Содержание

принцип работы и устройство инжекторных систем

На рынке автомобильного мира существует две топливные системы, используемые в двигателях внутреннего сгорания. Первая – карбюраторная, а вторая – инжекторная. Если раньше все машины оснащались карбюраторами (причем от их количества зависела и мощность ДВС), то в последних поколениях транспортных средств большинства автопроизводителей используется инжектор.

Рассмотрим, чем данная система отличается от карбюраторной, какие виды инжекторов бывают, а также в чем его преимущества и недостатки.

Инжекторная система

На всех современных автомобилях с бензиновыми моторами используется инжекторная система подачи топлива, поскольку она является более совершенной, чем карбюраторная, несмотря на то, что она конструктивно более сложная.
Инжекторный двигатель – не новь, но широкое распространение он получил только после развития электронных технологий. Все потому, что механически организовать управление системой, обладающей высокой точностью работы было очень сложно. Но с появлением микропроцессоров это стало вполне возможно.

Инжекторная система отличается тем, что бензин подается строго заданными порциями принудительно в коллектор (цилиндр).

Основным достоинством, которым обладает инжекторная система питания, является соблюдение оптимальных пропорций составных элементов горючей смеси на разных режимах работы силовой установки. Благодаря этому достигается лучший выход мощности и экономичное потребление бензина.

Выбор оптимальной системы подачи топлива

Размышляя какая разница между инжектором и карбюратором, многие автомобилисты приходят к выводу что электронная система гораздо надёжнее. Однако переоборудование любого автомобиля экономически невыгодно и приведёт только к излишним затратам. Решение о выборе более экономичной системы актуально при покупке машины. Разобраться чем отличаются инжектор и карбюратор довольно просто, и такие знания обязательно пригодятся.

Карбюратор уже отслужил свой срок на рынке современных автомобилей. Несмотря на его преимущества, применение инжектора наиболее эффективно и отвечает всем экологическим требованиям. Карбюраторные двигатели используются в основном на старых машинах, но такая технология отлично себя зарекомендовала и не нуждается в доработке. Применение инжектора имеет немалые преимущества и эта система установлена без возможности выбора в любой новой машине.

Устройство системы

Инжекторная система подачи топлива состоит из электронной и механической составляющих. Первая контролирует параметры работы силового агрегата и на их основе подает сигналы для срабатывания исполнительной (механической) части.

К электронной составляющей относится микроконтроллер (электронный блок управления) и большое количество следящих датчиков:

Датчики системы инжектора

На некоторых авто могут иметься еще несколько дополнительных датчиков. У всех у них одна задача – определять параметры работы силового агрегата и передавать их на ЭБУ

Что касается механической части, то в ее состав входят такие элементы:

Простая инжекторная система подачи топлива

Как все работает

Теперь рассмотрим принцип работы инжекторного двигателя отдельно по каждой составляющей. С электронной частью, в целом, все просто. Датчики собирают информацию о скорости вращения коленчатого вала, воздуха (поступившего в цилиндры, а также остаточной его части в отработанных газах), положения дросселя (связанного с педалью акселератора), температуры ОЖ. Эти данные датчики передают постоянно на электронный блок, благодаря чему и достигается высокая точность дозировки бензина.

Поступающую с датчиков информацию ЭБУ сравнивает с данными, внесенными в картах, и уже на основе этого сравнения и ряда расчетов осуществляет управление исполнительной частью.В электронный блок внесены так называемые карты с оптимальными параметрами работы силовой установки (к примеру, на такие условия нужно подать столько-то бензина, на другие – столько-то).

Первый инжекторный двигатель Toyota 1973 года

Чтобы было понятнее, рассмотрим более подробно алгоритм работы электронного блока, но по упрощенной схеме, поскольку в действительности при расчете используется очень большое количество данных. В целом, все это направлено на высчитывание временной длины электрического импульса, который подается на форсунки.

Поскольку схема – упрощенная, то предположим, что электронный блок ведет расчеты только по нескольким параметрам, а именно базовой временной длине импульса и двум коэффициентам – температуры ОЖ и уровне кислорода в выхлопных газах. Для получения результата ЭБУ использует формулу, в которой все имеющиеся данные перемножаются.

Для получения базовой длины импульса, микроконтроллер берет два параметра – скорость вращения коленчатого вала и нагрузку, которая может высчитываться по давлению в коллекторе.

К примеру, обороты двигателя составляют 3000, а нагрузка 4. Микроконтроллер берет эти данные и сравнивает с таблицей, внесенной в карту. В данном случае получаем базовую временную длину импульса 12 миллисекунд.

Но для расчетов нужно также учесть коэффициенты, для чего берутся показания с датчиков температуры ОЖ и лямбда-зонда. К примеру, температура составляется 100 град, а уровень кислорода в отработанных газах составляет 3. ЭБУ берет эти данные и сравнивает с еще несколькими таблицами. Предположим, что температурный коэффициент составляет 0,8, а кислородный – 1,0.

Получив все необходимые данные электронный блок проводит расчет. В нашем случае 12 множиться на 0,8 и на 1,0. В результате получаем, что импульс должен составлять 9,6 миллисекунды.

Описанный алгоритм – очень упрощенный, на деле же при расчетах может учитываться не один десяток параметров и показателей.

Поскольку данные поступают на электронный блок постоянно, то система практически мгновенно реагирует на изменение параметров работы мотора и подстраивается под них, обеспечивая оптимальное смесеобразование.

Стоит отметить, что электронный блок управляет не только подачей топлива, в его задачу входит также регулировка угла зажигания для обеспечения оптимальной работы мотора.

Теперь о механической части. Здесь все очень просто: насос, установленный в баке, закачивает в систему бензин, причем под давлением, чтобы обеспечить принудительную подачу. Давление должно быть определенным, поэтому в схему включен регулятор.

По магистралям бензин подается на рампу, которая соединяет между собой все форсунки. Подающийся от ЭБУ электрический импульс приводит к открытию форсунок, а поскольку бензин находится под давлением, то он через открывшийся канал просто впрыскивается.

Обратная связь с датчиками

Одним из основных датчиков, на показаниях которого ЭБУ регулирует время открытия форсунок, является лямбда-зонд, установленный в выпускной системе. Этот датчик определяет остаточное (не сгоревшее) количество воздуха в газах.

Эволюция датчика лямбда-зонд от Bosch

Благодаря этому датчику обеспечивается так называемая «обратная связь». Суть ее заключается вот в чем: ЭБУ провел все расчеты и подал импульс на форсунки. Топливо поступило, смешалось с воздухом и сгорело. Образовавшиеся выхлопные газы с не сгоревшими частицами смеси выводится из цилиндров по системе отвода выхлопных газов, в которую установлен лямбда-зонд. На основе его показаний ЭБУ определяет, правильно ли были проведены все расчеты и при надобности вносит корректировки для получения оптимального состава. То есть, на основе уже проведенного этапа подачи и сгорания топлива микроконтроллер делает расчеты для следующего.

Стоит отметить, что в процессе работы силовой установки существуют определенные режимы, при которых показания кислородного датчика будут некорректными, что может нарушить работу мотора или требуется смесь с определенным составом. При таких режимах ЭБУ игнорирует информацию с лямбда-зонда, а сигналы на подачу бензина он отправляет, исходя из заложенной в карты информации.

На разных режимах обратная связь работает так:

Как видно, лямбда-зонд хоть и очень важен для работы системы, но информация с него используется далеко не всегда.

Напоследок отметим, что инжектор хоть и конструктивно сложная система и включает множество элементов, поломка которых сразу же сказывается на функционировании силовой установки, но она обеспечивает более рациональный расход бензина, а также повышает экологичность автомобиля. Поэтому альтернативы этой системе питания пока нет.

Источник

Устройство и принцип работы инжектора

Инжектор – это самый популярный электронно-механический узел в автомобилестроении. Устройство и принцип работы инжектора одновременно просты и сложны. Конечно, рядовому автовладельцу необязательно вникать в детали конструкции инжекторных систем и их программного обеспечения, но основные моменты знать не помешает.

Ниже мы расскажем о том, что такое инжектор, каков принцип его работы, и какие типы инжекторных форсунок чаще всего применяются на современных двигателях.

Рекомендуем посмотреть видео внизу страницы, на котором хорошо показано, как работает инжектор.

Такие вещи своими силами не ремонтируются, однако разбираться в устройстве инжектора стоит, хотя бы для того, чтобы не попасть впросак при оплате счета в автосервисе.

Преимущества и недостатки

ВведениеНазначение, устройство, принцип работы тормозной системы ваз 2112

Объективно в мире современных автомобилей вряд ли стоит выбор между инжекторным и карбюраторным двигателем. Преимущества однозначно на стороне инжектора.

Но даже при таких условиях не лишним будет знать, какими сильными и слабыми сторонами характеризуется инжекторный силовой агрегат.

К его основным преимуществам относят следующие моменты:

  1. Двигатель автоматически меняет режим своей работы. Он напрямую зависит от того, какие текущие условия. Именно это даёт инжектору огромную фору перед карбюратором. Водителю ничего не нужно делать, чтобы заставить мотор работать иначе. Он проанализирует происходящее, и поменяет свою работу, чтобы добиться оптимальных показателей.
  2. Ручные настройки. Их попросту нет. И это ещё один весомый аргумент в пользу инжектора. Автомобилистам нет необходимости залезать под капот, что-то настраивать, крутить и менять. Электроника всё делает самостоятельно.
  3. Экономичность. Одним из факторов перехода и карбюраторов на инжекторы стал вопрос целесообразного использования ресурсов. Инжекторы на практике доказывают, что они требуют меньше топлива при большей мощности и скорости. При прочих равных, инжектор потребляет в среднем на 15-20% меньше горючего, чем некогда конкурент в лице карбюраторной системы.
  4. Экологичность. Именно из-за необходимости сохранения экологии инженеры приступили к активному производству инжекторных систем. Без инжектора добиться соответствия нынешним крайне жёстким экологическим стандартам было бы невозможно.
  5. Простейший запуск мотора. Это достигается за счёт наличия автоматического определения оптимальной работы. В итоге при любой погоде и температуре инжекторы запускаются безо всяких проблем.

Но не стоит торопиться с выводами. Помимо очевидных преимуществ, у инжекторных систем также имеются определённые недостатки.

К основным минусам относятся:

Сложная конструкция. Инжекторный силовой агрегат действительно устроен намного сложнее, чем тот же карбюраторный мотор. Но в настоящее время это уже не является серьёзной проблемой. Работники автосервисов легко справляются со всеми задачами, связанными с инжекторами. Да и сами автовладельцы научились решать ряд вопросов своими силами. Стоимости. Конструктивные особенности повлекли за собой увеличение затрат на производство компонентов и сборку. Это стало причиной повышения стоимости самого двигателя. Проблема ремонта элементов системы подачи горючего. Некоторые компоненты вовсе не поддаются восстановлению, а другие очень сложно отремонтировать. Потому зачастую проще сразу поменять деталь, чем пытаться вернуть её к жизни. А это дополнительные финансовые затраты. Требования к топливу

Если карбюратор мог переваривать практически всё, для инжектора важно заливать в бак достаточно хорошее топливо с определёнными характеристиками и составом. Их определяет сам автопроизводитель

Заправка на дешёвых и сомнительных АЗС часто становится причиной многих поломок и неисправностей. Ремонт и обслуживание. Инжектор требует умелых рук и профессионального подхода. Специалисты не рекомендует пытаться самостоятельно ремонтировать и обслуживать эти системы, поскольку любая ошибка может привести к серьёзным негативным последствиям. Чтобы грамотно обслужить некоторые элементы, требуется специальный инструмент и профессиональное оборудование. Хотя мелкий ремонт всё ещё доступен для выполнения своими руками. Поменять те же расходники можно самостоятельно. Зависимости от электричества. Если в бортовой сети пропадёт напряжение, разрядится аккумулятор, двигатель перестанет работать. Потому в случае с инжекторами предъявляются повышенные требования к качеству используемых аккумуляторных батарей. Также крайне важно следить за работой генератора и поддерживать его работоспособность.

Исходя из всего сказанного выше, можно сказать, что многие недостатки достаточно условные, и воспринимать их как серьёзные минусы вряд ли стоит. Особенно при учёте таких преимуществ, которые объективно делают инжектор приоритетным выбором для автомобилиста.

Что такое инжектор

Впервые данную разработку внедрили в производство специалисты компании Bosch, когда оснастили ею купе Goliath 700 Sport с двухтактным двигателем. Произошло это в 1951 году, а всего через 3 года это же сделал Mercedes (Mercedes-Benz 300 SL). Однако поначалу такие комплектующие были довольно дороги, так что широкое применение инжекторов началось только в 70-х годах. Инжекторная система быстро вытеснила карбюраторы (особенно в Европе, Америке и Японии) и на сегодняшний день большинство моделей автомобилей оснащаются именно этим устройством.

Инжекторная система впрыска топлива (Fuel Injection System) отличается тем, что она осуществляет прямой впрыск непосредственно в цилиндры или же во впускной коллектор. Делается это при помощи все той же форсунки, которые, в свою очередь, делятся на 2 категории, отличающиеся местом монтажа инжектора, а также принципом его работы:

Помимо этого, существует несколько типов распределенного впрыска:

Типы инжекторных форсунок

Инжекторные форсунки различаются по способам впрыска:

Электромагнитная форсунка – довольно проста и ставится на бензиновые моторы (в большинстве случаев). Ею оснащают и двигатели с непосредственным впрыском. Ее главными составными частями являются оснащенный иглой электромагнитный клапан, а также сопло. В процессе функционирования на обмотку клапана подается электрический разряд. Частотой его подачи ведает специальный электронный блок управления. В ходе процесса происходит образование электромагнитного поля. Оно втягивает иглу, освобождает сопло и происходит впрыск, причем делается это одновременно со сжиманием пружины, которая разжимается после исчезновения электромагнитного поля и возвращает иглу в исходное положение.

Электрогидравлическая форсунка – применяется на дизельных моторах (в том числе с системой Common Rail). Основные элементы данной форсунки – это камера управления, дроссели (впускной и сливной) и электромагнитный клапан. Работают они благодаря разнице в давлении солярки на форсунку и поршень: иглу форсунки топливо прижимает к седлу, тогда как электромагнитный клапан закрыт (обесточен).

Когда блок управления открывает клапан, открывается и дроссель (сливной). Далее происходит заполнение топливной магистрали соляркой, вытекающей через дроссель. При этом начинает уменьшаться давление дизтоплива на поршень, тогда как на игле оно остается прежним. Из-за этого игла приподнимается и осуществляется впрыск.

Пьезоэлектрическая форсунка – это наиболее совершенный (в техническом отношении) вариант. Как правило, ею оснащают дизельные движки. У нее немало достоинств, среди которых скорость работы (по сравнению электромагнитным устройством она быстрее в 4 раза), а также предельно точная и выверенная дозировка. В данном случае применяется пьезокристалл, который изменяет свою длину под напряжением. Это устройство состоит из толкателя, пьезоэлемента, клапана и иглы.

Форсунки

При помощи этих устройств производится подача топливовоздушной смеси в камеры сгорания всех цилиндров. Что же это за механизмы? Если вы знаете сносно конструкцию карбюраторов, то вспомните про электромагнитный клапан. Вот именно у него конструкция очень похожа на ту, которую вы можете видеть у форсунок. У них имеется обмотка, на которую подается постоянное напряжение. Игольчатый клапан при подаче напряжения открывает путь для прохождения топлива. Вся эта смесь под давлением распыляется в камеры сгорания. Обратите внимание, что форсунки должны распылять топливо таким образом, чтобы оно заполняло как можно больше камеру сгорания. Прост в понимании принцип работы форсунки инжектора, с ее помощью производится распыление. Топливовоздушная смесь в этот момент похожа на туман, в определенном объеме воздуха бензин находится во взвешенном состоянии. Следовательно, воспламенение происходит намного быстрее и лучше, нежели в случае с карбюраторной системой.

Принцип работы инжектора

Самый простой инжектор имеет в своей конструкции следующие элементы:

Как видно, ничего слишком сложного в конструкции инжектора нет, по крайней мере, это касается его механической части. Если коротко, то работа инжекторной системы впрыска происходит следующим образом:

Наиболее сложная часть всей инжекторной системы – это электронный блок управления (сокращенно – ЭБУ). Он представляет собой микрокомпьютер, производящий вычисления по программе, внесенной в его память. Программа составлена таким образом, что успевает анализировать все параметры работы двигателя и реагировать на изменение информации, полученной от внешних датчиков.

Именно поэтому для корректной работы инжектора крайне важны следующие два компонента: каталитический нейтрализатор отработанных газов и датчик кислорода (лямбда-зонд).

Как вы могли убедиться, инжектор представляет собой весьма сложный механизм. Поэтому такие операции, как чистка инжектора или его ремонт, мы не рекомендуем проводить самостоятельно.

Достоинства и недостатки инжекторов

В завершение сегодняшнего материала не лишним будет обратить внимание на то, чем инжектор хорош, а в чём способен доставить хлопот любому автомобилисту. Начнём, наверное, с достоинств инжекторных систем, которые включают в себя следующие положения:

  • Экономичность. Однозначно можно сказать, что инжекторы работают исключительно на своего «хозяина» по сравнению с теми же карбюраторами. Удивительно, но в некоторой степени схожие топливораспределительные узлы при одинаковых режимах работы мотора поставляют в него меньшее количество топлива. Во многом это связано с продуманным устройством инжектора и наличием у него электронного управления;
  • Получение большего КПД от двигателя. Опять же, удивительно. Несмотря на меньшее количества подаваемого топлива в мотор, при использовании инжектора получается добиться от силового агрегата большей мощности. Это также связано с грамотно организованным устройством узла, а особенно – его электронной составляющей;
  • Экологичность. Тут всё предельно просто, ибо в структуре любого инжектора имеется каталитический нейтрализатор, которые и придаёт ему большей экологичности, дожигая недогоревшее в моторе топливо;
  • Стабильность в плане работы. Повторимся, из-за грамотно организованного устройства инжекторы совершенно независимы в своём функционировании от погодных условий или подобных моментов.

Среди недостатков инжекторных систем стоит выделить лишь один аспект, а именно – их ремонт и отчасти эксплуатацию. В этом плане инжекторы довольно-таки прихотливы и неудобны для своих владельцев. В частности при желании успешно использовать узел подобного типа любому автомобилисту требуется:

  • быть готовым к дорогому ремонту в случае поломки;
  • всегда использовать только качественное топливо;
  • обеспечить наличие специальных приборов для диагностики и ремонта инжектора.

На этом, пожалуй, наиболее важные положения по «инжекторному» вопросу подошли к концу. Надеемся, представленный выше материал был для вас полезен и в полной мере раскрыл принципы работы инжектора. Удачи на дорогах!

Как работает инжекторный двигатель?

Инжекторный двигатель – это довольно сложный механизм, работа которого должна быть хорошо отлажена, чтобы получить от него максимальную производительность. В статье подробно рассмотрен принцип работы инжекторного двигателя.Инжекторный двигатель – это довольно сложный механизм, работа которого должна быть хорошо отлажена, чтобы получить от него максимальную производительность. В статье подробно рассмотрен принцип работы инжекторного двигателя.

Прежде чем начать разговор об этом чуде техники, развеем некоторые мифы. Инжекторный двигатель работает по тому же принципу, что и дизельный, за исключением системы зажигания, однако, это не придает ему гораздо большей мощности, чем карбюраторному. Прибавка составит максимум 10%.

Центром всей системы является ЭБУ (электронный блок управления). Он носит много названий, «мозги», «компьютер» и так далее. По сути да, это компьютер, в который заложено огромное количество таблиц по составу смеси, времени впрыска топлива и прочего. Например, если обороты двигателя равны 1500, дроссельная заслонка открыта на 10 градусов, а расход воздуха составляет 23 кг, то в цилиндр будет поступать одно количество топлива. Если же вводные параметры изменяются, то и результат будет другим. Если с блоком управления возникают какие-то проблемы, например, слетает прошивка, то все идет прахом, двигатель либо начинает как попало работать, либо и вовсе перестает.

Топливная рампа

Она устанавливается непосредственно на двигателе. Ее миссия заключается в том, чтобы удерживать в себе смесь бензина и воздуха под определенным давлением. Именно в ней происходит процесс соединения двух составляющих горючей смеси – бензина и воздуха. Причем пропорция всегда должна быть одинаковой – 14 частей воздуха на одну бензина. Только в таком случае двигатель будет работать максимально устойчиво, стабильно, экономично. К рампе произведено подключение таких механизмов, как дроссельная заслонка, электромагнитные форсунки, клапан сброса. Между прочим, именно в топливной рампе производится установка датчика давления топлива. Но про него и все остальные электронные компоненты будет рассказано дальше. Стоит заметить, что инжектор Вентури, принцип работы которого аналогичен рассмотренной в статье системе, имеет очень широкое применение, причем не только в автомобилях.

