненная продувка напрямую влияет на показатели мощности и коэффициента полезного действия. Для улучшения характеристик, конструкторы постоянно стараются усовершенствовать и довести процесс до идеала.
Как можно продуть цилиндр:
«Контурная» продувка.Вид продувки прост и поэтому распространён. Недостаток то, что применение связано с перерасходом топлива. Разновидности контурной продувки: возвратно-петлевая, дефлекторная, высотная.
«П-образная» продувка.Принцип «П-образной» заключается в применении только на моторах с двумя цилиндрами. При проведении, один цилиндр участвует в процессе впуска газов, второй выпускает отработку. Эффект продувки ощущается в топливной экономичности, процесс сопровождается неравномерным нагревом пары, отвечающей за выпуск.
«Клапанно-щелевая» продувка.Отличается тем, что требует наличия газораспределительного механизма для управления клапанами. Клапан используется, как для предоставления горючего, так и для вывода отработанных паров. Продувка предусматривает отвод отработки посредством клапана в головке цилиндров и поступление горючего через отверстия. Преимущество, что продувка повышает топливную экономичность и минимизирует показатель токсичности выпускаемых паров. Недостаток, сложность конструкции и нарушения режимов, связанных с повышением температуры работы агрегата.
«Прямоточная» продувка.Используется в силовых установках с количеством поршней равным двум. При этом расположение цилиндра находится в горизонтальном положении. Поршни двигаются, друг навстречу другу. В движении каждый поршень освобождает и перекрывает клапан: один поршень впускает порцию горючего, второй удаляет порцию отработки из цилиндра. Камера сгорания образуется в момент сближения поршней друг с другом. Эффект этого варианта продувки максимален: удаляет сгоревшие газы и экономит горючее. Минус, требуется сложный механизм кривошипов и шатунов, показатели температуры двигателя требуют применения охладителей и устойчивых материалов для изготовления деталей.
Двухтактный двигатель 5 ТДФ с прямоточной продувкой
Автопрайд Калининград
Категории
Каталог
Наборы инструментов
Головки
Ключи
Удлинители
Воротки
Запчасти
Домкраты
Трещотки
Специнструмент
Оборудование
Отвертки
Инструменты для кузовных работ
Пневмоинструмент
Биты
Съёмники
Системы хранения
Шарнирно- губцевый инструмент
Расходные материалы
О компании
7 лет работы для Вас! =)
брендовый инструмент
товар в наличии
доставка по городу
оптовикам скидки
Топ продаж
- Пока нет товаров со скидками.
Новинки
Полезная информация
Все статьи
О бренде Rock Force
Этот инструмент требует высоких показателей к таким параметрам, как износостойкость, точность исполнения, надёжн…
Далее
О бренде Forsage
Инструмент производителя FORSAGE — это широкий ассортимент оборудования и инструмента, таких как: профессиональн…
Далее
Анализ неисправностей
Перегрев – это враг №1 для двухтактных двигателей с воздушным охлаждением. Ребра цилиндра двигателя работают как…
Далее
Где нас найти?
Офис-склад
г. Калининград,
ул. Туруханская 3а (ТЦ СОЛО)
+7 (906) 217 43 79
Перейти на Google-карты
Как нас найти
Магазин, склад, сервис
г. Калининград, ул. Туруханская 3а (ТЦ СОЛО)
+7 (906) 217 43 79
тут карта
Помощь специалиста
Арендовать инструмент
Выберете инструментКультиватор VIKING HB 445 RБензопила STIHL MS180Мотокоса STIHL FS 55Бензорез STIHL TS800Аэратор VIKING LB540
разработка мобильных сайтов
DUS © 2014-2019
Разработка сайта
ИП Зыкина Е.В является официальным дилером марки STIHL и уполномочена осуществлять продажу техники фирмы-изготовителя ANDREAS STIHL AG&Co. KG. Всю продукцию STIHL можно посмотреть в каталоге
Посмотреть католог
Посмотреть продукцию STIHL и получить консультацию Вы можете у нас в магазинах:
г. Калининград, ул. Туруханская 3а (ТЦ СОЛО)
+7 (906) 217 43 79
Спасибо за Вашу заявку!
В ближайшее время наш менеджер даст Вам ответ.