Датчики инжекторного двигателя

Все элементы можно поделить на исполнительные и датчики. Для начала мы рассмотрим датчики.

Датчик массового расхода воздуха (ДМРВ)

Этот элемент устанавливается перед воздушным фильтром, прямо на входе. В основе его работы лежит принцип разницы показаний. Так, через две платиновые нити проходит электричество. В зависимости от температуры их сопротивление меняется. Одна из нитей надежно укрыта от потока воздуха, что делает ее сопротивление неизменным. Вторая же охлаждается потоком, и на основании разницы величин, по тем же таблицам, о которых сказано выше, ЭБУ рассчитывает количество воздуха.

Датчик абсолютного давлении и температуры двигателя (ДАД)

Он используется либо в качестве альтернативы, либо вместе с вышеописанным для более высокой точности снятия показаний. Если вкратце, в нем имеется две камеры, одна из которых герметична и имеет внутри абсолютный вакуум. Вторая же камера подсоединяется к впускному коллектору, где создается разрежение во время такта впуска. Между этими камерами имеется диафрагма, а так же пьезоэлементы. Они вырабатывают напряжение при движении диафрагмы. Далее сигнал идет на ЭБУ.

Датчик положения коленчатого вала (ДПКВ)

Если посмотреть на шкив коленвала инжекторного двигателя, то можно рассмотреть на нем гребенку. Она магнитная. По всему периметру установлены зубцы. Всего их должно быть 60 штук, через каждые 6 градусов. Но двух из них нет, они нужны для синхронизации. Датчик положение коленчатого вала имеет в своем составе намагниченный стальной сердечный, а так же медную обмотку. При прохождении зубцов в обмотке возникает индукционный ток, напряжение которого зависит от скорости вращения шкива.

Датчик фаз (ДФ)

Не все двигатели им оснащались раньше, но сейчас его можно встретить практически везде. Он работает по принципу датчика Холла, то есть имеет диск с катушкой, а так же прорезь. Как только прорезь попадает на датчик, выходное напряжение на нем нулевое. Этот момент означает верхнюю мертвую точку такта сжатия первого цилиндра. Нужно это для того, чтобы ЭБУ мог генерировать напряжение для зажигания в нужном цилиндре, а так же контролировать такты. Чтобы, например, форсунка не открылась во время рабочего хода.

Датчик детонации

Он устанавливается на блоке цилиндров инжекторного двигателя. Как только в двигателе возникает детонация, по блоку передается вибрация. Датчик представляет собой пьезоэлемент, который генерирует напряжение, чем сильнее вибрации, тем выше напряжение. Соответственно, ЭБУ на основании его показаний корректирует момент зажигания. Но об этом позже.

Датчик положения дроссельной заслонки (ДПДЗ)

По сути своей, это обычный потенциометр. Опорное напряжение на нем, как правило, составляет 5 вольт. Так вот, в зависимости от того, на какой угол отклоняется дроссельная заслонка, меняется напряжение на контрольном выводе. Все просто.

Исполнительные элементы

Исполнительные элементы получили свое название за то, что именно они вносят коррективы в работу двигателя. ТО есть, блок управления получает сигнал от датчика, анализирует его, после чего отправляет сигнал на исполнительный элемент.

Топливный насос

Начнем с системы питания. Он установлен в баке и подает топливо в топливную рампу под давлением 3,2 – 3,5 Мпа. Это позволяет гарантировать качественный распыл топлива в цилиндры. Как только повышаются обороты двигателя, повышается и аппетит, а значит в рампу надо подавать большее количество топлива для сохранения давления. Насос начинает вращаться быстрее по команде блока управления. Большинство современных автомобилей, начиная примерно с 2013 года выпуска, оснащаются топливным модулем, который включает в себя насос и встроенный фильтр. Это существенно сказывается на стоимости замены фильтра, потому что менять надо весь модуль. Некоторые производители в инструкциях пишут, что модуль устанавливается на весь срок службы авто, однако не стоит верить, что какой-то фильтр способен проходить больше 2 сезонов.

Форсунка

После того, как топливо прошло всю цепь провода, оно попадает в форсунку, которая дозирует его подачу в цилиндр. Форсунка представляет собой электромагнитный клапан очень маленького диаметра, который обеспечивает распыл бензина в камеру сгорания. ЭБУ изменяет количество топлива, которое подается, при помощи временных промежутков, пока открыта форсунка. Как правило, это десятые доли секунды.

Дроссельная заслонка

Все мы когда-то видели карбюратор, заглядывали в него сверху. Так вот в нем имелись заслонки, которые перекрывали воздух. Здесь принцип тот же. Пожалуй, и рассказать больше нечего.

Регулятор холостого хода (РХХ)

Это тоже электромагнитный клапан, шток которого закрывает воздуховод, проходящий в обход дроссельной заслонки. В зависимости от напряжения, которое на него подает блок управления, он открывает этот самый канал.

Модуль зажигания

В принципе, это та же катушка зажигания, только их здесь четыре. При прохождении тока через первичную обмотку во вторичной коммутируется высокочастотный ток высокого напряжения, который подается на свечу.

Топливный насос

Это сердце всей топливной системы, так как с его помощью происходит циркуляция бензина. Состоит он из следующих элементов:

  • Фильтр (в народе называется он «памперс», так как имеет завидное сходство).
  • Электродвигатель постоянного тока.
  • Помпа, приводимая в движение двигателем.
  • Датчик уровня (конструктивно он объединен с топливным насосом).
  • Располагается насос непосредственно в баке, крепится при помощи гаек. Доступ к нему можно получить, если поднять заднее сиденье. Во всех автомобилях, будь то старенькая «десятка» либо же новая «японка», находится бензонасос именно под сиденьем. Конечно, снятие и установка будут производиться на всех машинах по-разному. От насоса к рампе проложена топливная магистраль. Она должна выдерживать большое давление, поэтому всегда следите за ее состоянием. Параллельно этой магистрали прокладывается трубка, которая возвращает избытки бензина обратно в бак. Довольно прост принцип работы бензонасоса. Инжектор функционирует за счет избыточного давления, создаваемого помпой.

Принцип работы инжекторного двигателя

Итак, после того, как мы разобрались в основных узлах инжекторного двигателя, посмотрим, как же он работает. После того как стартер провернул коленчатый вал, ДПКВ сообщил блоку управления, какой цилиндр в каком положении находится. В свою очередь, датчик фаз сообщил о тактах. Блок управления принял эту информацию к сведению и открыл форсунку в том цилиндре, в котором начинается такт впуска. Но открыл ее не просто так, а на строго определенный промежуток времени, который по таблицам соответствует показаниям ДМРВ или ДАД. Так сформировалась рабочая смесь.

Видео: как работает бензиновый инжекторный двигатель внутреннего сгорания

После того как здесь такт впуска закончился, начинается сжатие, в это время впуск происходит в другом цилиндре. Здесь же поршень доходит до верхней мертвой точки, о чем говорит ДПКВ и ДФ, соответственно, пора подавать напряжение на модуль зажигания, в нужный цилиндр. Для этого в блоке управления стоит два транзистора, которые берут на себя по два цилиндра.

Прогрев двигателя и датчик температуры двигателя

Этот момент стоит рассмотреть отдельно, скажем так, это небольшое уточнение. Итак, прогревочный режим двигателя никак не связан с показаниями некоторых датчиков, то есть, от них ничего не зависит. В частности, это ДМРВ и ДАД, а так же датчик детонации. В блоке, как уже говорилось, заложены определенные таблицы, их очень много, миллионы. Так вот, во время прогревочного режима ЭБУ работает строго по этим таблицам и никак иначе. Это значит, что если в него прописано соотношение воздуха к топливу 14,1:1, то так оно и будет. Эта цифра является общепринятой нормой для рабочей температуры. Так вот, пока температура двигателя не достигнет той, которая прописана в прошивке блока управления, то прогревочный режим не отключится. После ЭБУ начинает работать по датчикам.

Этапы развития инжекторного впрыска

На знаменитых «сигарах» «Ауди 100» использовался механический инжектор. Принцип работы его можно сравнить с системой топливоподачи в дизельных моторах. При помощи механического насоса и такого же привода форсунок производилась подача топливовоздушной смеси в камеры сгорания. Конечно, нельзя не упомянуть и о переходном звене – карбюраторах с электронным управлением. Использовались они на малом количестве автомобилей, причем исключительно японского производства. Жители Страны восходящего солнца очень любят разнообразные электронные гаджеты и по сей день. Но электронные карбюраторы были недолго популярны, в конце 80-х началась их эра и моментально закончилась. Между прочим, на автомобилях ВАЗ-2110, например, устанавливались карбюраторы без тросика «подсоса». Регулировка подачи воздуха осуществлялась автоматически, при помощи специальной заслонки, которая меняла свое положение по мере прогрева двигателя. Но сегодня большую популярность получили инжекторы, конструкции которых стали уже классическими. Вот их и стоит рассмотреть более детально, разобрать по составляющим.

Что лучше, инжекторный или карбюраторный двигатель?

Этот вопрос достаточно спорный, у каждой точки зрения есть много противников и приверженцев как среди простых водителей, так и среди специалистов, которые полностью понимают принцип работы инжекторного двигателя. Итак, карбюраторный двигатель отличает простота и прозрачность работы. То есть, если механик отрегулировал холостые обороты, то они такими и остались.

Что касается инжекторного двигателя, то ту все дело сводится к своевременному обслуживанию, а так же к качеству применяемых деталей.

Источник

Инжекторный ДВС. Устройство и принцип работы инжекторной системы питания презентация, доклад

Слайд 1
Текст слайда:

ИНЖЕКТОРНЫЙ ДВС


Слайд 2
Текст слайда:

УСТРОЙСТВО И ПРИНЦИП РАБОТЫ ИНЖКТОРНОЙ СИСТЕМЫ ПИТАНИЯ ?


Слайд 3
Текст слайда:

КАКАЯ ЭТО СИСТЕМА ИНЖЕКТОРА ?


Слайд 4
Текст слайда:

КАКАЯ ЭТО СИСТЕМА ИНЖЕКТОРА ?


Слайд 5
Текст слайда:

КАКАЯ ЭТО СИСТЕМА ИНЖЕКТОРА ?


Слайд 6
Текст слайда:

Как работает система инжекторного питания ДВС?


Слайд 7
Текст слайда:

Какие датчики установлены в систему инжекторного питания?


Слайд 8
Текст слайда:

Какие датчики отвечают за формирования заряда?


Слайд 9
Текст слайда:

Какие датчики отвечают за контроль работы двигаеля ?


Слайд 10
Текст слайда:

Какой датчик «установочный» без которого не будет работать ДВС?


Слайд 11
Текст слайда:

Где устанавливаются форсунки при «моно впрыске» или «точечном» впрыске?


Слайд 12
Текст слайда:

Опишите устройство моно впрыска?


Слайд 13
Текст слайда:

Опишите недостатки моно впрыска?


Слайд 14
Текст слайда:

Где устанавливаются форсунки при «прямом» или «много точечном» впрыске?


Слайд 15


Слайд 16
Текст слайда:

Опишите устройство прямого впрыска?


Слайд 17
Текст слайда:

Где устанавливаются форсунки при «непосредственном» впрыске?


Слайд 18


Слайд 19
Текст слайда:

Опишите устройство непосредственного впрыска?


Слайд 20
Текст слайда:

Где образуется «горючая смесь» при «непосредственном» впрыске?


Слайд 21
Текст слайда:

В камере сгорания


Слайд 22
Текст слайда:

Где образуется «горючая смесь» при «моно» впрыске?


Слайд 23


Слайд 24
Текст слайда:

Электронная система впрыскивания топлива L-Jelronk


Слайд 25
Текст слайда:

Устройство электронной системы впрыскивания топлива L-Jelronk

I — топливный насос;
2 — фильтр;
3 — топливный бак;
4 — топливный коллектор;
5 — стабилизатор перепада давлений;
6 — электронный блок управления;
7 — напорно-измерительная заслонка;
8 — измеритель расхода воздуха;
9 — дроссельная заслонка;
10 — датчик положения дроссельной заслонки;
II — регулировочный винт системы холостого хода;
12 — пусковая форсунка;
13 — форсунка с электронным управлением;
14 — датчик кислорода; IS, 16 — регистрирующие датчики;
17 — датчик-распределитель;
18 — регулятор расхода воздуха на холостом ходу;
19 — аккумуляторная батарея;
20 — выключатель зажигания и системы впрыскивания


Слайд 26
Текст слайда:

Система Mono-Jetronic


Слайд 27
Текст слайда:

Система Mono-Jetronic

Система Mono-Jetronic
Система Mono-Jetronic представляет собой систему с впрыскиванием топлива через одну форсунку (одноточечная система впрыска) центрального расположения с электромагнитным управлением.  
Эта система является более дешевой
по сравнению с прежними системами впрыска топлива через одну форсунку, это позволило внедрить электронный впрыск топлива на автомобилях среднего и малого классов.


Слайд 28
Текст слайда:

Опишите устройство и принцип работы системы Mono-Jetronic


Слайд 29
Текст слайда:

Опишите устройство и принцип работы системы Mono-Jetronic


Слайд 30
Текст слайда:

Опишите устройство и принцип работы системы Mono-Jetronic


Слайд 31
Текст слайда:

Зажигание
вменение микроконтроллеров позволило заменить механическое регулирование угла опережения зажигания электронным

Зависящие от нагрузки и частоты положения коленчатого вала значения угол опережения зажигания могут быть внесены в память программного накопителя блока управления системой зажигания. Тем самым угол опережения зажигания поддерживается постоянным в течение продолжительного времени без учета влияния быстроизнашиваюхся деталей.
Электронные системы зажигания используются совместно с электронными системами впрска. На новых автомобилях эти системы использовались до 1998 г., а в наши дни системы зажигания и впрыска топлива интегрированы в систему Motronic


Слайд 32
Текст слайда:

Зажигание
вменение микроконтроллеров позволило заменить механическое регулирование угла опережения зажигания электронным


Слайд 33
Текст слайда:

Опишите «+» и «-» работы системы Mono-Jetronic


Слайд 34
Текст слайда:

На новых автомобилях эти системы управления двигателем Motronic
использовались до 1998 г., а в наши дни системы зажигания и впрыска топлива интегрированы в систему Motronic.


Электронная система зажигания управляет оконечным каскадом зажигания. Данные по углу замкнутого состояния контактов датчика-распределителя и углу опережения зажигания хранятся в памяти программного блока (система зажигания с управлением по оптимизированному отображению процесса зажигания).  Дополнительные показатели, например, температура охлаждающей жидкости или температура подаваемого воздуха, учитываются при расчете угла опережения зажигания.
Полупроводниковая система зажигания без датчика-распределителя Данная система обходится без механического высоковольтного датчика-распределителя зажигания. Распределение напряжения происходит электронным способом в блоке управления системой зажигания. Высоковольтное напряжение генерируется несколькими катушками зажигания.


Слайд 35
Текст слайда:


Система управления двигателем Motronic

Электронный впрыск и электронное зажигание сделали возможным разработку двигателей, которые, с одной стороны, стали
более мощными, а с другой — обеспечили соблюдение более жестких требований по ограничению токсичности ОГ. Растущая миниатюризация электрониых деталей и схем привела к появлению все более мощных микроконтроллеров и полупроводниковых чипов со значительно большим объемом памяти. В результате стало возможным задачи, выполняемые системой электронного впрыска и электронной системой зажигания с программным управлением, возложить на  единственный микроконтроллер. Тем самым,
разработчикам представилась возможность объединить обе системы — электронный впрыск и электронное зажигание — в одном блоке управления. Гак появилась система Motronic.


Слайд 36
Текст слайда:

Система M-Motronic

Система M-Molronic начала серийно выпускаться еще в 1979 г. Она совместила в себе функциональность системы многоточечного впрыска Jetronic с электронной системой зажигания с программным управлением. Тем самым стало возможным отличительное согласование дозирования топлива и управления зажиганием. Благодаря стремительному прогрессу в полупроводниковой технологии быстродействие микроконтроллеров становилось все выше, а емкость запоминающих устройств программных накопителей данных и чипов — все больше. Таким образом, в систему M-Motronic можно было интегрировать все большее число функций (например, контроль за детонацией или регулирование давления наддува для турбонагнетателя). Такие функции, как рециркуляция ОГ или система вентиляции топливного бака, снижающие токсичность ОГ и эмиссию топливных паров, стали обязательными требованиями


Слайд 37
Текст слайда:

СИСТЕМА ИНЖЕКТОРНОГО ПИТАНИЯ ДВИГАТЕЛЯ УСТРОЙСТВО И ПРИНЦИП РАБОТЫ


Слайд 38
Текст слайда:

УСТРОЙСТВО И ПРИНЦИП РАБОТЫ ИНЖКТОРНОЙ СИСТЕМЫ ПИТАНИЯ ?


Слайд 39
Текст слайда:

КАКИЕ ДАТЧИКИ ИСПОЛЬЗУЮТСЯ В ИНЖЕКТОРЕ?


Слайд 40
Текст слайда:

УСТРОЙСТВО НАЗНАЧЕНИЕ И ПРИНЦИП РАБОТЫ ?


Слайд 41
Текст слайда:

НАЗНАЧЕНИЕ И ПРИНЦИП РАБОТЫ ?


Слайд 42
Текст слайда:

УСТРОЙСТВО НАЗНАЧЕНИЕ И ПРИНЦИП РАБОТЫ ?


Слайд 43
Текст слайда:

Электромагнитная форсунка

Электромагнитная форсунка предназначена для впрыскивания
топлива. Бензин по шлангу подводится к форсунке, дополнитель-
но очищается в фильтре 7 (рис. 5.3) и поступает через магистраль
к клапану 2 с распыливающим наконечником 7, который прижи-
мается пружиной 4 к седлу 3. При поступлении управляющего
импульса на изолированные от корпуса контакты 6 концов об-
мотки быстродействующего электромагнита 5 втягивается якорь,
и клапан открывается примерно на 0,1 мм. Быстродействие фор-
сунки (время запаздывания открытия и закрытия клапана) зави-
сят от конструкции форсунки, масс подвижных деталей, конст-
рукции и материала магнитопровода. С уменьшением подачи топ-
лива точность дозирования снижается.


Слайд 44
Текст слайда:

Топливный насос с электрическим приводом обеспечивает давление бензина в системе. Насос и электромотор размещают в едином герметичном корпусе, погруженном в бензин, находящийся в топливном баке, в целях отвода теплоты и снижения шума

Насос может быть роликовым или шестеренным и может располагаться и вне топливного бака. Он включается и выключается вместе с системой зажигания. Для защиты насоса от перегрузки используется предохранительный клапан.
Электропривод насоса обеспечивает давление в системе при неработающем двигателе. Наличие в системе обратного клапана
позволяет сохранять в ней остаточное давление после выключения насоса, что обеспечивает надежный пуск двигателя при высокой температуре окружающей среды.


Слайд 45
Текст слайда:


Слайд 46
Текст слайда:

КАКИЕ ДАТЧИКИ ИСПОЛЬЗУЮТСЯ В ИНЖЕКТОРЕ?


Слайд 47
Текст слайда:

СИСТЕМА ПИТАНИЯ ДИЗЕЛЬНОГО ДВИГАТЕЛЯ УСТРОЙСТВО И ПРИНЦИП РАБОТЫ


Слайд 48


Слайд 49
Текст слайда:

Какая это система впрыска?


Слайд 50
Текст слайда:

Опишите устройство и принцип работы этой системы впрыска?


Слайд 51
Текст слайда:

Система  D-Jetronic 
сконструирована из аналоговых электронных схем


Слайд 52
Текст слайда:

Система D-Jetronic 

D-Jetronic — от немецкого Druck, давление — электронно управляемая СВТ, регулирующая подачу бензина по импульсному циклу на основе показаний датчика абсолютного давления. Разработана в середине 1960-х годов как возможная массовая замена постоянно усложняющимся карбюраторам. Впервые появилась на Volkswagen Typ-3 1966 модельного года. Наиболее известные носители: Volkswagen Typ-4, Porsche 914/4, Mercedes-Benz W114 Впервые появилась на Volkswagen Typ-3 1966 модельного года. Наиболее известные носители: Volkswagen Typ-4, Porsche 914/4, Mercedes-Benz W114 (CE), Mercedes-Benz W108/109 (SE), Opel Commodor/Admiral/Diplomat 2.8, Citroen DS21/DS23 Впервые появилась на Volkswagen Typ-3 1966 модельного года. Наиболее известные носители: Volkswagen Typ-4, Porsche 914/4, Mercedes-Benz W114 (CE), Mercedes-Benz W108/109 (SE), Opel Commodor/Admiral/Diplomat 2.8, Citroen DS21/DS23/SM, Volvo P1800, Volvo 142/144, Saab 99E, Renault R17, Lancia 2000HF. Последними машинами с данной СВТ стали модели 75-го модельного года Jaguar XJ-S и Jaguar XJ Mark


Слайд 53
Текст слайда:

Система D-Jetronic 
Впервые появилась на Volkswagen Typ-3 1966 модельного года


Слайд 54
Текст слайда:

Volkswagen Typ-4
применялась Система D-Jetronic


Слайд 55
Текст слайда:

На каких автомобилях применялась Система D-Jetronic 


Слайд 56
Текст слайда:

На каких автомобилях применялась Система D-Jetronic


Слайд 57
Текст слайда:

Система  D-Jetronic

В данной СВТ (системе подачи топлива) состав смеси определяется по принципу карбюраторных моторов — на основе уровня разрежения во впускном коллекторе. Помимо датчика абсолютного давления, расположенного в задроссельном пространстве впускного коллектора, данная СВТ обязательно имеет общую дроссельную заслонку на все цилиндры, электрический бензонасос низкого давления, электромагнитные форсунки по числу цилиндров, общую электромагнитную форсунку холостого хода. За исключением дроссельной заслонки и терморегулятора холостого хода какие-либо механические узлы, влияющие на регулировку качества/количества смеси отсутствуют. Общее управление осуществляется электронным аналоговым модулем. Обратная связь не предусмотрена.