Как работает двухтактный двигатель? – MechStuff
В моей предыдущей статье мы узнали, как работают 4-тактные двигатели! На этот раз мы узнаем о втором типе двигателя, а именно о двухтактном двигателе . Двухтактный двигатель представляет собой тип двигателя внутреннего сгорания, в котором один рабочий цикл завершается двумя ходами поршня при одном обороте коленчатого вала . Первый коммерческий двухтактный двигатель с внутрицилиндровым сжатием приписывают шотландскому инженеру 9.0003 Дугалд Клерк .
Двухтактный двигатель выполняет все те же действия, что и четырехтактный двигатель – всасывание, сжатие, расширение и выпуск; но 2-тактный двигатель выполняет все эти шаги только за 2 такта, в отличие от 4-тактного двигателя, который завершает один рабочий цикл за 4 такта.
Возможно, вы захотите узнать, как работают четырехтактные двигатели?
Детали двухтактного двигателя –
Поршень – В двигателе поршень используется для передачи силы расширения газов на механическое вращение коленчатого вала через шатун. Поршень может сделать это, потому что он плотно закреплен внутри цилиндра с помощью поршневых колец, чтобы минимизировать зазор между цилиндром и поршнем!
Коленчатый вал – Коленчатый вал – это деталь, способная преобразовывать возвратно-поступательное движение во вращательное.
Шатун – Шатун передает движение от поршня к коленчатому валу, который действует как плечо рычага.
Противовес – Противовес на коленчатом валу используется для уменьшения вибраций из-за дисбаланса вращающегося узла.
Маховик – Маховик представляет собой вращающееся механическое устройство, используемое для накопления энергии.
Впускной и выпускной порты – Позволяет подавать свежий воздух с топливом и выводить отработавшую топливно-воздушную смесь из цилиндра.
Свеча зажигания – Свеча зажигания подает электрический ток в камеру сгорания, который воспламеняет топливно-воздушную смесь, что приводит к резкому расширению газа.
источник :- wikipedia.org
Ход вниз :-
Сначала поршень перемещается вниз от ВМТ к НМТ, чтобы свежий воздух поступал в камеру сгорания. Свежая топливовоздушная смесь попадает в камеру сгорания через картер. Вращение коленчатого вала – 180°
Ход вверх :-
Здесь происходит все волшебство. Поршень выталкивается от НМТ до ВМТ. Топливно-воздушная смесь сжимается, и свеча зажигания воспламеняет смесь. По мере расширения смеси поршень движется вниз. Во время хода вверх впускной порт открыт. Пока это впускное отверстие открыто, смесь всасывается внутрь картера. Когда смесь выталкивается в камеру сгорания во время предыдущего хода вверх, создается частичный вакуум, так как в картере не остается смеси. Эта смесь готова к поступлению в камеру сгорания во время хода вниз, но остается в картере до тех пор, пока поршень поднимается до ВМТ. Вращение коленчатого вала на 360°
Два такта выполняются за один рабочий цикл.
Начиная с 2-го хода вниз и далее выхлопные газы выбрасываются с одной стороны, в то время как свежая смесь поступает в камеру сгорания одновременно благодаря частичному вакууму, создаваемому в камере сгорания после удаления выхлопных газов. В этом прелесть двигателя. Обе вещи происходят одновременно, что делает его двухтактным двигателем.
Знать В чем отличия, преимущества и недостатки 4-тактного и 2-тактного двигателя!
Двухтактный двигатель с вариантной конструкцией Источник:- mechanics.stackexchange.com
На приведенном выше рисунке показан другой вариант двухтактного двигателя, в котором впускные и выпускные отверстия расположены на одной стороне. Здесь нет необходимости промежуточно открывать впускные порты. Головка блока цилиндров сконструирована таким образом, что выпускное отверстие закрыто во время сгорания и открывается после сгорания. Сам поршень соответственно закрывает и открывает порт. Процесс остается прежним, разница здесь только в дизайне.
Возможно, вы заметили выступ на поверхности поршня. Такая конструкция помогает выхлопным газам легко проходить через выпускное отверстие, задавая ему направление.
Поскольку картер постоянно всасывает топливовоздушную смесь, смазать поршень и шатун практически невозможно. Поэтому топливо необходимо смешивать с маслом или смазкой (2%-5%) в двухтактном двигателе .
Рекомендуемая статья: — Как работают двигатели Ванкеля?