Слайд 58
Текст слайда:

В середине 1970-х ввиду низкой надёжности аналоговых модулей управления, на некорректную работу D-Jetronic приходилось подавляющая часть обращений в сервис, была практически вытеснена из крупносерийного автомобилестроения. Сама же идея электронно-управляемой СВТ на основе датчика абсолютного давления была реализована Bosch в 2000-х годах


Слайд 59
Текст слайда:

СИСТЕМА ВПРЫСКА «L-JETRONIC»  

Электрический топливный насос забирает топливо из бака и подает его под давлением 2, 5 кгс/см2 через фильтр тонкой очистки к распределительной магистрали, соединенной шлангами с рабочими форсунками цилиндров. Установленный с торца распределительной магистрали, регулятор давления топлива в системе поддерживает постоянное давление впрыска и осуществляет слив излишнего топлива в бак. Этим обеспечивается циркуляция топлива в системе и исключается образование паровых пробок.
Количество впрыскиваемого топлива определяется электронным блоком управления 10 в зависимости от температуры, давления и объема поступающего воздуха, частоты вращения коленчатого вала и нагрузки двигателя, а также от температуры охлаждающей жидкости.


Слайд 60
Текст слайда:

СИСТЕМА ВПРЫСКА «L-JETRONIC»

1. Датчик расхода воздуха
2. Электронный блок управления
3. Топливный фильтр
4. Топливный насос с
электроприводом
5. Регулятор давления топлива
6. устройство подачи
долнительного воздуха
7. Термореле
8. Датчик температуры
9. Датчик положения дроссельной 
заслонки
10.Пусковая форсунка
11- Форсунки


Слайд 61
Текст слайда:

СИСТЕМА ВПРЫСКА «L-JETRONIC»

Основным параметром, определяющим дозировку топлива, является объем всасываемого воздуха, измеряемый расходомером воздуха. Поступающий воздушный поток отклоняет напорную измерительную заслонку расходомера воздуха, преодолевая усилие пружины, на определенный угол, который преобразуется в электрическое напряжение посредством потенциометра. Соответствующий электрический сигнал передается на блок электронного управления, который определяет необходимое количество топлива в данный момент работы двигателя и выдает на электромагнитные клапаны рабочих форсунок импульсы времени подачи топлива. Независимо от положения впускных клапанов, форсунки впрыскивают топливо за один или два оборота коленчатого вала двигателя (за цикл, за два такта).
Если впускной клапан в момент впрыска закрыт, топливо накапливается в пространстве перед клапаном и поступает в цилиндр при следующем его открытии одновременно с воздухом


Слайд 62
Текст слайда:

А ≈ устройство входных параметров: 1 ≈ датчик температуры всасываемого воздуха, 2 ≈ расходомер воздуха 3 ≈ выключатель положения дроссельной заслонки, 4 ≈ высотный корректор, 5 ≈ датчик-распределитель зажигания, 6 ≈ датчик температуры охлаждающей жидкости, 7 ≈ термореле.
В ≈ устройства управления и обеспечения: 8 ≈ электронный блок управления, 9 ≈ блок реле, 10 ≈ топливный насос, 11 ≈ аккумуляторная батарея, 12 ≈ выключатель зажигания.
С ≈ устройства выходных параметров 13 ≈ рабочие форсунки, 14 ≈ клапан добавочного воздуха 15 ≈ пусковая форсунка


Слайд 63
Текст слайда:

СИСТЕМА ВПРЫСКА «L-JETRONIC»

Клапан дополнительной подачи воздуха 19, установленный в воздушном канале, выполненном параллельно дроссельной заслонке■ подводит к двигателю добавочный воздух при холодном пуске и прогреве двигателя, что приводит к увеличению частоты вращения коленчатого вала. Для ускорения прогрева используются повышенные обороты холостого хода (более 1000 об/мин).
Для облегчения пуска холодного двигателя, также как и в других рассмотренных системах впрыска, здесь применяется электромагнитная пусковая форсунка 6, продолжительность открытия которой изменяется в зависимости от температуры охлаждающей жидкости


Слайд 64
Текст слайда:

Функциональную связь всех элементов системы впрыска L-JETRONIC можно увидеть на схеме. Величина необходимой в настоящий момент дозы топлива вычисляется электронным блоком управления в зависимости от массы всасываемого воздуха (объем, давление, температура), температуры двигателя и режима его работы


Слайд 65
Текст слайда:

Опишите устройство и принцип работы «L-JETRONIC»


Слайд 66
Текст слайда:

СИСТЕМА ВПРЫСКА «LE-JETRONIC»

Cистема впрыска «LE-Jetronic» в принципе подобна системе «L-J», Изменения касаются в основном электронной части (E-Elektronik). В результате изменения электросхемы блока электронного управления удалось уменьшить общее количество контактов в разъеме с 35 до 25. В расходомере воздуха, изменился потенциометр в нем отсутствуют контакты насоса. Вследствие этого число контактов и реле пуска холодного двигателя появилось реле управления Клапанные форсунки работают без дополнительных сопротивлений Последнее достигается применением латунных проводов вместо медных, что обеспечивает необходимое электрическое сопротивление.
Система «LE2-J» отличается от «LE-J» улучшенным пуском и лучшим процессом уменьшения подачи топлива.
Система «LE3-J», работает на основе цифрового кода. Блок электронного управления размещен в подкапотном пространстве и объединен с расходомером воздуха. Электронный блок управления контролирует колебания напряжения бортовой сети и «выравнивает их за счет замедления срабатывания реле клапанных форсунок, при помощи изменения времени впрыска.
Система впрыска «LE4-J», (рис. 41), отличается от системы «LE3-J» отсутствием пусковой форсунки, термореле и клапана добавочного воздуха


Слайд 67
Текст слайда:

СИСТЕМА ВПРЫСКА «LE-JETRONIC»

Данные об оборотах коленчатого вала блок управления системы L-Jetronic получает от контактов в датчике-распределителе зажигания, а при бесконтактной системе зажигания — от вывода 1 катушки зажигания. Система L-Jetronic сконструирована
на основе аналоговой технологии. Следующая разработка — система L3-Jetronic — делает возможным производить обработку данных в цифровом виде. Благодаря этому можно использовать дополнительные функции с лучшими возможностями корректировки. Система KE-Jetronic Система KE-Jetronic базируется на хорошо зарекомендовавшей себя системе K-Jetronic с включением в нее электрогидравлического корректора давления для  правления составом рабочей смеси. Благодаря электронной регулировке дозирования топлива стало возможным улучшить при подготовке смеси корректировку ее состава с учетом внешних условий и рабочего режима двигателя.


Слайд 68
Текст слайда:

СИСТЕМА ВПРЫСКА «L-JETRONIC»

В системе L-Jetronic, в отличие от D-Jetronic, моменты впрыскивания топлива рассчитываются, исходя из оборотов коленчатого вала и поступившего во впускной трубопровод объема воздуха. Для этого непосредственно за дроссельной заслонкой  расположен датчик расхода воздуха, подающий в блок управления соответствующий сигнал. Так как объем поступившего воздуха зависит ото всех изменений, происходящих с двигателем (например износ, нагарообразование в камере сгорания), то тем самым имеется возможность получения более точного состава смеси по сравнению с методом измерения давления во впускном трубопроводе в системе 
D-Jetronic.


Слайд 69
Текст слайда:

Система LH-Jetronic


Слайд 70
Текст слайда:

Система LH-Jetronic

Система LH-Jetronic
По существу, система
LH-Jetronic отличается от L-Jetronic способом измерения нагрузки: вместо объема подаваемого воздуха измеряется массовый расход воздуха. Тем самым информация, поступающая с датчика, не зависит от плотности
воздуха, на которую влияют температура и давление.


Слайд 71
Текст слайда:

Система Mono-Jetronic


Слайд 72
Текст слайда:

Система Mono-Jetronic

Система Mono-Jetronic представляет собой систему с впрыскиванием топлива через одну форсунку (одноточечная сисстема впрыска) центрального расположения с электромагнитным управлением. Эта система является более дешевой
по сравнению с прежними системами впрыска топлива через одну форсунку, это позволило внедрить электронный впрыск топлива на автомобилях среднего и малого классов.


Слайд 73
Текст слайда:

Зажигание


Слайд 74
Текст слайда:

Зажигание

Зажигание
вменение микроконтроллеров позволило заменить механическое регулирование угла опережения зажигания электронным. Зависящие от нагрузки и частоты положения коленчатого вала значения угол опережения зажигания могут быть внесены в память программного накопителя блока управления системой зажигания. Тем самым угол опережения зажигания поддерживается постоянным в течение продолжительного времени без учета влияния быстроизнашиваюхся деталей.


Слайд 75
Текст слайда:

Электронные системы зажигания используются совместно с электронными системами впрыска. На новых автомобилях эти системы использовались до 1998 г., а в наши дни системы зажигания и впрыска топлива интегрированы в систему Motronic.


Слайд 76
Текст слайда:

Электронная система зажигания


Электронная система зажигания управляет оконечным каскадом зажигания.  Данные по углу замкнутого состояния контактов датчика-распределителя и углу опережения зажигания хранятся в памяти программного блока (система зажигания с управлением по оптимизированному отображению процесса зажигания). Дополнительные показатели, например, температура охлаждающей жидкости или температура подаваемого воздуха, учитываются при расчете угла опережения зажигания.
Полупроводниковая система зажигания без датчика-распределителя Данная система обходится без механического высоковольтного датчика-распределителя зажигания. Распределение напряжения происходит электронным способом в блоке управления системой зажигания. Высоковольтное напряжение генерируется несколькими катушками зажигания.


Слайд 77
Текст слайда:

Система управления двигателем Motronic

Система Mono-Motronic 
Упрощение системы Mono-Motronic, по сравнению с M-Motronic, состояло в том, что здесь использовалась единственная форсунка центрального расположения, впрыскивающая топливо во впускной трубопровод. Тем самым система впрыска Mono-Motronic соответствовала системе Mono-Jetronic.


Слайд 78
Текст слайда:

Система управления двигателем Motronic

Электронный впрыск и электронное зажигание сделали возможным разработку двигателей, которые, с одной стороны, стали
более мощными, а с другой — обеспечили соблюдение более жестких требований по ограничению токсичности ОГ. Растущая миниатюризация эяектрониых деталей и схем привела к появлению все более мощных микроконтроллеров и полупроводниковых чипов со значительно большим объемом памяти. В результате стало возможным задачи, выполняемые системой электронного впрыска и электронной системой зажигания с программным управлением, возложить на  единственный микроконтроллер. Тем самым,разработчикам представилась возможность объединить обе системы — электронный впрыск и электронное зажигание — в одном блоке управления. Так появилась система Motronic.


Слайд 79
Текст слайда:

Система M-Motronic комплексная система управления двигателем

Система M-Molronic начала серийно выпускаться еще в 1979 г. Она совместила в себе функциональность системы многоточечного впрыска Jetronic с электронной системой зажигания с программным управлением. Тем самым стало возможным отличительное согласование дозирования топлива и управления зажиганием. Благодаря стремительному прогрессу в полупроводниковой технологии быстродействие микроконтроллеров становилось все выше, а емкость запоминающих устройств программных накопителей данных и чипов — все больше. Таким образом, в систему M-Motronic можно было интегрировать все большее число функций (например, контроль за детонацией или регулирование давления наддува для турбонагнетателя). Такие функции, как рециркуляция ОГ или система вентиляции топливного бака, снижающие токсичность ОГ и эмиссию топливных паров, стали обязательными требованиями. Благодаря этому система M-Motronic
превратилась в комплексную систему управления двигателем.


Слайд 80
Текст слайда:

Система M-Motronic комплексная система управления двигателем

В самом начале применения системы 
M-Motronic ее использование было возможно только на автомобилях высшего
класса из-за высокой стоимости электроники и элементов системы впрыска. Требования по соблюдению норм токсичности ОГ привели к развитию более простых систем Motronic, используемых на автомобилях среднего и малого классов 


Слайд 81
Текст слайда:

Система управления двигателем
KE-Motronic


Слайд 82
Текст слайда:

Система управления двигателем
KE-Motronic


Слайд 83
Текст слайда:

Система KE-Motronic

Система KE-Motronic представляет собой объединенную в одном блоке управления комбинацию электронно-механической системы впрыска KE-Jetronic и электронной системы зажигания с программными управлением.


Слайд 84
Текст слайда:

Система управления двигателем
ME-Motronic

Система ME-Motronic, начало серийного производства которой приходится на 1994 г.,базируется на системе
M-Motronic.
Дополнительно здесь применяется электронное управление мощностными параметрами двигателя (отдельно производимое с 1986 г. ). В этой системе, называемой также EGAS (электронное управление педалью «газа»), традиционный привод
дроссельной заслонки через трос Боудена заменен электрически регулируемой дроссельной заслонкой и дополнительным датчиком положения педали «газа», расположенным в педальном узле.


Слайд 85
Текст слайда:

Система MED-Motronic (начало серийного производства — 2000 г.) отличается от ME-Motronic расширенной функциональностью непосредственного впрыска. Большая сложность выполнения задач по управлению и регулированию требуют применения микроконтроллера с очень высокой вычислительной способностью.


Слайд 86
Текст слайда:

ДОМАШНЕЕ ЗАДАНИЕ – ПОДГОТОВИТЬ ДОКЛАДЫ
Система впрыска фирмы «Bendix»
Electrojector — первая коммерческая система электронного впрыска топлива, разработанная компанией Bendix. Патенты системы впрыска Electrojector впоследствии были проданы компании Bosch
Системы впрыска «Bosch»
D-Jetronic (1967—1976) — аналоговый впрыск топлива. Изначально система называлась Jetronic, но позже была переименована в D-Jetronic
K-Jetronic (1973—1994) — механический впрыск
K-Jetronic (Lambda) — вариация K-Jetronic с лямбда-датчиком
KE-Jetronic (1985—1993) — механическая система постоянного впрыска топлива, подобная системе
«K-Jetronic», но с электронным блоком управления
LE1-Jetronic, LE2-Jetronic, LE3-Jetronic (1981—1991)
LU-Jetronic (1983—1991)
LH-Jetronic (1982—1995)
Mono-Jetronic (1988—1995) — система одноточечного впрыска топлива
Motronic (1979)
ME-Motronic (1995) — с электронным дросселем
MED-Motronic (2000) — с непосредственным впрыском
MEG-Motronic — интегрированная система управления коробкой передач
MEV-Motronic — интегрированная система управления подъёмом клапанов
Системы впрыска «General Motors»
GM Multec Central — система центрального впрыска топлива (Моновпрыск)
MulTec-S (Multiple Technology) — система центрального впрыска топлива
Multec-F 1996—2001
Multec-H 1998—2003
MulTec-М — система многоточечного впрыска
Multec-U 1996—2001
Системы впрыска «VAG»
Digifant — система распределенного впрыска топлива
Digijet — система распределенного впрыска топлива


Слайд 87
Текст слайда:

THE END


виды, устройство, принцип работы, фото, промывка

Nevada 1976Инжекторная система подачи топлива: виды, устройство, принцип работы, фото, промывка 0 Comment

Содержание статьи

Инжектор – это своеобразная система, которая предназначена для переправки топлива в цилиндры автомобиля. Для этого используются форсунки, которые получают электронный сигнал от блока управления автомобиля. Стоит отметить, что подача топлива осуществляется исключительно точечным методом. Инжекторная система на сегодняшний день считается достаточно распространенной. Подобные конструкции представляют собой значительно более модифицированные версии карбюратора.

Стоит отметить, что первая подобная система была разработана еще в конце 19 века. А вот внедрение в само автомобилестроение произошло только во второй половине 20 века. Дело в том, что специалисты считали данный механизм слишком сложным и неоправданно дорогим.

На сегодняшний день все современные двигатели, оснащённые инжекторными системами подачи топлива, работающие по точечной поточечной подачи топлива в цилиндры, производится со специальными электронными блоками управления. Альтернативой ему может быть контроллер или система управления двигателем. Но, в любом случае, все эти приборы относятся к компьютерным. Именно они обеспечивают инжекторную систему должной информацией, на основании которой она может работать, корректировать дозу подачи топлива, частоту впрыска и другое.

Когда появился инжектор

Карбюратор, судя по всему, уже смешал отведенное ему количество топлива с воздухом в XX веке и его время стремительно подходит к концу. Несмотря на то что инжекторная система подачи топлива появилась гораздо раньше, чем карбюратор, она только начинает обживаться под капотами автомобилей. Своим происхождением впрыск обязан итальянскому физику и изобретателю Джованни Вентури, который изобрел форсунку с переменным сечением и скромненько назвал ее Труба Вентури.

Использовать ее в автомобилях начали ребята из гаража Леона Левассора. Что-то наподобие современного впрыска они ставили на свои автомобили еще в 1902 году. После этого автомобильные системы питания метались в поисках лучшего устройства, а инжектор нашел себе применение в авиационных двигателях. К концу 40-х годов все военные истребители поголовно пользовались инжекторной системой питания до тех пор, пока военная авиация не перешла на реактивную тягу.

Основные преимущества инжекторной системы

Современные специалисты отмечают сразу несколько преимуществ подобных видов систем подачи топлива. А именно:

  1. Удалось достигнуть значительного снижения расхода топлива. Это стало возможным благодаря четкому контролю подачи топлива.
  2. Подобная система способствует повышению мощности. Для сравнения карбюраторные двигатели внутреннего сгорания имеют мощность на среднем на 10% меньше нежели идентичные инжекторные.
  3. Автоматизированная система впрыска. Стоит помнить, что в карбюраторных автомобилях функцию регулировки выполняет подсос и регулировочные винты. В данном же случае водителю не придется тратить время, и система все сделаем за него.

Разнообразие инжекторных систем

В современности существует два вида инжекторов. Первый относится к системам моновпрыска. В данном случае одна форсунка осуществляет подачу топлива в коллектор на все цилиндры. Среди автомобилистов подобная система более известна, как электронный карбюратор. Однако, современные производители уже отошли от данной технологии, и встретить подобную систему можно только в старых моделях.

Вторая система подразумевает распределённый впрыск, то есть многоточечный впрыск. В данном случае устанавливается отдельная форсунка во впускном тракте каждого цилиндра и каждая из них осуществляет подачу определённого объёма топлива в камеру сгорания.

По способу распределения впрыска подобные системы делятся на:

  1. Одновременную. Система встречается очень редко, но всё же имеет место быть. Ее особенностью является то, что всего за один оборот коленчатого вала абсолютно все форсунки отрабатывают в одно и тоже время.
  2. Попарную параллельную. В данном случае форсунки работают по парам. Другими словами, за один оборот коленчатого вала только одна пара форсунок работает.
  3. Последовательную. Данный вид распределения впрыска является самым распространенным. Особенностью является то, что за один оборот вала каждая форсунка по разу открывается перед тактом впуска. При этом регулировка происходит отдельно.

Отрицательные характеристики систем

Несмотря на огромный перечень положительных характеристик, данный механизм, как и многие другие, имеет и свою темную сторону. К минусам данной конструкции относятся:

  • довольно большая стоимость ремонта;
  • высокая стоимость комплектующих;
  • маленькая вероятность возможности ремонта;
  • большие требования к качеству топлива;
  • определить неисправность может только профессионал;
  • диагностика стоит достаточно дорого;
  • для ремонта нужно иметь специальное оборудование.

Стоит отметить, что инжекторный тип впрыска топлива со временем может приводить к тому, что впускной клапан закоксовывается. Это происходит из-за того, что он просто не омывается топливом, которое, в некотором роде, его очищает.

Устройство системы

Инжекторная система подачи топлива состоит из электронной и механической составляющих. Первая контролирует параметры работы силового агрегата и на их основе подает сигналы для срабатывания исполнительной (механической) части.