Геркон в двухтактном двигателе – что это такое и как он работает?
ИНФОРМАЦИЯ : Чтобы ознакомиться с нашим предложением готовых к использованию лепестковых клапанов из углеродного волокна, ознакомьтесь с нашим списком на eBay (нажмите здесь). Если лепестков для вашего автомобиля еще нет в списке, свяжитесь с нами — они могут быть в наличии. Если нет, мы будем рады сделать их для вас в течение нескольких дней. Доставка по всему миру!
В двухтактном двигателе, когда поршень движется вверх в такте всасывания-сжатия, в камере под поршнем (картере) происходит резкое падение давления. В этот момент из карбюратора в картер всасывается свежая топливовоздушная смесь. Затем, когда поршень движется вниз в рабочем такте выпуска, эта свежая смесь выталкивается вверх, чтобы перезагрузить камеру сгорания. В более старых, менее мощных поколениях двухтактных двигателей часть свежей смеси, выталкиваемой из картера, возвращалась в карбюратор. В настоящее время между картером и карбюратором используется односторонний клапан. Этот клапан называется язычковым клапаном и показан на рис. 9.0003 Рис. 1 . Геркон позволяет смеси двигаться только в одном направлении – из карбюратора в картер. Он предотвращает движение смеси обратно в карбюратор. В результате геркон улучшает перезагрузку камеры сгорания свежей топливно-воздушной смесью. Это улучшает выходную мощность современных двухтактных двигателей.
Рис. 1. Слева: такт всасывания-сжатия – язычковый клапан (зеленый) открыт. Вправо: такт рабочий-выпускной – язычковый клапан закрыт. (Источник всех рисунков выше: статья в Википедии)
Конструкция язычкового клапана проста (см. рис. 2 ): клапан состоит из корпуса/опоры, к которому крепятся лепестки язычка (также называемые «язычками»). В большинстве, но не во всех приложениях также используется ограничитель движения язычковых лепестков. Из-за разрежения, создаваемого в картере во время такта всасывания-сжатия, язычки отрываются, пропуская свежую топливовоздушную смесь. Далее, в рабочем такте выпуска, язычки закрываются за счет собственной упругости и избыточного давления, возникающего в картере. В результате, поскольку смесь не может вернуться в карбюратор, большая ее часть загружается в камеру сгорания.
Рис. 2. Газ Газ 125 (слева) и Kawasaki KX250 (справа) лепестковые клапаны для мотоциклов с угольными язычками производства CompoTec
Цикл, описанный выше, повторяется пропорционально частоте вращения двигателя, обычно выражаемой в оборотах в минуту или в об/мин. Это означает, что язычки могут открываться и закрываться тысячи раз в минуту. Каждый цикл, общее количество которых должно исчисляться миллионами, использует немного «жизни» язычковых лепестков, поскольку почти каждый материал имеет ограниченную усталостную способность.
Типичным признаком повреждения и/или износа лепестков лепесткового клапана является затрудненный запуск двигателя и неравномерная/негладкая работа. Следует время от времени проверять язычки на надлежащее уплотнение и отсутствие сколов или трещин. Один из способов проверить герметичность — направить конус язычкового клапана (язычками наружу) к сильному источнику света. Если внутри узла язычка не видно света, это означает, что уплотнение очень хорошее. Однако при использовании прямых неизогнутых бердов небольшие зазоры до ок. 0,2 мм (0,008 дюйма) обычно не проблема. Причина этого в том, что колебания давления в картере от пониженного до избыточного давления заставляют язычки как открываться, так и закрываться. Лепестки язычка всегда следует заменять, если материал имеет сколы, обычно по краям, или видны трещины.
Ранние лепестки тростника изготавливались из листов нержавеющей стали. Трости из нержавеющей стали недороги, очень прочны и обладают хорошей упругостью. Их главный недостаток в том, что отрыв лепестков обычно приводит к повреждению двигателя. Другим недостатком, возможно, менее важным для обычного пользователя, является масса лепестка язычка. Чем светлее лепесток язычка и чем ниже интериум, тем лучше он может «следить» за оборотами двигателя и повышать выходную мощность. Вот почему в автоспорте были введены композитные тростниковые лепестки. Первоначально они были на основе стекловолокна. Позже было использовано углеродное волокно, так как оно предлагает еще лучшие параметры — меньшую массу и большую жесткость при той же толщине. Композитные, на основе стекла на основе углеродного волокна, язычки не так прочны, как металлические. Однако их существенным преимуществом является то, что в случае поломки язычкового лепестка высвободившийся кусок обычно не наносит вреда двигателю. Композит на основе эпоксидной смолы более мягкий по сравнению с металлическими деталями двигателя и обычно «вытачивается».