К электронной составляющей относится микроконтроллер (электронный блок управления) и большое количество следящих датчиков:

  • лямбда-зонд;
  • положения коленвала;
  • массового расхода воздуха;
  • положения дроссельной заслонки;
  • детонации;
  • температуры ОЖ;
  • давления воздуха во впускном коллекторе.

Датчики системы инжектора

На некоторых авто могут иметься еще несколько дополнительных датчиков. У всех у них одна задача – определять параметры работы силового агрегата и передавать их на ЭБУ

Что касается механической части, то в ее состав входят такие элементы:

  • бак;
  • электрический топливный насос;
  • топливные магистрали;
  • фильтр;
  • регулятор давления;
  • топливная рампа;
  • форсунки.

Простая инжекторная система подачи топлива

Как все работает

Теперь рассмотрим принцип работы инжекторного двигателя отдельно по каждой составляющей. С электронной частью, в целом, все просто. Датчики собирают информацию о скорости вращения коленчатого вала, воздуха (поступившего в цилиндры, а также остаточной его части в отработанных газах), положения дросселя (связанного с педалью акселератора), температуры ОЖ. Эти данные датчики передают постоянно на электронный блок, благодаря чему и достигается высокая точность дозировки бензина.

Поступающую с датчиков информацию ЭБУ сравнивает с данными, внесенными в картах, и уже на основе этого сравнения и ряда расчетов осуществляет управление исполнительной частью.В электронный блок внесены так называемые карты с оптимальными параметрами работы силовой установки (к примеру, на такие условия нужно подать столько-то бензина, на другие – столько-то).

Первый инжекторный двигатель Toyota 1973 года

Чтобы было понятнее, рассмотрим более подробно алгоритм работы электронного блока, но по упрощенной схеме, поскольку в действительности при расчете используется очень большое количество данных. В целом, все это направлено на высчитывание временной длины электрического импульса, который подается на форсунки.

Поскольку схема – упрощенная, то предположим, что электронный блок ведет расчеты только по нескольким параметрам, а именно базовой временной длине импульса и двум коэффициентам – температуры ОЖ и уровне кислорода в выхлопных газах. Для получения результата ЭБУ использует формулу, в которой все имеющиеся данные перемножаются.

Для получения базовой длины импульса, микроконтроллер берет два параметра – скорость вращения коленчатого вала и нагрузку, которая может высчитываться по давлению в коллекторе.

К примеру, обороты двигателя составляют 3000, а нагрузка 4. Микроконтроллер берет эти данные и сравнивает с таблицей, внесенной в карту. В данном случае получаем базовую временную длину импульса 12 миллисекунд.

Но для расчетов нужно также учесть коэффициенты, для чего берутся показания с датчиков температуры ОЖ и лямбда-зонда. К примеру, температура составляется 100 град, а уровень кислорода в отработанных газах составляет 3. ЭБУ берет эти данные и сравнивает с еще несколькими таблицами. Предположим, что температурный коэффициент составляет 0,8, а кислородный – 1,0.

Получив все необходимые данные электронный блок проводит расчет. В нашем случае 12 множиться на 0,8 и на 1,0. В результате получаем, что импульс должен составлять 9,6 миллисекунды.

Описанный алгоритм – очень упрощенный, на деле же при расчетах может учитываться не один десяток параметров и показателей.

Поскольку данные поступают на электронный блок постоянно, то система практически мгновенно реагирует на изменение параметров работы мотора и подстраивается под них, обеспечивая оптимальное смесеобразование.

Стоит отметить, что электронный блок управляет не только подачей топлива, в его задачу входит также регулировка угла зажигания для обеспечения оптимальной работы мотора.

Теперь о механической части. Здесь все очень просто: насос, установленный в баке, закачивает в систему бензин, причем под давлением, чтобы обеспечить принудительную подачу. Давление должно быть определенным, поэтому в схему включен регулятор.

По магистралям бензин подается на рампу, которая соединяет между собой все форсунки. Подающийся от ЭБУ электрический импульс приводит к открытию форсунок, а поскольку бензин находится под давлением, то он через открывшийся канал просто впрыскивается.

Почему инжектор лучше карбюратора?

Помнится, еще относительно недавно автомобили с инжекторной системой подачи топлива вызывали недоверие. Пожалуй, единственное логическое объяснение этому – сложность ее конструкции, из-за чего на первых порах возникали проблемы с ремонтом. В отличие от карбюратора, впрыск топлива в инжекторе не нужно регулировать, поскольку это возложено на электронную систему управления. Помимо этого, машина с инжекторным агрегатом потребляет меньше топлива, а мощность ее мотора значительно выше. Плюс ко всему — значительное снижение вредных соединение в выхлопе авто, ввиду лучшего сгорания топливной смеси, которое возможно благодаря ее правильной и дозированной подаче.

Типы инжекторов

 1. Система центральной подачи топлива (моновпрыск), представлен одной форсункой, через которую топливная смесь поступает в коллектор, а с него уже распределяется по всем цилиндрам. Самый простой тип, который сегодня уже практически не применяется.

 2. Система распределенной топливоподачи (многоточечный впрыск). Здесь уже через отдельные форсунки осуществляется впрыск топлива в цилиндры, то есть количество форсунок соответствует количеству цилиндров.

Многоточечная система впрыска бывает:

— Одновременного типа, когда все форсунки открываются, и впрыск топлива осуществляется в течение одного полного оборота коленвала. Практически не встречается.

— Попарно-параллельного типа, когда топливовпрыск ведется через парные форсунки, цикл работы которых определяется одним вращением коленвала. Также используется редко, однако, может быть встречаться из-за поломки датчика при последовательном типе топливоподачи.

— С последовательным (фазированным) впрыском топлива, в которой за одно вращение коленвала происходит открытие каждой из форсунок для впрыска топлива. Наиболее распространенная и совершенная система топливовпрыска, которая позволяет подать рабочую смесь непосредственной в цилиндр, при этом длительность ее подачи и дозировка рассчитываются максимально точно. Стоит отметить, что рабочее давление системы может возрастать до 200 атм.

Однако есть и ряд своих недостатков, к которым можно отнести наличие множества дорогостоящих элементов, причем некоторые из них, абсолютно неремонтопригодны. Также, в инжекторах с системой последовательного топливовпрыска очень часто закоксовываются клапана впуска, из-за того, что они практически не омываются, следовательно, и не очищаются топливной смесью.

Виды систем впрыска бензиновых двигателей

Впрыск может быть:

  • центральным (ДВС с карбюраторами, наддроссельный впрыск),
  • распределённый или коллекторный (осуществляется отдельной форсункой в каждый цилиндр двигателя),
  • непосредственный (осуществляется напрямую в камеры сгорания, отдельными форсунками), встречается в разных вариациях, характерен для современных автомобилей.

Варианты топливных систем бензиновых двигателей (R R. Bosch)

Решения с карбюраторами

Дольше всего человечество знакомо с подачей топлива посредством карбюратора. И не потому, что такие решения лучшие, а потому что они – первые. И множество лет – единственно доступные. Карбюратор был неотъемлемой частью топливной системы на около сотни лет. Нельзя сказать, что сейчас карбюраторы полностью исчезли из жизни, но на легковой и коммерческий транспорт карбюраторы ставить перестали. Их можно увидеть только на средствах механизации, которые применяются для садовых, строительных работ.
Автопром же перестал выпускать машины с карбюраторной системой еще в 90-е годы прошлого века.

Принцип их действия основан на принципе втягивания топлива в поток воздуха, проходящего через карбюратор. Всё это возможно за счет сужения воздушного канала и разрежения воздуха.

Объём воздуха, который проходит через сужение воздушного канала, пропорционален объёму топлива, поступающего через распылитель карбюратора. Благодаря этому несложно в автоматическом режиме поддерживать требуемое соотношение топлива к воздуху.

Как работает устройство?

  1. Топливо из бака забирает насос (управляемый механически или электрически – в зависимости от модели).
  2. ДВС запускается, и поток воздуха, проходящий через сужение воздушного канала карбюратора, создает разрежение.
  3. В смесительную камеру карбюратора поступает топливо.
  4. Жиклер (калиброванное отверстие) дозирует топливо.

С точки зрения работы всё достаточно просто. Так почему же карбюраторы уходят в историю?
Здесь достаточно много причин:

  • Низкая экономичность, а соответственно, и низкий уровень топливной эффективности.
  • Проблемы при переменных режимах работы, обусловленные низкими динамическими качествами.
  • Прямая зависимость от положения двигателя.
  • Выброс в окружающую среду большого количества вредных веществ (несоответствие нормативам эмиссии газообразных вредных выбросов в атмосферу).

Особенности системы впрыска

Основным преимуществом системы впрыска считают точную дозировку топлива, необходимую для оптимальной работы двигателя в определенный момент и под определенной нагрузкой. Этого позволила добиться только электронная система управления. Старые инжекторные системы имели механическое управление и подавали бензин по средним потребностям мотора. Современный инжектор способен точно вычислить сколько топлива необходимо и в какой момент его нужно подать. Синхронизация системы питания с зажиганием позволяет оперативно менять как угол опережения подачи искры, так и момент подачи бензина, поэтому теоретически, инжекторные системы должны быть эффективнее и экономичнее карбюраторных.

Диагностика инжекторных систем

Действительно, с применением электроники и распределенной системы впрыска моторы стали немного экономичнее, но против физики не попрешь, и без нужного количества бензина камера сгорания просто не выдаст ту энергию, которая необходима. С усложнением систем впрыска стали появляться новые проблемы, особенно на дешевых машинах, поскольку система впрыска очень требовательна к материалам топливной аппаратуры и особенно, к качеству топлива. Это вообще больной вопрос для всех инжекторов. Количество серы в отечественном бензине не укладывается ни в какие нормы, поэтому даже на недорогих системах впрыска очень часто требуется вмешательство механика.

Неисправности системы впрыска проявляются по-разному, но методы диагностики на современных СТО позволяют довольно точно определить нерабочий элемент. Чаще всего, это страдают от топлива насосы и форсунки. Определить неисправность просто, для этого даже не нужно ехать в сервис:

  • тяжелый пуск;
  • высокий расход;
  • провалы в работе на средних оборотах и отсутствие холостых;
  • сбои в переходных режимах.

Все это свидетельствует о недостаточном количестве бензина в камере сгорания. Насосы, как правило, не ремонтируют, по крайней мере, на официальных сервисах, а форсунки приходится мыть и прочищать.

Принцип действия системы непосредственного впрыска

Система непосредственного впрыска в результате работы обеспечивает несколько видов смесеобразования:

  • послойное ;
  • стехиометрическое гомогенное ;
  • гомогенное.

Многообразие в смесеобразовании определяет высокую эффективность использования топлива (экономия, качество образования смеси, ее полное сгорание, увеличение мощности, уменьшение вредных выбросов) на всех режимах работы двигателя.

Послойное смесеобразование используется при работе двигателя на малых и средних оборотах и нагрузках. Стехиометрическое (другое наименование – легковоспламеняемое) гомогенное (другое наименование – однородное) смесеобразование применяется при высоких оборотах двигателя и больших нагрузках. На бедной гомогенной смеси двигатель работает в промежуточных режимах.

При послойном смесеобразовании дроссельная заслонка почти полностью открыта, впускные заслонки закрыты. Воздух поступает в камеры сгорания с большой скоростью, с образованием воздушного вихря. Впрыск топлива производится в зону свечи зажигания в конце такта сжатия. За непродолжительное время до воспламенения в районе свечи зажигания образуется топливно-воздушная смесь с коэффициентом избытка воздуха от 1,5 до 3. При воспламенении смеси вокруг нее остается достаточно много чистого воздуха, выступающего в роли теплоизолятора.

Рабочий процесс поддерживается движением воздуха в цилиндрах. В зависимости от нагрузочного и скоростного режимов регулируется интенсивность движения воздуха, при этом, обеспечивается создание гомогенной или послойной смеси.

Гомогенное стехиометрическое смесеобразование происходит при открытых впускных заслонках, дроссельная заслонка при этом открывается в соответствии с положением педали газа. Впрыск топлива производится на такте впуска, что способствует образованию однородной смеси. Коэффициент избытка воздуха составляет 1. Смесь воспламеняется и эффективно сгорает во всем объеме камеры сгорания.

Бедная гомогенная смесь образуется при максимально открытой дроссельной заслонке и закрытыми впускными заслонками. При этом создается интенсивное движение воздуха в цилиндрах. Впрыск топлива производится на такте впуска. Коэффициент избытка воздуха поддерживается системой управления двигателем на уровне 1,5. При необходимости в состав смеси добавляются отработавшие газы из выпускной системы, содержание которых может доходить до 25%.

Промывка инжекторной системы

Есть несколько способов очистки инжекторной системы. Если двигатель находится еще не в критическом состоянии, тогда может помочь промывка при помощи топливных присадок. Они растворяют отложения в насосе, топливопроводе, а главное, в форсунках, и в некоторой степени чистят систему от грязи и шлаков. не всегда это удается и не всегда это безопасно для двигателя, поэтому наиболее эффективным способом прочистки форсунок считают ультразвуковые ванны. Это не механический способ очистки и процесс проходит довольно эффективно.

Инжекторная система подачи топлива продолжает совершенствоваться, полностью вытесняя карбюраторы. Системы вполне работоспособны, только для того, чтобы избежать лишних проблем с очисткой и регулировками, стоит следить за качеством топлива ровно настолько, насколько это позволяют наши нефтеперерабатывающие комбинаты. Чистого всем бензина, и удачи в дороге!

Обратная связь с датчиками

Одним из основных датчиков, на показаниях которого ЭБУ регулирует время открытия форсунок, является лямбда-зонд, установленный в выпускной системе. Этот датчик определяет остаточное (не сгоревшее) количество воздуха в газах.

Благодаря этому датчику обеспечивается так называемая «обратная связь». Суть ее заключается вот в чем: ЭБУ провел все расчеты и подал импульс на форсунки. Топливо поступило, смешалось с воздухом и сгорело. Образовавшиеся выхлопные газы с не сгоревшими частицами смеси выводится из цилиндров по системе отвода выхлопных газов, в которую установлен лямбда-зонд. На основе его показаний ЭБУ определяет, правильно ли были проведены все расчеты и при надобности вносит корректировки для получения оптимального состава. То есть, на основе уже проведенного этапа подачи и сгорания топлива микроконтроллер делает расчеты для следующего.

Стоит отметить, что в процессе работы силовой установки существуют определенные режимы, при которых показания кислородного датчика будут некорректными, что может нарушить работу мотора или требуется смесь с определенным составом. При таких режимах ЭБУ игнорирует информацию с лямбда-зонда, а сигналы на подачу бензина он отправляет, исходя из заложенной в карты информации.

На разных режимах обратная связь работает так:

  • Запуск мотора. Чтобы двигатель смог завестись, нужна обогащенная горючая смесь с увеличенным процентным содержанием топлива. И электронный блок это обеспечивает, причем для этого он использует заданные данные, и информацию от кислородного датчика он не использует;
  • Прогрев. Чтобы инжекторный двигатель быстрее набрал рабочую температуру ЭБУ устанавливает повышенные обороты мотора. При этом он постоянно контролирует его температуру, и по мере прогрева корректирует состав горючей смеси, постепенно ее обедняя до тех пор, пока состав ее не станет оптимальным. В этом режиме электронный блок продолжает использовать заданные в картах данные, все еще не используя показания лямбда-зонда;
  • Холостой ход. При этом режиме двигатель уже полностью прогрет, а температура выхлопных газов – высокая, поэтому условия для корректной работы лямбда-зонда соблюдаются. ЭБУ уже начинает использовать показания кислородного датчика, что позволяет установить стехиометрический состав смеси. При таком составе обеспечивается наибольший выход мощности силовой установки;
  • Движение с плавным изменением оборотов мотора. Для достижения экономичного расхода топлива при максимальном выходе мощности, нужна смесь со стехиометрическим составом, поэтому при таком режиме ЭБУ регулирует подачу бензина на основе показания лямбда-зонда;
  • Резкое увеличение оборотов. Чтобы инжекторный двигатель нормально отреагировал на такое действие, нужна несколько обогащенная смесь. Чтобы ее обеспечить, ЭБУ использует данные карт, а не показания лямбда-зонда;
  • Торможение мотором. Поскольку этот режим не требует выхода мощности от мотора, то достаточно, чтобы смесь просто не давала остановиться силовой установке, а для этого подойдет и обедненная смесь. Для ее проявления показаний лямбда-зонда не нужно, поэтому ЭБУ их не использует.

Как видно, лямбда-зонд хоть и очень важен для работы системы, но информация с него используется далеко не всегда.

Система датчиков инжекторных двигателей

Без этих компонентов работа системы впрыска топлива невозможна. Именно датчики сообщают блоку управления всю информацию, которая необходима для работы исполнительных устройств в нормальном режиме. Неисправности системы питания инжекторного двигателя по большей части вызывают именно датчики, так как они могут неверно производить замеры.

  1. Датчик расхода воздуха устанавливается после воздушного фильтра, так как в конструкции имеется дорогостоящая платиновая нить, которая при попадании мелких посторонних частиц может засоряться, отчего показания окажутся неверными. Датчик считает, какое количество воздуха проходит через него. Понятно, что взвесить воздух не представляется возможным, да и объем его измерить проблематично. Суть работы заключается в том, что внутри пластиковой трубки находится платиновая нить. Она нагревается до рабочей температуры (более 600º, именно это значение закладывается в ЭБУ). Поток воздуха охлаждает нить, блок управления фиксирует температуру и, исходя из этого, вычисляет количество воздуха.
  2. Датчик абсолютного давления необходим для более точного снятия показаний о количестве потребляемого двигателем воздуха. Состоит из 2 камер, одна из которых герметична и внутри у неё вакуум. Вторая камера соединена с впускным коллектором. В последнем при впуске разрежение. Между камерами устанавливается диафрагма с пьезоэлементом, который вырабатывает небольшое напряжение во время изменения давления. Это значение напряжения поступает на вход блока управления.
  3. Датчик положения коленвала располагается рядом со шкивом генератора. Если присмотреться, то можно увидеть, что на шкиве есть зубья, причём они расположены на одинаковом расстоянии друг от друга. Суммарное число зубьев — 60, оси соседних расположены на расстоянии 6º. Но если присмотреться ещё внимательнее, то можно увидеть, что 2-х не хватает. Этот промежуток необходим, чтобы датчик фиксировал положение коленвала максимально точно. Датчик вырабатывает напряжение, которое тем больше, чем выше частота вращения.
  4. Датчик фаз (распредвала) работает на эффекте Холла. В конструкции есть диск с вырезанным сегментом и катушка. При вращении диска вырабатывается напряжение. Но в момент, когда прорезь находится над чувствительным элементом, напряжение снижается до 0. В этот момент первый цилиндр находится в ВМТ на такте сжатия. Благодаря датчику фаз точно подаётся искра на свечу и открывается своевременно форсунка.
  5. Датчик детонации расположен на блоке ДВС между 2 и 3 цилиндрами (чётко посередине). Работает на пьезоэффекте — при наличии вибрации происходит генерирование напряжения. Чем сильнее вибрация, тем выше уровень сигнала. Блок управления при помощи датчика изменяет угол опережения зажигания.
  6. Датчик дроссельной заслонки представляет собой переменный резистор, на который подаётся напряжение 5 В. В зависимости от того, в каком положении находится заслонка, напряжение уменьшается. Иногда случаются поломки — в начальном положении показания датчика прыгают. Стирается резистивный слой, ремонт невозможен, эффективнее установить новый.
  7. Датчик температуры ОЖ, от него зависит качество воспламенения топливовоздушной смеси. С его помощью не только происходит коррекция угла опережения зажигания, но и включение электровентилятора.
  8. Лямбда-зонд расположен в системе выпуска отработанных газов. В современных системах, которые удовлетворяют последним экологическим стандартам, можно встретить 2 датчика кислорода. Лямбда-зонд отслеживает количество кислорода в выхлопных газах. У него есть внешняя часть и внутренняя. За счёт напыления из драгметалла можно оценить количество кислорода в выхлопных газах. Внешняя часть датчика «дышит» чистым воздухом. Показания передаются на блок управления и сравниваются. Эффективные замеры возможны только при достижении высоких температур (свыше 400º), поэтому часто устанавливают подогреватель, чтобы даже в момент начала работы двигателя не наблюдалось перебоев.