Оптимальная толщина и жесткость лепестка лепесткового клапана обычно подбирается опытным путем и/или методом проб и ошибок. Оба эти параметра, которые соответствуют друг другу, влияют на работу двухтактного двигателя. Тонкие и более гибкие трости улучшают ускорение и производительность при более низких оборотах. Более толстые и жесткие язычки улучшают выходную мощность на высоких оборотах. Типичная толщина язычковых лепестков, доступных на рынке, колеблется от 0,25 мм (0,010 дюйма) до примерно 0,5 мм (0,020). Наиболее популярными и часто предлагаемыми являются трости из углеродного волокна, но также доступны трости на основе стекловолокна, а иногда и арамидного (Kevlar®) волокна.
Предложение лепестков лепестковых клапанов на основе углеродного волокна и эпоксидной смолы от CompoTec
В результате интенсивных исследований и развития технологий CompoTec владеет уникальным и запатентованным ноу-хау для производства двойного гладкого (глянцевого или матового) углеродного волокна, стекловолокна. и композитные листы, армированные арамидным волокном, толщиной от 0,25 мм (0,010 дюйма). Композитные листы на основе углеродного волокна толщиной 0,25–0,5 мм (0,010–0,020 дюйма), которые мы производим, предназначены для резки высококачественных лепестков тростника. Предлагаемые листы имеют высокую прочность, оптимальное соотношение волокна и армирования и узкий диапазон допуска по толщине. Используемая нами высокотемпературная система на основе эпоксидной смолы имеет указанную в каталоге температуру до 180 градусов по Цельсию (356 градусов по Фаренгейту). Мы используем полный цикл термообработки для обеспечения наилучших параметров.
Все наши карбоновые трости проходят интенсивные испытания, в том числе испытания польскими участниками соревнований по триалу и мотокроссу. Они также успешно используются ежедневно сотнями клиентов. Основываясь на этом совокупном опыте и полученных отзывах, мы уверены в качестве и эффективности нашего продукта!
Рис. 3. Углеродные листы CompoTec 100×100 мм (3,93×3,93 дюйма) PRO 1K, предназначенные для самостоятельной резки лепестков лепестковых клапанов: 0,35 мм (0,0137 дюйма) — средний и 0,45 мм (0,0177 дюйма) — твердый.
Будем рады сотрудничеству с дистрибьюторами, магазинами, мастерскими по обслуживанию двухтактных двигателей, а также с частными клиентами. Мы предлагаем высококачественный материал на основе углеродного волокна и эпоксидной смолы, предназначенный для самостоятельной резки лепестков любых лепестковых клапанов. Мы также можем разработать материал, адаптированный к конкретным потребностям или требованиям.
Рекомендации по выбору, резке и уходу за листами/лепестками лепестковых клапанов:
- Толщина язычков пропорциональна размеру двигателя и выходной мощности. Чем больше двигатель, тем более толстые трости следует использовать.
- Слишком тонкие трости подвержены преждевременному повреждению. Для двигателей объемом более 200 куб. см мы предлагаем использовать листы толщиной 0,45 мм (0,0177 дюйма) из нашего ассортимента.
- Наши клиенты имеют хороший опыт использования этой толщины листа для лепестковых лепестков, которые будут использоваться в лепестковых клапанах серий VFORCE2, VFORCE3 и VFORCE4*.
- можно вырезать вручную, например, с помощью ножниц и/или инструмента Dremel, но наилучшие результаты и долговечность будут достигнуты при их резке на фрезерном станке с ЧПУ. После резки плавно зашлифуйте все края, например, наждачной бумагой, чтобы избежать износа / сколов.
- Все лепестки лепестковых клапанов изнашиваются и имеют ограниченный срок службы. Рекомендуется проверять состояние ваших тростей через каждые 15-20 часов работы двигателя и всегда при наличии проблем с запуском двигателя и/или его плавностью.
Лепестки тростника