Исполнительные механизмы инжекторных систем

По названию видно, что эти устройства выполняют то, что им скажет блок управления. Все сигналы от датчиков анализируются, сравниваются с топливной картой (огромной схемой работы при тех или иных условиях), после чего подаётся команда на исполнительный механизм. Следующие исполнительные механизмы входят в состав инжекторной системы:

  1. Электрический бензонасос, установленный в баке. Он нагнетает в рампу бензин под давлением около 3,5 Мпа. Вот какое давление в топливной системе должно быть, при нем распыление смеси окажется наиболее качественным. При повышении оборотов коленвала увеличивается расход бензина, нужно его больше нагнетать в рампу, чтобы удерживать давление на уровне. В нижней части насосов устанавливается фильтр, который нужно менять хотя бы раз в 30000 км пробега.
  2. Электромагнитные форсунки устанавливаются в рампе и предназначены для подачи топливовоздушной смеси в камеры сгорания. Чем дольше открыт клапан форсунки, тем больше смеси поступит в камеру сгорания — именно такой принцип дозирования лежит в основе.
  3. Дроссельный механизм приводится в движение педалью из салона. Но в последние годы набирает популярность электронная педаль газа. Это означает, что вместо тросика используется потенциометр на педали и небольшой электродвигатель на дроссельной заслонке.
  4. Регулятор холостого хода предназначен для контроля количества воздуха, поступающего в топливную рампу при полностью закрытой дроссельной заслонке. На карбюраторных моторах аналогичную функцию выполняет «подсос». Несмотря на то, что топливная система отличается, суть работы остаётся той же — подача смеси и её сгорание.
  5. Модуль зажигания — короб, в котором находится 4 высоковольтные катушки. Хорошая конструкция, но крайне ненадёжная — высоковольтные провода имеют свойство портиться. Намного эффективнее окажется использование для каждой свечи отдельной катушки, выполненной в виде наконечника.

Работа двигателя с инжекторной системой впрыска

А теперь можно рассмотреть и принцип работы системы питания инжекторного двигателя. При включении зажигания происходит переход в рабочий режим всех механизмов и устройств. Первым делом насос нагнетает бензин в рампу до минимального давления, которого хватит для запуска.

А дальше все ждут, когда провернётся коленвал, и с его датчика пойдёт сигнал на блок управления о положении поршней в цилиндрах. Одновременно с этим датчик фаз выдаёт сигнал о том, какой такт совершается. После анализа данных блок управления даёт команду на форсунки (в зависимости от того, в каком цилиндре происходит впуск).

При вращении коленвала постоянно снимаются данные с датчиков и, исходя из них, происходит открывание нужных электромагнитных форсунок на определённый промежуток времени. Смесь воспламеняется, отработанные газы выходят через выпускной коллектор. По тому, какое содержание кислорода в них, можно судить о качестве сгорания топлива.

Если содержание кислорода большое, то смесь сгорает не до конца. Блок управления производит корректировку угла опережения зажигания, чтобы добиться наилучших показаний.

Но вот во время прогрева некоторые датчики не влияют на работу системы управления. Это датчики расхода воздуха, детонации и абсолютного давления. При достижении рабочей температуры включаются они в работу. Причина — во время прогрева невозможно соблюсти все условия, в частности, соотношение бензина и воздуха. Уровень СО в выхлопных газах тоже будет зашкаливать, поэтому контроль всех этих параметров не следует производить.

Принцип работы топливной системы двигателя инжектор

Принцип работы топливной системы двигателя

ТСД или система питания мотора предопределена для пуска, очистки и хранения горючего. Именно ТСД в ответе за выработку топливной смеси, её подачу в цилиндры и регулирование на разных оборотах. В бензиновых ТСД в качества топлива выступает бензин, в дизельных – солярка.

ТСД бензинового агрегата

Содержание

  • 1 ТСД бензинового агрегата
  • 2 ТСД дизельного агрегата
  • 3 Несколько слов по топливу

Сегодня большая часть автомобилей оснащены инжекторными системами. Однако встречаются ещё и карбюраторные автомобили. Рассмотрим, как оснащены ТСД обеих систем подробнее.

ТСД на карбюраторе имеет свою уникальную принципиальную схему. Составляющими элементами в ней выступают топливный резервуар, насос, коммуникации, фильтры. Одной из особенностей карбюраторной системы можно назвать то, что здесь используется воздушный фильтр.

Топливный резервуар способен вмещать от 40 до 80 литров горючего (это в среднем). Устанавливается в большинстве случаев сзади автомобиля, наполняется жидкостью через горловину. Залитый в резервуар бензин обязан проходить фильтрацию. С этой целью устанавливается сетчатый фильтр, задерживающий крупные частички мусора. Кроме того, в баке предусмотрен ДУТ – датчик уровня бензина. Его данные отображаются на приборной панели автомобиля.

Топливный насос

Насос – важное звено, как в карбюраторных, так и в инжекторных ТСД. Только в первом случае он, как правило, устанавливается не внутри резервуара, а снаружи. Именно насос поддерживает нужное рабочее давление в системе, оснащается фильтрами и т.д. На инжекторных системах устанавливается электронный насос, на карбюраторных – механический.

На инжекторных ТСД принято ставить не один, а два фильтра. Один встраивается непосредственно внутрь топливного насоса. Это сетка, задерживающая крупные частички мусора. Другой фильтр называется тонким, его ставят на участке топливных коммуникаций, как правило, под порогом или под капотом.

Нынешние фильтры оснащены также специальным клапаном. Он регулирует давление в системе, путём слива остаточного бензина по обратному каналу назад в резервуар.

Топливные коммуникации состоят из шлангов и трубок. Они должны быть невосприимчивы к бензину, иначе он их просто проест. Топливо постоянно циркулирует по этим трубкам, создаётся постоянное давление.

Воздушный фильтр

Как и говорилось выше, одним из значимых звеньев карбюраторной ТСД является воздушный фильтр. Он предназначен для очистки воздуха, поступающего в карбюратор. Если в воздухе будет много пыли, то мелкие частички осядут на смазанных маслом деталях, и это приведёт к быстрому износу. Принято делить воздушные фильтры на сухие и масляные. Последние отличаются тем, что оснащаются помимо корпуса с фильтром масляной ванной и воздухозаборником. Сухой воздушный фильтр – просто картоновый корпус и воздухозаборник.

Карбюратор – сложное устройство, прибор. Здесь происходит приготовление горючей смеси ТВС. Оно передаётся дальше в цилиндры двигателя. Инжекторные ТСД карбюраторов не имеют, топливо распыляется форсунками в проходящий поток воздуха.

Таким образом, питание ТСД выглядит на карбюраторном двигателе так.

Схема питания карбюраторного ДВС

Бензин в конкретном случае, качаемый насосом, поступает в карбюратор через фильтры. Топливо подаётся из резервуара.

Инжекторная ТСД вместо карбюратора оснащена форсунками. Здесь много различных датчиков, а управление ими выполняет БУ. Однозначно в инжекторной системе питания изменён процесс получения ТВС. Изначально сам насос уже подаёт горючее под сильным давлением. Затем через рейку, на которой установлены форсунки, жидкость подаётся в определённый цилиндр двигателя.

Роль БУ определять, сколько жидкости надо подавать в тот или иной цилиндр. На показатели влияет много чего: объём воздуха, жар двигателя, амплитуда вращения КВШ вала и многое другое. Датчики выдают информацию обо всём этом блоку управления, который считывает информацию и делает соответствующие выводы. Таким образом, осуществляется автоматический контроль подачи горючего.

Принцип работы инжекторного двигателя

На сегодняшний день инжекторные системы по сравнению с карбюраторными имеют много преимуществ. Это и снижение токсичности выхлопа, и уменьшение расхода топлива, и повышение мощности двигателя, и многое другое.

Примечательно, что система питания двигателя по-разному реагирует на те или иные режимы езды.

  1. Богатая ТВС создаётся при заводе мотора «на холодную». И это понятно, ведь требуется такой состав, в котором бензина больше, чем воздуха. Однако в таком режиме движение запрещено, так как это вызывает увеличение расхода топлива и быстрый износ элементов двигателя. Поэтому, особенно на карбюраторных автомобилях рекомендуется сначала прогревать мотор несколько минут, а уже потом стартовать с места.
  2. В режиме ХХ ТВС уже обеднённая. Образуется при движении с горки на спуск или при работе мотора в сильно прогретом состоянии.
  3. Меняется состав смеси и при движении с частичными нагрузками, при ускорении.

ТСД дизельного агрегата

Дизельные моторы для некоторых людей ассоциируются с повышенным шумом, большим количеством вибраций и высокой детонацией. На самом деле, это устаревшая информация. Современные дизельные агрегаты, благодаря использованию новейших самоуправляемых СУ и технологичным корректировкам, работают почти также тихо, как и бензиновые моторы.

Система питания Коммон Рейл

Система питания – одно из важнейших звеньев. Она сформировалась вместе с остальными частями автомобильной системы. Чего только стоит система Коммон Рейл, покорившая миллионы фанатов по всему миру.

Дизельный мотор, как и бензиновый, является двигателем внутреннего сгорания. По конструкции он мало отличается он него, ведь основу агрегатов составляют цилиндры, поршни и другие части. Но в дизельных ДВС степень сжатия и давление намного выше. Из-за этого дизельный силовой агрегат значительно тяжелее бензинового. Это делается для того чтобы мотор лучше противостоял высоким нагрузкам.

Главное отличие дизельного агрегата – в способе формирования ТВС, воспламенении и сгорании. Если в бензиновом двигателе ТВС формируется в системе впуска, и её воспламенение осуществляется от свечи зажигания, в дизельном агрегате всё по-другому.

  1. В первую очередь воздух и солярка поступают в цилиндры ДВС порознь. Первым идёт воздух, который накаляется и сжимается до высоких отметок. Затем поступает солярка, тоже под большим давлением, чтобы воспламенение проходило самопроизвольно, ведь свечей в дизельном автомобиле нет.
  2. Роль свечи в дизельных агрегатах выполняют нагревательные элементы, которые быстренько обогревают воздух в камере, пока ещё двигатель холодный.

Теперь о принципе работы. Дизельное топливо закачивается из резервуара с помощью насоса, и после фильтрации через ТНВД подаётся на форсунки. Последние распыляют солярку.

Как работает дизельный мотор

Примечательно, что в системе дизеля принято говорить о двух типах давления. Низкое образуется в области предшествующей подготовки ТВС, ещё перед отправкой солярки в отдел высокого давления. Что касается высокого давления, то оно образуется непосредственное в отсеке доработки смеси, когда она переходит в рабочую камеру.

ТСД дизельного мотора выполняет разом несколько функций: подаёт горючее в чётко отмеренном объёме, в нужный момент, и под конкретным давлением. Из-за большого количества требований, ТСД дизеля более сложна, чем топливная система бензинового агрегата. И стоит она тоже, дороже.

В дизельных автомобилях большую роль играет ТНВД. Этот насос отвечает за высокое давление, его достаточность. Если в бензиновой машине мощностный режим агрегата варьируется нажатиями на педаль газа, то в новых дизельных автомобилях объём подаваемой солярки от этого не увеличивается, а меняется только программа, управляющая регуляторами.

Несколько слов по топливу

Так, для обеспечения экономичной и надёжной работы двигателя топливо всегда должно обладать достаточной детонастойкостью и хорошо, быстро испаряться. Слово детонационный означает взрывной. Другими словами, топливо сгорать очень быстро, как при взрыве, не должно. Очевидно, что это недопустимо, так как будет иметь место высокая нагрузка на поршни, подшипники. Одновременно увеличится расход топлива, а мощность двигателя уменьшится. При повышенной детонации увеличивается также дымность выхлопа, клапан и поршни прогорают.

Детонационные свойства топлива

Как правило, детонационные свойства связывают в первую очередь с бензиновым топливом. Оно и понятно, ведь в бензине имеется гептан – высокодетанирующее вещество. Если бы не изооктан – второе вещество в бензине, топливо бы просто взрывалось.

Соответственно с этими понятиями выделяют октановое число топлива. Процентное соотношение изооктана и гептана должно быть идеальным, чтобы и детонационные свойства горючего были на должном уровне.

Таким образом, принцип работы ТСД обеих систем в некоторых моментах аналогичен, однако в остальном разница между дизельной и бензиновой системами питания огромная.

Инжекторный двигатель: принцип работы, плюсы и минусы

Содержание

  1. Инжекторный автомобильный двигатель: принцип работы, плюсы и минусы
  2. Принцип работы инжекторного двигателя внутреннего сгорания
  3. Двигатель внутреннего сгорания
  4. Бензиновый двигатель
  5. Чем отличается инжекторный двигатель от карбюраторного

Требуется особое оборудование.

Инжекторный автомобильный двигатель: принцип работы, плюсы и минусы

К тому же все дополнительные элементы для сгорания топлива, которые обосновывают принцип работы инжектора, стоят дорого. Подводя итоги, хочется отметить, что в современных машинах ставится именно инжектор, так как он более качественен и надежен, да и работать с ним проще, так как, к примеру, воздух не загрязняется продуктами сгорания так сильно. Инжекторный двигатель что это такое вот он более привередлив к топливной массе, а обеспечить ее качество сложно, ведь часто в бензин что-то подмешивают.

В результате он ломается, а его ремонт дорогостоящий, да и инжекторный двигатель что это такое для него найти сложней. О самостоятельном ремонте не может идти и речи, так как требуется особое оборудование, которого обычно на руках. Имя Заполнять обязательно.

Почта Не публикуется, заполнять обязательно. Принцип работы инжекторного двигателя внутреннего сгорания Просмотров. Содержание 1 Принцип работы инжекторного типа двигателя 2 Сравнение инжектора и карбюратора 3 Заключение.

Принцип работы двигателя внутреннего сгорания. Он же вывернутый наизнанку коллекторный двигатель постоянного тока с возбуждением от постоянных магнитов. Возбудитель магниты со статора перенесён на ротор, а коллекторные обмотки расположены на статоре. Щёточно- коммутационный узел заменён силовыми ключами, которые делают то же самое, что инжекторный двигатель что это такое ЩКУ- коммутация, положение ротора. С другой стороны, кому нужна такая надёжность, если всё упирается в первую очередь в подшипники и уплотнение, которые летят на 2…5 году или в управляющую электронику.

Пока сносятся щётки в коллекторнике, посгнивают жестяные, едва крашенные корпуса, особенно собранные в России. Так называемый инверторный двигатель на самом деле представляет из себя синхронный двигатель с управлением от преобразователя частоты.

Не вентильный, как написали в комментариях, это другое. Вообщем и в целом очень даже не плохое решение. Инжекторный двигатель что это такое стоимость, конечно, завышена. В каждой статье про стиральные машины, оснащённые этим приводом, можно прочитать, что машинка получается не убиваемая именно из-за долговечного мотора, так ка щёток и ремня. Единственное отличие инжектора заключается в новой инжекторной системе подачи топливовоздушной смеси.

Многие знают, что первая система по образованию топливовоздушной смеси называлась карбюратор. Она позволяет подавать топливо непосредственно в каждый цилиндр автомобиля и приводить его в движение. Что касается расположения, то инжекторный двигатель что это такое карбюратор устанавливался перед впускным коллектором и готовил качественную смесь.

С некоторым временем потребности современных водителей и конструкторов возросли в несколько. Из-за этого система не могла выдавать того желаемого результата, который хотели видеть.

Принцип работы инжекторного двигателя внутреннего сгорания

Особенно это касается кораблестроения и самолетостроения. Дело в том, что в этих отраслях нужна огромная мощность и высокий КПД. В результате этого конструкторы придумали совершенно новую систему, которая немного походила инжекторный двигатель что это такое дизельный двигатель, но имела стандартные свечи зажигания.

Все это произошло в начале х годов, именно в это время были сконструированы первые инжекторные двигатели. Данный скачок позволил получить желаемый результат по мощности, но немного не подходил под экологическую безопасность.

В результате, разработки пришлось на время прекратить до начала х годов. Именно в это время американские конструкторы решили возродить подачу топлива непосредственно в цилиндры двигателя и сделать более усовершенствованную систему. В современных инжекторных двигателях топливо подается не самотеком, а при инжекторный двигатель что это такое небольшой системы, под названием форсунка. Он может быть в раз больше номинального.

Двигатель внутреннего сгорания

Установив частотный преобразователь, при пуске переводим переключатель на минимум и постепенно доводим обороты до нужного значения. Пусковой ток при этом минимальный, а разгон плавный.

Ни пусковые токи, ни перегрузки не страшны.

Платой за точное регулирование скорости является более сложное управление. Инжекторный двигатель что это такое отрицательный момент — регулировать скорость вращения ротора в асинхронных двигателях получается слабо, но это без инвертора. Инверторный асинхронный двигатель позволяет изменять скорость от десятков оборотов в минуту, до тысяч.

И всё это плавно, без перегрузок. Дело в дополнительном оборудовании, причём совсем недешёвом, но использование этой технологии имеет свои плюсы. Как работает обычный кондиционер? Компрессор в нём то включается, то выключается. Температура стала на градус выше заданной, компрессор включился, работает пока она не станет на один градус ниже заданного предела.

Включается снова, когда температура снова окажется ниже предела. Как работает кондиционер с инверторным мотором и обычным. Если в кондиционере стоит инверторный преобразователь, он просто задаёт скорость работы компрессора так, чтобы температура сохранялась. Это снижает расход электричества нет пусковых инжекторный двигатель что это такое возросших токовоборудование работает в щадящем режиме без перегрузок, что продлевает срок эксплуатации. Используют инверторные моторы и в стиральных машинах.

Как их не притирай, коллекторный узел всё равно шумит.

Смотреть что такое «ИНДУКЦИОННЫЙ ДВИГАТЕЛЬ» в других словарях: индукционный двигатель — — [thedreambag.ruв. Англо русский словарь по релейной защите] Тематики релейная защита EN induction motor .

И чем больше скорость вращения, тем выше уровень шумов. И он имеет высокую тональность, так что с ним достаточно сложно мириться. Основная статья: Дизельный двигатель.

Бензиновый двигатель

Основная статья: Газодизельный двигатель. Основная статья: Комбинированный двигатель внутреннего сгорания. Дата обращения: 15 июля Дата обращения: 22 июля Дата обращения: 25 июля Дата обращения: 10 инжекторный двигатель что это такое Дата обращения: 18 апреля Серия: Морская техника и технология. Дата обращения: 23 января Дата обращения: 11 февраля Дата обращения: 11 января Дата обращения: 28 декабря Дата обращения: 18 июля Двигатели внутреннего сгорания кроме турбинных.

Двухтактный двигатель двигатель Ленуара Четырёхтактный двигатель Пятитактный двигатель роторный Шеститактный двигатель. Рядный двигатель U-образный двигатель Оппозитный двигатель Н-образный двигатель V-образный двигатель VR-образный двигатель W-образный двигатель Звездообразный двигатель вращающийся X-образный двигатель.

Свободно-поршневые Двигатель со встречным движением поршней дельтообразный Аксиальные. Дизельные Компрессионные карбюраторные Калильно-компрессионный Калильные карбюраторные Батарейное зажигание Магнето Дуговые и искровые свечи.

Гибридные Двигатель Хессельмана. Прямоточные Пульсирующие. Инжекторный двигатель что это такое двухконтурные Турбовинтовые Турбовинтовентиляторные Турбовальные. Мотокомпрессорный воздушно-реактивный двигатель Гиперзвуковые прямоточные.

Чем отличается инжекторный двигатель от карбюраторного

Ракетные двигатели. Стартовый Разгонный Маршевый Маневровый. Закрытого цикла Открытого цикла С фазовым переходом Двигатель Вальтера. Твердотопливные Топливно-гибридные. Термоядерные Газофазно-ядерные Твердофазно-ядерные Солевые.

Клиновоздушный Двигатель Бассарда. Двигатели внешнего сгорания. Паровая машина Двигатель Стирлинга Пневматический двигатель.

плюсы и минусы непосредственного впрыска

Инжекторные установки уже давно заменили карбюраторные варианты впрыска топлива на бензиновых двигателях. В Японии эту технологию используют с конца 80-х годов прошлого столетия, а вот на отечественных машинах стали устанавливать только в нынешнем веке. Многие владельцы русских автомобилей с инжекторами считают, что лучше бы заводы продолжили использовать карбюраторные типы двигателей, ведь непосредственный впрыск удается нашим конструкторам из рук вон плохо. Поломки инжектора, засорение форсунок и выход из строя важных модулей системы подачи топлива — это вполне привычное дело для большинства автомобилистов с отечественным транспортом. Плюсы и минусы инжектора лучше рассматривать, выбирая для сравнения хороший и надежный иностранный транспорт.

Эталоном качества и надежности считают японские инжекторы, но и в них кроется ряд проблем. Сегодня мы поговорим о положительных и негативных сторонах этого варианта подачи топлива, а также разберемся с конструкцией инжектора. Это поможет лучше понять свой автомобиль и получить больше важных сведений о том, как его следует эксплуатировать. Информация о работе инжектора позволит ощущать автомобиль, знать, когда можно придавить на педаль газа, а в каких ситуациях отказаться от резкого ускорения. В любом случае, изучение тонкостей своего авто явно не помешает в будущей эксплуатации.

Система инжектора — составляющие части и принцип деятельности

Для работы инжектора необходимо давление от 4 атмосфер, в некоторых моделях давление превышает этот и без того не малый показатель. Давление топлива создается с помощью мощного насоса, располагающегося зачастую в бензобаке. Система подачи топлива содержит также необычный топливный фильтр в металлическом корпусе, ведь простой фильтр не выдержал бы давления в трубках. Еще один фильтр расположен на бензонасосе. Эта система очистки крайне важна, ведь при ее выходе из строя работоспособность инжектора снижается. Наиболее важные части системы инжектора следующие:

  • рампа форсунок, на которой крепятся подающие топливо элементы, расположена над дроссельным узлом;
  • непосредственно форсунки — на каждый цилиндр подача топлива выполняется отдельным механизмом, который распыляет бензин для смешивания с воздухом;
  • мозги — бортовой компьютер, управляющий всей системой работы автомобильной топливной системы и других узлов;
  • дроссельный узел реализован не так, как в карбюраторных автомобилях, но этот элемент имеет много общего со старыми двигателями;
  • различные фильтры и предохранители защищают достаточно нежную систему от воздействия засорений в топливе;
  • прошивка на компьютере определяет все особенности поведения двигателя, потому ее смена сильно влияет на потенциал автомобиля.

Инжекторные двигатели нравятся многим автовладельцам по той причине, что ими можно управлять с помощью предустановленной на компьютер программы. Можно поменять сам компьютер или выполнить перепрошивку, чтобы полностью реализовать потенциал или даже заметно увеличить мощность двигателя. Но такие махинации с прошивкой и бортовым компьютером могут заканчиваться не слишком приятно. На заводе выставляют оптимальные режимы работы двигателя, от чего зависит и устанавливаемая прошивка. Когда происходит смена заводских параметров, машина полностью меняет поведение. Выбранный режим может оказаться не самым лучшим для эксплуатации двигателя.

Явные преимущества инжектора — рассматриваем выгоды

Если бы в этой системе не было никаких преимуществ, все автомобильные компании не стали бы активно использовать технологию в производстве двигателей. Сегодня фактически все бензиновые силовые агрегаты обладают непосредственным впрыском, что является оптимальной технологией по всем статьям. Надежность инжектора многие могут оспорить, ведь автомобилисты нередко сталкиваются с проблемами и неизлечимыми болезнями системы инжектора. Тем не менее, в технологии намного больше плюсов, которые привлекают покупателей и дарят определенные выгоды в поездке. Среди важных преимуществ, которые важно вспомнить, стоит заметить следующие особенности:

  • реальное понижение расхода топлива — инжектор может экономить, благодаря интеллектуальному управлению подачей топлива;
  • полное сгорание бензина — при правильных настройках инжектор обеспечивает полное сгорание топлива и определенную интенсивность поездки;
  • более выразительная динамика двигателя — водителю не приходится долгое время ожидать реакции при нажатии педали газа;
  • возможность смены прошивки — с помощью простой процедуры чип-тюнинга можно полностью изменить параметры авто;
  • технологичность и современность — машина с инжектором зачастую выбрасывает в атмосферу значительно меньше вредных веществ;
  • устойчивая работа в любых условиях — для хорошей работы инжектора не требуется ручное управление заслонкой воздуха, двигатель хорошо заводится в мороз.

Карбюраторные автомобили обладают ненавистным для многих автовладельцев подсосом, которым необходимо правильно управлять. В ином случае придется справляться с последствиями неправильного использования этого узла. В инжекторых автомобилях подачей воздуха руководит компьютер, что целесообразно только при высоком качестве самого компьютера. Если же «мозги» не управляют всеми функциями подачи топлива и воздуха правильно, возникает повышенный расход, чрезмерная непредсказуемость машины и прочие неприятные моменты. Но их можно избежать, настроив работу компьютера в соответствии с требованиями двигателя.

Недостатки и неприятные моменты в работе инжектора

Некоторые недостатки мы уже описали выше, сравнивая достоинства этого типа подачи топлива с определенными плюсами старого карбюратора. Некоторые водители задаются вопросом, можно ли переделать машину с карбюратора на инжектор или с инжектора на карбюратор. Теоретически это возможно, но вложения в этот процесс не оправдают себя. Вопрос переделки возникает в том случае, когда владелец инжекторной машины находит слишком много недостатков в своем авто. Повышается расход, меняется поведение транспорта, двигатель глохнет или работает на слишком высоких оборотах. Все недостатки инжектора можно исправить достаточно простыми, но часто недешевыми процедурами:

  • чистка форсунок — если вы заливаете не слишком качественный бензин или не меняете вовремя фильтры топлива, форсунки будут забиваться и перестанут распылять бензин;
  • прошивка «мозгов» в нужных режимах — на старых машинах иногда получается достичь невероятных результатов от перепрошивки, ведь технологии движутся вперед;
  • замена бортового компьютера на более функциональный вариант ЭБУ для вашей модели автомобиля с подходящими настройками;
  • регулярная смена фильтров, как воздушного, так и топливного, с целью обеспечения нормальной работы инжектора;
  • использование качественного топлива в соответствии с предписанными производителем нормами и подходящим октановым числом;
  • регулярный сервис, своевременное обращение внимания на определенные недостатки работы автомобиля.

Если у вас инжекторная машины, будьте внимательны к различным мелочам. Небольшое изменение работы двигателя может стать первым сигналом серьезных проблем. Зачастую небольшие неполадки можно вылечить за очень скромные деньги, но если не принять неполадку всерьез, затраты будут очень внушительными. Ремонт инжекторного двигателя чаще всего оказывается довольно дорогим занятием. Потому лучше сразу определить все проблемы на регулярном сервисном осмотре и исправить все возможные неполадки автомобиля. Так вы сможете значительно продлить жизни дорогостоящих узлов и сэкономить ощутимые суммы на возможном дальнейшем ремонте. Вот так выглядит работа инжекторного двигателя в замедленном темпе на видео:

Подводим итоги

Следует идти в ногу со временем и принимать новинки, которые предлагают производители. Прямая подача топлива на самом деле экономичнее, она делает машину несколько мощнее и динамичнее, дает водителю больше свободы. Тем не менее, машина оказывается требовательной к обслуживанию и качеству заливаемых жидкостей, в том числе и топлива. Если автомобиль ведет себя непонятно, стоит сразу обратиться на станцию и устранить проблему.

Впрочем, такие же советы будут актуальными и для владельцев автомобиля с карбюраторным двигателем. Чем раньше вы обратите внимание на неполадку и устраните ее, тем дешевле вам обойдется обслуживание и ремонт машины. Если у вас появилась идея переделать авто с инжектора на карбюратор или наоборот, откажитесь от таких конструктивных изменений. Это не сможет повлиять на автомобиль положительно, а лишь добавит проблем в обслуживании и эксплуатации. Как вы относитесь к современным инжекторам на авто?

Понравился этот контент? Подпишитесь на обновления!

 

Как переделать автомобиль с инжектора на карбюратор?

Ставим инжектор вместо карбюратора – есть ли смысл процедуры

Промывка инжектора своими руками: процесс и рекомендации

Карбюратор или инжектор – сравниваем эксплуатационные свойства

Провалы при нажатии на газ – диагностируем и устраняем неполадку

К списку статей

Социальные комментарии Cackle

КОМПОНЕНТЫ, ТИПЫ И ПРИНЦИПЫ РАБОТЫ

Впрыск топлива – это подача топлива в двигатель внутреннего сгорания, чаще всего в автомобильный двигатель, с помощью форсунки.

Система впрыска топлива лежит в основе дизельного двигателя. Создавая давление и впрыскивая топливо, система нагнетает его в воздух, сжатый до высокого давления в камере сгорания.

Топливная форсунка представляет собой механическое устройство с электронным управлением, которое отвечает за распыление (впрыск) необходимого количества топлива в двигатель, чтобы создать подходящую воздушно-топливную смесь для оптимального сгорания.

Электронный блок управления (ECU в системе управления двигателем) определяет точное количество и конкретное время необходимой дозы бензина (бензина) для каждого цикла, собирая информацию с различных датчиков двигателя. Таким образом, ЭБУ посылает командный электрический сигнал правильной продолжительности и времени на катушку топливной форсунки. Таким образом, открывается форсунка, и бензин проходит через нее в двигатель.

На одну клемму катушки форсунки напрямую подается 12 вольт, которые контролируются ЭБУ, а другая клемма катушки форсунки разомкнута. Когда ЭБУ определяет точное количество топлива и время его впрыска, он активирует соответствующую форсунку, переключая другую клемму на массу (массу, т.е. отрицательный полюс).

ФУНКЦИИ

Система впрыска дизельного топлива выполняет четыре основные функции:

1. Подача топлива

Элементы насоса, такие как цилиндр и плунжер, встроены в корпус ТНВД. Топливо сжимается до высокого давления, когда кулачок поднимает поршень, и затем направляется в форсунку.

2. Регулировка количества топлива

В дизельных двигателях подача воздуха практически постоянна, независимо от частоты вращения и нагрузки. Если количество впрыскиваемого топлива изменяется в зависимости от частоты вращения двигателя, а момент впрыска остается постоянным, мощность и расход топлива изменяются. Поскольку мощность двигателя почти пропорциональна количеству впрыска, она регулируется педалью акселератора.

3. Регулировка момента впрыска

Задержка воспламенения – это период времени между моментом впрыска, воспламенения и сгорания топлива и моментом достижения максимального давления сгорания. Поскольку этот период времени практически не зависит от частоты вращения двигателя, для регулировки и изменения момента впрыска используется таймер, что позволяет достичь оптимального сгорания.

4. Распыление топлива

Когда топливо сжимается ТНВД, а затем распыляется из форсунки, оно тщательно смешивается с воздухом, что улучшает воспламенение. Результат — полное сгорание.

КОМПОНЕНТЫ

Задачей системы впрыска топлива является дозирование, распыление и распределение топлива по воздушной массе в цилиндре. В то же время он должен поддерживать требуемое соотношение воздух-топливо в соответствии с нагрузкой и частотой вращения двигателя.

Система впрыска топлива состоит из:

  • ТНВД — нагнетает топливо до высокого давления
  • Трубка высокого давления — подает топливо к форсунке
  • Форсунка — впрыскивает топливо в цилиндр
  • питательный насос — всасывает топливо из топливного бака
  • топливный фильтр — фильтрует топливо

ТИПЫ ТОПЛИВНЫХ ИНЖЕКТОРОВ

1. Верхняя подача — топливо поступает сверху и выходит снизу.

2. Боковая подача – топливо поступает сбоку через штуцер форсунки внутри топливной рампы.

3. Форсунки корпуса дроссельной заслонки – (TBI) Расположены непосредственно в корпусе дроссельной заслонки.

ТИПЫ СИСТЕМ ВПРЫСКА ТОПЛИВА

1. Одноточечный или дроссельный впрыск топлива

Также известный как однопортовый, это был самый ранний тип впрыска топлива, появившийся на рынке. Все автомобили имеют впускной коллектор, через который чистый воздух сначала поступает в двигатель. TBFI работает, добавляя правильное количество топлива в воздух, прежде чем оно будет распределено по отдельным цилиндрам. Преимущество TBFI в том, что он недорогой и простой в обслуживании. Если у вас когда-нибудь возникнут проблемы с инжектором, вам нужно будет заменить только один. Кроме того, поскольку этот инжектор имеет довольно высокий расход, его не так просто засорить.

С технической точки зрения системы дроссельной заслонки очень надежны и требуют меньше обслуживания. При этом впрыск в корпус дроссельной заслонки сегодня используется редко. Транспортные средства, которые все еще используют его, достаточно старые, поэтому техническое обслуживание будет более проблематичным, чем с более новым автомобилем с меньшим пробегом.

Еще одним недостатком TBFI является его неточность. Если вы отпустите педаль акселератора, в воздушной смеси, подаваемой в ваши цилиндры, все еще будет много топлива. Это может привести к небольшой задержке перед замедлением, а в некоторых автомобилях это может привести к выбросу несгоревшего топлива через выхлопную трубу. Это означает, что системы TBFI далеко не так экономичны, как современные системы.

2. Многоточечный впрыск

Многоточечный впрыск просто перемещает форсунки дальше вниз к цилиндрам. Чистый воздух поступает в первичный коллектор и направляется к каждому цилиндру. Инжектор расположен в конце этого порта, прямо перед тем, как он всасывается через клапан в ваш цилиндр.

Преимущество этой системы в том, что топливо распределяется более точно, при этом каждый цилиндр получает свое распыление топлива. Каждая форсунка меньше и точнее, что обеспечивает экономию топлива. Минус в том, что все форсунки распыляют одновременно, а цилиндры срабатывают один за другим. Это означает, что у вас может быть остаточное топливо между периодами впуска, или у вас может быть возгорание цилиндра до того, как форсунка сможет подать дополнительное топливо.

Многопортовые системы отлично работают, когда вы путешествуете с постоянной скоростью. Но когда вы быстро ускоряетесь или убираете ногу с педали газа, эта конструкция снижает либо экономию топлива, либо производительность.

3. Последовательный впрыск

Системы последовательной подачи топлива очень похожи на многоточечные системы. При этом есть одно ключевое отличие. Последовательная подача топлива — это раз. Вместо одновременного срабатывания всех форсунок топливо подается одна за другой. Время согласовано с вашими цилиндрами, что позволяет двигателю смешивать топливо прямо перед тем, как клапан откроется, чтобы всосать его. Такая конструкция позволяет улучшить экономию топлива и производительность.

Поскольку топливо остается в порту только в течение короткого промежутка времени, последовательные форсунки обычно служат дольше и остаются чище, чем другие системы. Из-за этих преимуществ последовательные системы впрыска топлива сегодня являются наиболее распространенным типом впрыска топлива в автомобилях.

Единственным недостатком этой платформы является то, что она оставляет меньше места для ошибок. Топливно-воздушная смесь всасывается в цилиндр только через несколько секунд после открытия форсунки. Если он грязный, засоренный или не отвечает, вашему двигателю будет не хватать топлива. Форсунки должны поддерживать свою максимальную производительность, иначе ваш автомобиль начнет работать с перебоями.

4. Прямой впрыск

Если вы начали замечать закономерность, вы, вероятно, догадались, что такое прямой впрыск. В этой системе топливо впрыскивается прямо в цилиндр, полностью минуя воздухозаборник. Производители автомобилей премиум-класса, такие как Audi и BMW, хотят, чтобы вы поверили, что непосредственный впрыск — это новейшее и лучшее изобретение. Что касаемо характеристик бензиновых автомобилей, то они абсолютно правы! Но эта технология далеко не нова. Он использовался в авиационных двигателях со времен Второй мировой войны, а дизельные автомобили почти все имеют непосредственный впрыск, потому что топливо намного гуще и тяжелее.

В дизельных двигателях непосредственный впрыск очень надежен. Доставка топлива может потребовать много злоупотреблений, а проблемы с техническим обслуживанием сведены к минимуму.

В бензиновых двигателях непосредственный впрыск встречается почти исключительно в автомобилях с высокими характеристиками. Поскольку эти автомобили работают с очень точными параметрами, особенно важно обслуживать вашу систему подачи топлива. Несмотря на то, что автомобиль будет продолжать работать в течение длительного времени, когда им пренебрегают, производительность быстро снизится.

МЕТОДЫ ВПРЫСКА ТОПЛИВА

Существует два метода впрыска топлива в системе воспламенения от сжатия

1. Впрыск воздушной струей

2. Впрыск безвоздушного или твердого топлива

1. Впрыск воздушной струей

Первоначально этот метод использовался в крупных стационарных и судовые двигатели. Но сейчас это устарело. В этом методе воздух сначала сжимается до очень высокого давления. Затем поток этого воздуха впрыскивается вместе с топливом в цилиндры. Скорость впрыска топлива регулируется изменением давления воздуха. Воздух под высоким давлением требует многоступенчатого компрессора, чтобы держать баллоны с воздухом заряженными. Топливо воспламеняется от высокой температуры воздуха, вызванной высокой степенью сжатия. Компрессор потребляет около 10% мощности, развиваемой двигателем, что снижает полезную мощность двигателя. 92. Этот метод используется для всех типов малых и больших дизельных двигателей. Ее можно разделить на две системы

1. Индивидуальная насосная система: в этой системе каждый цилиндр имеет свой индивидуальный насос высокого давления и измерительный блок.

2. Система Common Rail: в этой системе топливо нагнетается многоцилиндровым насосом в систему Common Rail, давление в магистрали регулируется предохранительным клапаном. Отмеренное количество топлива подается в каждый цилиндр из общей топливной рампы.

Это все о системе впрыска топлива. Если у вас есть какие-либо вопросы относительно этой статьи, задайте их в комментариях. Если вам понравилась эта статья, не забудьте поделиться ею в социальных сетях. Подпишитесь на наш сайт, чтобы получать больше информативных статей. Спасибо, что прочитали это.

ПРИНЦИПЫ РАБОТЫ

Форсунки управляются блоком управления двигателем (ECU). Во-первых, ECU получает информацию о состоянии двигателя и требованиях, используя различные внутренние датчики. После определения состояния и требований двигателя топливо забирается из топливного бака, транспортируется по топливопроводам, а затем нагнетается топливными насосами. Надлежащее давление проверяется регулятором давления топлива. Во многих случаях топливо также распределяется с помощью топливной рампы для подачи в разные цилиндры двигателя. Наконец, форсункам приказано впрыскивать необходимое топливо для сгорания.

Точная требуемая топливно-воздушная смесь зависит от двигателя, используемого топлива и текущих требований двигателя (мощность, расход топлива, уровень выбросов выхлопных газов и т. д.)

Руководство по принципу работы машины для литья под давлением

Принцип работы машины для литья под давлением аналогичен шприцу, используемому для инъекций. Он использует силу шнека (или плунжера) для впрыскивания пластифицированного пластика в расплавленном состоянии (то есть в состоянии вязкой жидкости) в закрытую полость формы. Процесс получения изделий после выдержки и формовки.

Литье под давлением представляет собой циклический процесс, каждый цикл в основном включает в себя: количественную подачу-плавление и пластификацию-литье под давлением-заполнение и охлаждение-открытие формы и сборку деталей. После извлечения пластиковой детали форма снова закрывается для следующего цикла.

Конструкция машины для литья под давлением

По способу пластификации литьевая машина делится на плунжерную литьевую машину и винтовую литьевую машину.

В зависимости от режима трансмиссии машины можно разделить на гидравлические, механические и гидромеханические (шатунные).

По режиму работы он делится на автоматический, полуавтоматический, ручной термопластавтомат.

Тип машины для литья под давлением

(1) Горизонтальная машина для литья под давлением: это наиболее распространенный тип. Зажимная часть и часть для впрыска находятся на одной и той же горизонтальной осевой линии, и пресс-форма открывается в горизонтальном направлении. Его характеристики: корпус короткий, простой в эксплуатации и обслуживании; у машины низкий центр тяжести, а установка относительно устойчива; после того, как продукт выброшен, он может автоматически падать под действием силы тяжести, и легко реализовать полностью автоматическую работу. В настоящее время большинство машин для литья под давлением на рынке используют этот тип.

(2) Вертикальная машина для литья под давлением: ее зажимная часть и часть для впрыска находятся на одной вертикальной центральной линии, а форма открывается в вертикальном направлении. Поэтому он занимает небольшую площадь, в нем легко размещать вкладыши, удобно загружать и выгружать форму, а материал, выпадающий из бункера, пластифицируется более равномерно. Тем не менее, продукт не может автоматически упасть после выброса и должен быть удален вручную, что не так просто реализовать автоматическую работу. Вертикальные термопластавтоматы подходят для небольших термопластавтоматов. Как правило, чаще используются машины для литья под давлением весом менее 60 граммов. Большие и средние машины не подходят.

(3) Угловая литьевая машина: направление впрыска и поверхность пресс-формы находятся на одной поверхности. Он особенно подходит для плоских изделий, которые не допускают следов ворот в обрабатывающем центре. Он занимает меньшую площадь, чем горизонтальная литьевая машина, но вкладыши, помещенные в пресс-форму, склонны к наклону и падению. Этот тип литьевой машины подходит для небольших машин.

(4) Многорежимная машина для литья под давлением с поворотным столом: это специальная машина для литья под давлением с многопозиционным режимом работы. Его характеристика заключается в том, что зажимное устройство формы имеет конструкцию поворотного стола, а форма вращается вокруг вала. Этот тип машины для литья под давлением в полной мере использует пластифицирующую способность устройства для литья под давлением, может сократить производственный цикл и увеличить производительность машины. Поэтому он особенно подходит для больших количеств продуктов, которые требуют длительного времени охлаждения и схватывания или требуют большего вспомогательного времени из-за размещения вставок. Производство. Однако из-за большой и сложной системы зажима формы усилие зажима устройства зажима формы часто невелико, поэтому этот тип литьевой машины часто используется при производстве пластиковых подошв для обуви и других изделий.

Основными требованиями литья под давлением являются пластификация, литье под давлением и формование. Пластификация является необходимым условием для реализации и обеспечения качества формованных изделий, и для того, чтобы соответствовать требованиям формования, впрыск должен обеспечивать достаточное давление и скорость. В то же время из-за высокого давления впрыска в полости создается соответственно высокое давление (среднее давление в полости обычно составляет от 20 до 45 МПа), поэтому должно быть достаточное прижимное усилие. Видно, что устройство для впрыска и зажимное устройство являются ключевыми компонентами машины для литья под давлением.

Программа действий машины для литья под давлением

Зажим → Предварительное формование → Реверс → Продвижение сопла → Впрыск → Удержание давления → Отступление сопла → Охлаждение → Открытие формы → Выталкивание → Открытие двери → Взять заготовку → Закрыть дверь → Закрыть форму.

Элементы управления машиной для литья под давлением: Элементы управления машиной для литья под давлением включают работу с клавиатурой управления, работу электрического шкафа управления и работу гидравлической системы. Выбор действия процесса впрыска, действия подачи, давления впрыска, скорости впрыска, формы выброса, контроль температуры, тока и напряжения каждой секции ствола, регулировка давления впрыска и противодавления и т.д. выполняются соответственно.

После завершения инъекции и окончания таймера охлаждения начинается предпластическое действие. Винт вращается, чтобы выдавить расплавленный пластиковый материал к передней части головки винта. Из-за действия одностороннего клапана на переднем конце шнека расплавленный пластик скапливается на переднем конце ствола, заставляя шнек двигаться назад. Когда шнек возвращается в заданное положение (это положение определяется переключателем хода, который управляет расстоянием отвода шнека для достижения количественной подачи), предварительная пластификация останавливается, и шнек перестает вращаться. За этим следует действие отвода, что означает, что винт слегка отступает в осевом направлении. Это действие может снизить давление расплава, собравшегося на сопле, и устранить явление «слюноотделения», вызванное дисбалансом давления внутри и снаружи ствола. Если нет необходимости втягивания, втягивание должно быть остановлено, а переключатель должен быть отрегулирован в соответствующее положение, чтобы остановить предварительное формование. В тот же момент, когда нажимается переключатель, также нажимается переключатель остановки втягивания. Когда винт отступает, чтобы нажать кнопку остановки, втягивание прекращается. Затем ставки начали отступать. Когда седло для впрыска отодвигается до тех пор, пока не будет нажата кнопка остановки, седло для впрыска перестает отодвигаться. Если используется метод фиксированной подачи, следует уделить внимание регулировке положения переключателя хода.

Как правило, метод фиксированной подачи используется в общем производстве, чтобы сэкономить время на продвижение и отвод седла впрыска и ускорить производственный цикл.

О нас

ss Machinery является профессиональным производителем машин для литья под давлением. Это также ведущий бренд малых термопластавтоматов в Китае. Настраивать и производить различные типы формовочных машин для клиентов.

Common rail: Компоненты, принцип работы и функции

Kunle Shonaike

Компания Bosch выпустила первую систему Common Rail в 1997 году. Система названа в честь общего резервуара высокого давления (common rail), который снабжает топливом все цилиндры. В обычных дизельных системах впрыска давление топлива должно создаваться отдельно для каждого впрыска. Однако в системе Common Rail создание давления и впрыск осуществляются раздельно, а это означает, что топливо постоянно доступно при требуемом давлении для впрыска.

Системы Common Rail имеют модульную конструкцию. Каждая система состоит из насоса высокого давления, форсунок, рампы и электронного блока управления.

Common Rail является одним из наиболее важных компонентов дизельных и бензиновых систем непосредственного впрыска. Основное различие между прямым и стандартным впрыском заключается в подаче топлива и способе его смешивания с поступающим воздухом. В системе прямого впрыска топливо впрыскивается непосредственно в камеру сгорания, минуя период ожидания во впускном коллекторе. Под контролем электронного блока топливо впрыскивается непосредственно в самое горячее место камеры сгорания, благодаря чему оно сгорает более равномерно и полно.

Основные преимущества системы непосредственного впрыска топлива с общей топливной рампой можно свести к уменьшению выбросов выхлопных газов и уровня шума, повышению эффективности использования топлива и повышению общей производительности двигателя. Система состоит из насоса высокого давления, форсунок, рампы и электронного блока управления.

Common Rail представляет собой длинный металлический цилиндр. Он получает топливо от насоса и распределяет его по форсункам под чрезвычайно высоким давлением. Повышение давления топлива является результатом конструкции новейших двигателей. Как дизельные, так и бензиновые двигатели имеют тенденцию становиться меньше и легче для повышения эффективности использования топлива и повышения производительности, что увеличивает давление топлива и устанавливает совершенно новые стандарты для производства высококачественной топливной системы Common Rail.

Во-первых, геометрическая точность компонента имеет решающее значение. Точная конструкция способствует лучшей работе системы Common Rail. Даже минимальное изменение размера или формы может привести к сбоям. Определение правильных параметров на этапе проектирования имеет важное значение, но действительно важно строго следовать им в процессе производства.

Выбор материала также является моментом, который нельзя недооценивать. Хорошие механические свойства обеспечивают прочность и предотвращают коррозию. Используемые материалы, как правило, сталь и нержавеющая сталь. Common Rail для дизельного двигателя изготовлен из стали, а Common Rail для бензинового двигателя изготовлен из нержавеющей стали, поскольку топливо слишком агрессивно, а нержавеющая сталь обладает лучшей коррозионной стойкостью, чем сталь.

Прямой впрыск Common Rail

Топливные системы большинства современных двигателей используют передовую технологию, известную как CRDi или непосредственный впрыск Common Rail. Как бензиновые, так и дизельные двигатели используют общую «топливную рампу», которая подает топливо к форсункам. Однако в дизельных двигателях производители называют эту технологию CRDi, тогда как в бензиновых двигателях она называется непосредственным впрыском бензина или послойным впрыском топлива. Обе эти технологии имеют сходство в конструкции, поскольку они состоят из «топливной рампы», которая подает топливо к форсункам. Однако они значительно отличаются друг от друга по таким параметрам, как давление и тип используемого топлива.

При непосредственном впрыске Common Rail сгорание происходит непосредственно в основной камере сгорания, расположенной в полости над днищем поршня. Сегодня производители используют технологию CRDi для преодоления некоторых недостатков обычных дизельных двигателей, которые при внедрении были вялыми, шумными и неэффективными, особенно в легковых автомобилях.

Технология CRDi работает в паре с ЭБУ двигателя, который получает данные от различных датчиков. Затем он рассчитывает точное количество топлива и время впрыска. Топливная система имеет более интеллектуальные по своей природе компоненты и управляет ими электрически/электронно. Кроме того, обычные форсунки заменены более совершенными электромагнитными форсунками с электрическим приводом. Они открываются по сигналу ECU в зависимости от таких переменных, как частота вращения двигателя, нагрузка, температура двигателя и т. д.

В системе Common Rail используется «общая для всех цилиндров» топливная рампа или, проще говоря, «топливораспределительная трубка». Она поддерживает оптимальное остаточное давление топлива, а также действует как общий топливный резервуар для всех форсунок. В системе CRDi топливная рампа постоянно хранит и подает топливо к форсункам с электромагнитным клапаном под требуемым давлением. Это совершенно противоположно насосу высокого давления, подающему дизельное топливо через независимые топливопроводы к форсункам в случае конструкции более раннего поколения (DI).

Режим работы

В обычных дизельных системах впрыска давление топлива должно создаваться отдельно для каждого впрыска. Однако в системе Common Rail создание давления и впрыск осуществляются раздельно, а это означает, что топливо постоянно доступно при требуемом давлении для впрыска. Создание давления происходит в насосе высокого давления.

Насос сжимает топливо и подает его по трубопроводу высокого давления к впускному отверстию рампы, которая действует как общий резервуар высокого давления для всех форсунок — отсюда и название «коммон рейл».

Оттуда топливо распределяется по отдельным форсункам, которые впрыскивают его в камеру сгорания цилиндра.

Насосы высокого давления

Насос высокого давления сжимает топливо и подает его в необходимом количестве. Он постоянно подает топливо в резервуар высокого давления (рейку), тем самым поддерживая давление в системе. Требуемое давление доступно даже при низких оборотах двигателя, так как создание давления не связано с частотой вращения двигателя. Большинство систем Common Rail оснащены радиально-поршневыми насосами. В компактных автомобилях также используются системы с отдельными насосами, которые работают при низком давлении в системе.

Форсунки

Форсунка в системе Common Rail состоит из форсунки, исполнительного механизма для пьезофорсунок или электромагнитного клапана для форсунок с электромагнитным клапаном, а также гидравлических и электрических соединений для приведения в действие иглы форсунки.

Устанавливается в каждый цилиндр двигателя и соединяется с рампой коротким трубопроводом высокого давления. Форсунка управляется электронной системой управления дизельным двигателем. Это гарантирует, что игла форсунки открывается или закрывается приводом, будь то электромагнитный клапан или пьезоэлектрический. Форсунки с пьезоприводами несколько уже и работают с особенно низким уровнем шума. Оба варианта демонстрируют одинаково короткое время переключения и обеспечивают предварительный впрыск, основной и дополнительный впрыск, чтобы обеспечить чистое и эффективное сгорание топлива в любой рабочей точке.

Компоненты CRDi

  • ТНВД – нагнетает топливо до высокого давления
  • Трубка высокого давления – подает топливо к форсунке
  • Форсунка – впрыскивает топливо в цилиндр
  • Питающий насос – всасывает топливо из топливного бака
  • Топливный фильтр – фильтрует топливо
  • Блок управления двигателем

В некоторых типах топливных баков также имеется отстойник топлива в нижней части фильтра для отделения воды от топлива.

Функции системы

Система впрыска дизельного топлива имеет четыре основные функции:

Подача топлива

Элементы насоса, такие как цилиндр и поршень, встроены в корпус ТНВД. Топливо сжимается до высокого давления, когда кулачок поднимает поршень, и затем направляется в форсунку.

Регулировка количества топлива

В дизельных двигателях потребление воздуха практически постоянно, независимо от скорости вращения и нагрузки. Если количество впрыскиваемого топлива изменяется в зависимости от частоты вращения двигателя, а момент впрыска остается постоянным, мощность и расход топлива изменяются. Поскольку мощность двигателя почти пропорциональна количеству впрыска, она регулируется педалью акселератора.

Регулировка момента впрыска

Задержка воспламенения – это период времени между моментом впрыска, воспламенения и сгорания топлива и моментом достижения максимального давления сгорания. Поскольку этот период времени практически не зависит от частоты вращения двигателя, для регулировки и изменения момента впрыска используется таймер, что позволяет достичь оптимального сгорания.

Распыление топлива

Когда топливо сжимается ТНВД, а затем распыляется из форсунки, оно тщательно смешивается с воздухом, что улучшает воспламенение. Результат — полное сгорание.

Принцип работы CRDi

Насос высокого давления подает топливо под давлением. Насос сжимает топливо под давлением около 1000 бар или около 15000 фунтов на квадратный дюйм. Затем он подает топливо под давлением через трубу высокого давления на вход топливной рампы. Оттуда топливная рампа распределяет топливо по отдельным форсункам, которые затем впрыскивают его в камеру сгорания.

В большинстве современных двигателей CRDi используется система с насос-форсунками и турбокомпрессором, что увеличивает выходную мощность и соответствует строгим нормам по выбросам. Кроме того, он улучшает мощность двигателя, реакцию дроссельной заслонки, топливную экономичность и снижает выбросы. За исключением некоторых конструктивных изменений, основной принцип и работа технологии CRDi остаются в основном одинаковыми для всех устройств. Однако его производительность зависит главным образом от конструкции камеры сгорания, давления топлива и типа используемых форсунок.

Преимущества и недостатки

Преимущества   

(1) Низкий уровень выбросов: Одна из причин, по которой производители транспортных средств изобрели дизельные двигатели с общей топливной магистралью, заключалась в том, что правительство установило более строгие правила по выбросам углерода. Помните, когда большие дизельные грузовики выпускали в воздух много черного дыма? Вы вряд ли увидите это больше, потому что дизельный двигатель с общей топливной рампой предназначен для снижения этих выбросов. Это лучше для окружающей среды и на один шаг ближе к борьбе с глобальным потеплением.

(2) Больше мощности: Исследования показали, что автомобили с дизельным двигателем Common Rail производят на 25 % больше мощности, чем традиционный дизельный двигатель. Это означает, что общая производительность дизельного двигателя будет улучшена.

(3) Меньше шума: Системы непосредственного впрыска топлива известны своим шумом во время движения. Common Rail уменьшит шум, который вы, возможно, помните. Это делает вождение более приятным для вас и окружающих на дороге.

(4) Меньше вибраций: Раньше в традиционных дизельных двигателях прямого действия ощущалась сильная вибрация. Теперь эти вибрации были уменьшены с помощью системы непосредственного впрыска Common Rail.

(5) Увеличенный пробег: Поскольку дизельный двигатель с системой впрыска топлива Common Rail обеспечивает большую мощность, это означает, что расход топлива будет меньше. В результате ваша топливная экономичность также будет лучше. Это означает меньше денег, потраченных на топливо, когда вы находитесь в дороге.

Недостатки

(1) Дорогой автомобиль: Автомобили с дизельным двигателем Common Rail будут дороже, чем автомобили с традиционным дизельным двигателем. Если вы работаете в компании, которая поставляет вам автомобиль, то это не проблема. Но если это личный автомобиль, то вы можете не захотеть тратить лишние деньги.

(2) Дорогие детали: Поскольку транспортные средства с общей топливной рампой дороже, можно ожидать, что запасные части также будут дорогими.

(3) Больше обслуживания: Дизельные двигатели Common Rail требуют большего обслуживания, чем традиционные дизельные двигатели. Даже если вы выполняете техническое обслуживание самостоятельно, это все равно требует больше времени, усилий и, возможно, затрат.

Взято из Интернета

Масло, специально упомянутое для обслуживания моего автомобиля Passat, — это масло castrol. Но масла мало, а если и увидишь, то довольно дорогое. Могу ли я использовать любой другой тип масла? Спасибо, сэр. Аноним

Думаю, это просто соглашение в маркетинговых целях. Если вы знаете точную спецификацию, вы можете купить любую другую марку, у которой есть спецификации.

Я хочу поблагодарить вас за самоотверженную работу по обучению всех нас. Купил подержанный автобус Тойота Хаммер 2004 года. Я знал, что двигатель вызывает подозрения, но никогда не знал, что он будет стучать так рано. Единственный вариант, предложенный механиками, — это купить новый двигатель стоимостью 1,5 миллиона найр. Это единственный выход? Абра

Новости по теме

    Иногда это единственная альтернатива, которая у вас есть. Но, в зависимости от повреждения старого двигателя, вы все равно сможете его восстановить. Но только ваш механик может определить ущерб.

    Общие коды

    P0697: Обрыв цепи опорного напряжения датчика «C»

    Значение

    Модуль управления имеет внутренние эталонные 5-вольтовые шины, называемые 5-вольтовыми эталонными. Каждая опорная шина обеспечивала 5-вольтовую опорную цепь для более чем одного датчика. Таким образом, неисправность одной цепи опорного напряжения 5 В повлияет на другие цепи опорного напряжения 5 В, подключенные к опорной шине. Модуль управления отслеживает напряжение на 5-вольтовых эталонных шинах.

    Возможные причины

    • Неисправен модуль управления двигателем
    • Жгут проводов ECM открыт или замкнут
    • Цепь ECM плохое электрическое соединение
    • Замыкание датчика на цепь 5 вольт
    • P0698: Цепь опорного напряжения датчика ‘C’, низкая

    Значение

    Модуль управления имеет внутренние эталонные 5-вольтовые шины, называемые 5-вольтовыми эталонными. Каждая опорная шина обеспечивала 5-вольтовую опорную цепь для более чем одного датчика. Таким образом, неисправность одной цепи опорного напряжения 5 В повлияет на другие цепи опорного напряжения 5 В, подключенные к опорной шине. Модуль управления отслеживает напряжение на 5-вольтовых эталонных шинах.

    Возможные причины

    • Неисправен модуль управления двигателем
    • Жгут проводов ECM открыт или замкнут
    • Цепь ECM плохое электрическое соединение
    • Замыкание датчика на цепь 5 вольт

    P0699: Опорное напряжение датчика ‘C’ цепь высокая

    Значение

    Модуль управления имеет внутренние эталонные 5-вольтовые шины, называемые 5-вольтовыми эталонными. Каждая опорная шина обеспечивала 5-вольтовую опорную цепь для более чем одного датчика. Таким образом, неисправность одной цепи опорного напряжения 5 В повлияет на другие цепи опорного напряжения 5 В, подключенные к опорной шине. Модуль управления отслеживает напряжение на 5-вольтовых эталонных шинах.

    Возможные причины

    • Неисправен блок управления двигателем
    • Жгут проводов ECM открыт или замкнут
    • Цепь ECM плохое электрическое соединение
    • Замыкание датчика на цепь 5 вольт

    P0700: Неисправность системы управления коробкой передач

    Значение

    Модуль управления коробкой передач отслеживает неисправности датчиков и исполнительных механизмов, связанных с управлением коробкой передач. Когда TCM обнаруживает неисправность в системе управления, на модуль управления двигателем отправляется сигнал, чтобы вскоре загорелась лампочка двигателя или загорелась сервисная лампочка. ECM сохраняет код P0700, и это означает, что TCM обнаружил неисправность в органах управления коробкой передач.

    Технические примечания

    Поскольку код P0700 является просто информативным кодом, проверьте TCM на наличие дополнительных кодов для решения проблемы.

    Возможные симптомы

    • Горит лампочка двигателя (или лампочка скорого обслуживания двигателя)
    • Проблемы с управляемостью
    • Проблемы с переключением передач

    Возможные причины

    • Короткое замыкание или разрыв цепи в модуле управления коробкой передач
    • Неисправен модуль управления коробкой передач

    P0701: Диапазон/функционирование системы управления коробкой передач

    Значение

    Модуль управления коробкой передач обнаружил другие настройки диагностических кодов неисправности коробки передач. Этот код неисправности включает аварийный режим.

    Возможные причины

    • Неисправен модуль управления коробкой передач
    • Жгут проводов модуля управления коробкой передач открыт или замкнут
    • Цепь модуля управления коробкой передач плохое электрическое соединение

    P0702: Модуль управления коробкой передач

    Значение

    Код запускается модулем управления двигателем, когда в модуле управления коробкой передач хранится код

    Возможные причины

    • Неисправность модуля управления коробкой передач
    • Жгут проводов модуля управления коробкой передач открыт или замкнут
    • Цепь модуля управления коробкой передач плохое электрическое соединение

    P0703: Выключатель тормоза, работоспособность

    Значение

    Модуль управления двигателем обнаружил ускорение и замедление без изменения переключателя тормоза

    Технические примечания

    Проверить, работает ли стоп-сигнал с педалью тормоза. Если стоп-сигналы не работают, замените или отрегулируйте выключатель тормоза.

    Возможные симптомы

    • Горит лампочка двигателя (или лампочка скорого обслуживания двигателя)
    • Стоп-сигналы не работают

    Возможные причины

    • Неисправный выключатель тормоза
    • Неправильно отрегулирован выключатель тормоза
    • Жгут проводов тормозного выключателя открыт или замкнут
    • Цепь выключателя тормоза плохое электрическое соединение

    P0704: Неисправность входной цепи выключателя сцепления

    Значение

    Когда педаль сцепления нажата, сигнал напряжения от выключателя сцепления к блоку управления двигателем низкий. Если ECM не видит это изменение с высокого на низкое, когда автомобиль превышает 0 миль в час, ECM устанавливает код P0704.

    Когда обнаружен код?

    ECM не обнаружил движения в датчике положения педали сцепления

    Технические примечания

    Проверьте регулировку переключателя сцепления, переключатель должен открываться и закрываться при нажатии на педаль сцепления. Если переключатель отрегулирован правильно, замените переключатель сцепления, чтобы решить проблему.

    Возможные причины

    • Неисправный выключатель сцепления
    • Неправильно отрегулирован переключатель сцепления
    • Жгут проводов выключателя сцепления открыт или замкнут
    • Цепь выключателя сцепления плохое электрическое соединение
    • Неисправен модуль управления двигателем

    P0705: Неисправность цепи датчика диапазона коробки передач

    Значение

    Переключатель парковочного/нейтрального положения включает в себя переключатель диапазонов коробки передач. Переключатель диапазонов коробки передач определяет положение рычага селектора, когда рычаг переключения передач находится в положении N или P, и отправляет сигнал в модуль управления коробкой передач.

    Когда обнаружен код?

    Переключатель диапазонов коробки передач определяет положение рычага селектора и отправляет сигнал в TCM.

    Возможные причины

    • Неисправен переключатель парковочного/нейтрального положения
    • Неправильно отрегулирован переключатель парковочного/нейтрального положения
    • Жгут проводов переключателя положения парковки/нейтрали разомкнут или замкнут
    • Цепь переключателя положения парковки/нейтрали плохое электрическое соединение

    Авторское право ПУАНСОН.

    Все права защищены. Этот материал и другой цифровой контент на этом веб-сайте не могут воспроизводиться, публиковаться, транслироваться, переписываться или распространяться полностью или частично без предварительного письменного разрешения PUNCH.

    Контактное лицо: [электронная почта защищена]

    Гидравлический принцип работы машины для литья под давлением

    После прочтения вы узнаете:

    Что такое гидравлика?

    Преимущества и недостатки системы гидравлической трансмиссии

    Гидравлическая трансмиссия использует гидравлическое масло в качестве рабочего тела, преобразует механическую энергию первичного двигателя в энергию давления гидравлического масла через силовой элемент (масляный насос), затем проходит через управляющий элемент, после чего преобразует энергию давления в механическая энергия с помощью привода (масляного цилиндра или масляного двигателя).

    Приведите нагрузку в линейное или вращательное движение и отрегулируйте силу и скорость привода, дистанционно управляя элементом управления и регулируя скорость потока.

    Когда внешний мир нарушает вышеуказанную систему, выходной сигнал привода обычно отклоняется от исходного значения настройки, что приводит к определенной ошибке. Гидравлическое управление: как и гидравлическая трансмиссия, система также включает силовые элементы, элементы управления, приводы, мощность передачи масла.

    Разница между ними заключается в том, что гидравлическое управление имеет устройство обратной связи.

    Роль устройства обратной связи заключается в обеспечении обратной связи выходного сигнала (перемещения, скорости, силы и других механических величин) привода с входным сигналом (который может быть переменным или постоянным). Для сравнения используйте отклонение после сравнения, чтобы управлять системой так, чтобы выход привода изменялся или оставался постоянным при изменении входа.

    Это система гидравлической трансмиссии, представляющая собой замкнутый контур, также называемая гидравлической сервосистемой.

    В системе гидравлической трансмиссии используются двухпозиционные или логические элементы управления. Для целей управления он должен поддерживать стабильность заданного значения или просто изменять направление, также называемое фиксированным значением и элементами управления последовательностью.

    Элементы сервоуправления применяются в системе гидравлического управления, которая имеет структуру обратной связи и управляется электрическими устройствами. Он имеет высокую точность управления и скорость отклика, а контролируемое давление и расход часто изменяются непрерывно. Выходная мощность может быть увеличена.

    Пропорциональное управление является промежуточным между двумя вышеуказанными. Используемый пропорциональный регулирующий клапан представляет собой новый тип электрогидравлического элемента управления, разработанный на основе двухпозиционного элемента управления и элемента сервоуправления, который сочетает в себе вышеперечисленное. Некоторые характеристики двух типов компонентов используются при ручной регулировке двухпозиционное управление не может соответствовать требованиям, но также не требует сервоклапана для гидравлической системы строгих требований по контролю загрязнения.

    Преимущества и недостатки системы гидравлической трансмиссии

    Преимущества системы гидравлической трансмиссии

    В существующих четырех типах трансмиссии (механической, электрической, гидравлической и пневматической) нет идеальной передачи мощности, и Гидравлическая трансмиссия имеет следующие чрезвычайно очевидные преимущества:

    1. С точки зрения конструкции выходная мощность на единицу веса и выходная мощность на единицу размера высоки в четырех типах режимов трансмиссии и имеют большой коэффициент инерции крутящего момента. При условии передачи одинаковой мощности устройство гидравлической трансмиссии имеет небольшой размер, легкий вес, малую инерцию, компактную структуру и гибкую компоновку.
    2. С точки зрения рабочих характеристик скорость, крутящий момент и мощность могут регулироваться бесступенчато, реакция действия быстрая, коммутация и скорость могут быть быстро изменены, диапазон регулировки скорости широк, а диапазон регулировки скорости может достигать 100:1 до 2000:1; действие Хорошая скорость, простое управление и регулировка, удобное управление и экономия труда, простота взаимодействия с электрическим управлением и подключение к ЦП (компьютеру), простота реализации автоматизации.
    3. С точки зрения использования и технического обслуживания, компонент обладает хорошей самосмазывающейся способностью, легко обеспечивает защиту от перегрузки и удержание давления, безопасен и надежен; компонент легко добиться сериализации, стандартизации и обобщения. Все оборудование, использующее гидравлические технологии, безопасно и надежно.
    4. С точки зрения экономической стоимости: гидравлическая технология обладает высокой пластичностью и изменчивостью, что может повысить гибкость гибкого производства, а производственный процесс легко изменить и отрегулировать. Условно говоря, стоимость производства гидравлических компонентов не высока, а адаптируемость сравнительно высока.

    Сочетание гидравлического давления и новых технологий, таких как микрокомпьютерное управление, представляет собой машинно-электрогидравлически-оптическую интеграцию, которая стала тенденцией мирового развития и удобна для оцифровки.

    Недостатки гидропередачи

    Все делится на два, и гидропередача не исключение:

    1. Гидропередача неизбежно протекает из-за относительной подвижной поверхности, а масло не является абсолютно несжимаемым. Из-за упругой деформации маслопровода гидравлическая трансмиссия не может обеспечить строгое передаточное отношение, поэтому ее нельзя использовать в станках, таких как обработка резьбовых шестерен. В рядной приводной цепи.
    2. В процессе подачи масла происходит потеря края, частичная потеря и потеря утечки, эффективность передачи низкая, и она не подходит для передачи на большие расстояния.
    3. В условиях высоких и низких температур трудно использовать гидравлическую трансмиссию.
    4. Для предотвращения утечки масла и выполнения определенных требований к производительности требуется высокая точность изготовления гидравлических компонентов, что создает определенные трудности в эксплуатации и обслуживании.
    5. Неисправности нелегко проверить, особенно в агрегатах, где гидравлические технологии не очень популярны. Это противоречие часто препятствует дальнейшему продвижению и применению гидравлической техники. Обслуживание гидравлического оборудования зависит от опыта, а подготовка специалистов по гидравлике занимает много времени. Поделиться0040

Что такое топливная форсунка?

Компания Bosch создала форсунку для дизельного топлива в 1920 году в ответ на рост спроса и цен на топливо. С момента введения впрыска топлива в транспортных средствах скорость и ускорение многих преувеличены, в результате чего усовершенствования в технологии сделали двигатели более экономичными, эффективными и создали более высокую мощность. Эта технология, хотя и обновленная, сегодня используется как в дизельных, так и в бензиновых двигателях.

Что такое топливная форсунка?

Топливная форсунка — это устройство для распыления и впрыска топлива в двигатель внутреннего сгорания. Форсунка распыляет топливо и нагнетает его непосредственно в камеру сгорания в определенный момент цикла сгорания. Более новые форсунки также могут измерять количество топлива в соответствии с указаниями и контролем электронного модуля управления (ECM). Бензиновые топливные форсунки теперь выступают в качестве альтернативы карбюратору, в котором воздушно-топливная смесь всасывается за счет разрежения, создаваемого ходом поршня вниз.

Как правило, дизельные топливные форсунки устанавливаются в головке двигателя с наконечником внутри камеры сгорания, размер отверстий, количество отверстий и углы распыления могут варьироваться от двигателя к двигателю.

Бензиновые форсунки могут быть установлены во впускном коллекторе (многоточечный впрыск, корпус дроссельной заслонки или, в последнее время, непосредственно в камеру сгорания (GDI).

Зачем нам нужны топливные форсунки?

Топливные форсунки являются необходимыми компонентами двигателя, потому что :

· Принцип работы двигателей внутреннего сгорания гласит, что чем лучше качество топливно-воздушной смеси, тем лучше сгорание, что обеспечивает более высокий КПД двигателя и более низкий уровень выбросов.0003

· Неэффективное смешивание топлива и воздуха, обеспечиваемое карбюраторами, оставляет различные несгоревшие частицы внутри камеры сгорания двигателя внутреннего сгорания. Это приводит к неправильному распространению пламени сгорания из-за неисправности, известной как «детонация», а также к более высоким выбросам.

· Несгоревшее топливо в виде углерода или несгоревших газов и частиц внутри камеры сгорания отрицательно влияет на эффективность (пробег) и выбросы автомобиля. Чтобы избежать этого, модернизированная технология впрыска топлива стала необходимой.

Типы топливных форсунок

Развитие технологий впрыска топлива привело к появлению различных схем впрыска топлива, таких как впрыск топлива через дроссельную заслонку, многоточечный впрыск топлива, последовательный впрыск топлива и непосредственный впрыск, которые варьируются в зависимости от применения.

Основы впрыска топлива

Существует 2 типа топливных форсунок:

1. Форсунки для дизельного топлива

Современные форсунки для дизельного топлива используются для непосредственного распыления и впрыскивания или распыления дизельного топлива (более тяжелого топлива, чем бензин). в камеру сгорания дизельного двигателя для воспламенения от сжатия (без свечей зажигания).

Для форсунок дизельного топлива требуется гораздо более высокое давление впрыска (до 30 000 фунтов на кв. дюйм), чем для бензиновых форсунок, поскольку дизельное топливо тяжелее бензина, и для распыления топлива требуется гораздо более высокое давление.

2. Бензиновые топливные форсунки

Бензиновые топливные форсунки используются для впрыска или распыления бензина непосредственно (GDI) или через впускной коллектор (многопортовый) или корпус дроссельной заслонки в камеру сгорания для воспламенения от искры.

Конструкция бензиновых форсунок различается в зависимости от типа… в более новых форсунках GDI используется сопло с несколькими отверстиями, а в многоканальном корпусе дроссельной заслонки используется сопло с бессмысленным стилем. Давление впрыска бензина намного ниже, чем у дизеля… 3000 фунтов на квадратный дюйм для GDI и 35 фунтов на квадратный дюйм для типа Pinter.

Основы дозирования топлива — форсунки

Существует 2 типа дозирования топлива (контроль продолжительности впрыска, давления и времени подачи топлива) топливных форсунок. Современные двигатели имеют до 5 впрысков в каждом цикле сгорания… чтобы извлечь выгоду из эффективности и сокращения выбросов.

1. Топливные форсунки с механическим управлением

Механические топливные форсунки, в которых управление скоростью, количеством, синхронизацией и давлением топлива осуществляется механически с использованием пружин и плунжеров. Эти детали получают сигнал от кулачка или топливного насоса высокого давления.

2. Топливные форсунки с электронным управлением

Эти топливные форсунки имеют электронное управление, когда речь идет о количестве топлива, давлении и времени. Электронный соленоид получает данные от электронного модуля управления (ECM) автомобиля.

Конструкция топливных форсунок

Упрощенная конструкция топливной форсунки напоминает насадку садового шланга, которая используется для распыления воды на траву. Ту же задачу выполняет топливная форсунка, но разница в том, что вместо воды топливо распыляется и «распыляется» внутри двигателя, попадая в камеру сгорания.

Давайте разберемся в конструкции и работе топливной форсунки, рассмотрев топливные форсунки как с механическим, так и с электронным управлением.

Топливная форсунка с механическим управлением

Топливная форсунка с механическим управлением состоит из следующих частей:

· Корпус форсунки — внешний корпус или «оболочка», внутри которой расположены все остальные части форсунки. Внутренняя часть корпуса форсунки должна содержать точно спроектированный капилляр или канал, через который топливо под высоким давлением из топливного насоса может течь для распыления и впрыска.

· Плунжер. В топливной форсунке может использоваться поршень, который используется для открытия или закрытия форсунки под действием давления топлива. Он управляется комбинацией пружин и прокладок.

· Пружины. Внутри топливных форсунок с механическим управлением используются одна или две пружины. К ним относятся:

1. Пружина плунжера. Движение плунжера вперед и назад управляется пружиной плунжера, которая сжимается из-за повышенного давления топлива. Когда давление топлива внутри топливной форсунки увеличивается до уровня, превышающего заданную комбинацию пружины и регулировочной шайбы, игла в форсунке поднимается, топливо распыляется и впрыскивается, а по мере снижения давления форсунка закрывается.

2. Основная пружина. Основная пружина используется для управления давлением открытия впрыска. Основная пружина действует против действия давления топлива, создаваемого топливным насосом.

Топливная форсунка с электронным управлением

Это «интеллектуальный» тип топливной форсунки, которая управляется электронным блоком управления (ECM) двигателя, также известным как мозг современных двигателей.

Топливные форсунки с электронным управлением состоят из следующих частей:

· Корпус форсунки. Как и у механически управляемой топливной форсунки, корпус форсунки этого типа представляет собой точно спроектированную полую оболочку, внутри которой расположены все остальные компоненты.

· Плунжер. Как и в топливных форсунках с механическим управлением, плунжер может использоваться для открытия и закрытия форсунки, но в топливных форсунках с электронным управлением открытие форсунки управляется электронным способом с помощью электромагнитов или соленоидов.

· Пружина. Как и в топливной форсунке с механическим управлением, пружина плунжера используется для удержания плунжера в его положении до тех пор, пока не будет достигнуто давление впрыска, а затем, при необходимости, для закрытия сопла топливной форсунки.

· Электромагниты. В отличие от топливных форсунок с механическим управлением, форсунки этого типа оснащены электромагнитами или соленоидами вокруг плунжера, которые управляют открытием форсунки. Это делается путем получения электронного сигнала от электронного модуля управления двигателем через электронное соединение, соединяющее топливную форсунку с электронным модулем управления двигателем.

· Электронный штекер/соединение. Топливная форсунка с электронным управлением имеет разъем, через который электронный сигнал от ECM двигателя передается на форсунки. Это открывает форсунку для распыления топлива.

Распространенные проблемы и неисправности турбонагнетателя

Распространенные проблемы с топливной форсункой

Топливные форсунки

для судового дизельного двигателя Топливные форсунки

для судового дизельного двигателя



Главная || Дизельные двигатели

||Котлы||Системы подачи

||Паровые турбины ||Обработка топлива ||Насосы ||Охлаждение ||

Функция системы впрыска топлива заключается в обеспечении необходимого количества
топлива в нужный момент и в подходящем состоянии для
процесс горения. Поэтому должна быть какая-то форма измеряемого
подача топлива, средство определения времени подачи и распыления
топливо.

Впрыск топлива достигается расположением кулачков на
распределительный вал. Этот распределительный вал вращается с частотой вращения двигателя для двухтактного двигателя.
и на половинной частоте вращения двигателя для четырехтактного двигателя. Существуют две основные системы
в использовании, каждый из которых использует комбинацию механических и
гидравлические операции. Наиболее распространенной системой является рывковый насос; в
другой общий рельс.

  • Дом
  • Дизельные двигатели
  • Морской котел
  • Кондиционер
  • Сжатый воздух
  • Батареи
  • Охлаждение
  • Морские насосы
  • Система подачи

  • Инсинератор
  • Хладагенты
  • Редукторы
  • Губернаторы
  • Охладители
  • Пропеллеры
  • Рулевой механизм
  • Электростанции
  • Турбинный редуктор
  • Турбокомпрессоры
  • Паровые турбины
  • Теплообменники
  • Противопожарная защита

  • Измерение расхода

  • Четырехтактные двигатели
  • Двухтактные двигатели
  • Система впрыска топлива
  • Топливная система
  • Масляные фильтры
  • Двигатель MAN B&W
  • Дизельный двигатель Sulzer
  • Морские конденсаторы
  • Сепаратор маслянистой воды
  • Защита от превышения скорости
  • Поршень и поршневые кольца
  • Прогиб коленчатого вала
  • Станция очистки сточных вод
  • Пусковая воздушная система
  • Аварийный источник питания
  • UMS Операции
  • Сухой док и ремонт
  • Критическое оборудование
  • Палубные механизмы
  • Контрольно-измерительные приборы
  • Безопасность машинного отделения
  • Главная

Типичная топливная форсунка показана на рисунке , видно, что она состоит из двух
основные части, сопло и держатель или корпус сопла. Высокое давление
топливо поступает и проходит по каналу в теле, а затем в
проход в сопле, заканчивающийся, наконец, в камере, окружающей
игольчатый вентиль.

Игольчатый клапан удерживается закрытым на скошенном седле с помощью
промежуточный шпиндель и пружина в корпусе форсунки. Весна
Давление и, следовательно, давление открытия форсунки можно установить с помощью
накидная гайка, воздействующая на пружину. Форсунка и корпус форсунки
изготовлены в виде соответствующей пары и точно отшлифованы, чтобы дать
хороший сальник. Два соединены гайкой сопла.

Система впрыска мазута для дизельного двигателя

Игольчатый клапан откроется, когда давление топлива, действующее на
коническая поверхность игольчатого клапана оказывает достаточное усилие, чтобы преодолеть
сжатие пружины. Затем топливо поступает в нижнюю камеру и
вытесняется через ряд крошечных отверстий. Маленькие отверстия имеют размер и
устроена так, чтобы распылять или разбивать на мелкие капли весь мазут, который
потом легко сгореть. Как только насос-форсунка или распределительный клапан отключают
подачи топлива под высоким давлением игольчатый клапан быстро закроется под
усилие сжатия пружины.

Все тихоходные двухтактные двигатели и многие среднеоборотные четырехтактные
двигатели теперь почти непрерывно работают на тяжелом топливе. А
Поэтому необходима система циркуляции топлива, которая обычно устанавливается
внутри топливной форсунки. Во время впрыска топливо под высоким давлением
откройте циркуляционный клапан для проведения инъекции. Когда двигатель
остановлен подкачивающий топливный насос, подает топливо, которое циркуляционный клапан
направляется вокруг корпуса форсунки.

Старые конструкции двигателей могут иметь топливные форсунки, которые
охлаждающая вода.

Топливная система дизельного двигателя

Краткое объяснение того, как работает топливная система судового дизельного двигателя?

Из бункерных цистерн топливо перекачивается перекачивающим насосом
в отстойник, из отстойника мазут очищается до
служебный бак.

Из расходного бака мазут перекачивается через
топливная система под давлением к двигателю.

Мазут сначала проходит через комплект холодных фильтров в комплект
подкачивающие насосы мазута, повышающие давление мазута примерно до
12 15 бар, подача топлива через комплект подогревателей и
вискотерм, комплект фильтров тонкой очистки потом в топливную рампу и в
топливные насосы двигателя, где давление повышается примерно
250 300 бар для распыления топливной форсункой.

Подогреватель в системе снижает вязкость мазута в системе
для эффективного сгорания. Требуемая температура будет зависеть
на качество мазута, которое будет варьироваться, однако температура
не должна превышать 150С. Фильтр тонкой очистки в системе выполнен из нержавеющей стали.
стальная сетка для фильтрации частиц размером более 50 микрон или меньше для
двигатели меньшего размера. Фильтры следует регулярно чистить.

Важна плотность мазута, сжигаемого в дизельном двигателе
потому что некоторые виды топлива разной плотности несовместимы
в резервуарах может происходить образование тяжелых шламов.

Дополнительная информация:

  • Функция топливной форсунки дизельного двигателя
  • Функция системы впрыска топлива заключается в подаче нужного количества топлива.
    топлива в нужный момент и в подходящем состоянии для
    процесс горения. Поэтому должна быть какая-то форма измеряемого
    подача топлива, средство определения времени подачи и распыления
    топливо.
    Подробнее…..

  • Обслуживание топливных фильтров
  • Механическое отделение твердых загрязнений от масляных систем (топливной и
    смазывание) достигается применением фильтров и сетчатых фильтров. Ситечко есть
    обычно фильтр грубой очистки для удаления более крупных загрязняющих частиц. Оба
    устроены как полнопоточные агрегаты, обычно монтируемые попарно (дуплекс) с
    один в качестве резервного..
    Подробнее…..

  • Процесс смешивания мазута
  • Смешивание – это смешивание двух видов топлива, обычно тяжелого и судового.
    дизельное топливо. Намерение состоит в том, чтобы производить топливо средней вязкости.
    подходит для использования во вспомогательных дизелях. .
    Подробнее…..

  • Центрифугирование мазута
  • Как мазут, так и смазочные масла требуют обработки перед подачей в двигатель. Это будет включать хранение и обогрев, чтобы обеспечить разделение
    наличие воды, грубая и тонкая фильтрация для удаления твердых частиц, а также
    центрифугирование.
    Подробнее…..

  • Микробиологическое заражение судовым мазутом
  • Мельчайшие микроорганизмы, т.е. бактерии, могут существовать в смазочных маслах и
    топливные масла. В подходящих условиях они могут расти и размножаться в
    феноменальные показатели. Их присутствие приводит к образованию кислот и
    шлам, окрашивание металла, отложения и серьезная коррозия..
    Подробнее…..

  • Руководство по контролю отделения тяжелой нефти и топливным бакам
  • Изменения в технологии нефтепереработки приводят к
    повышенной плотности и обычно загрязнены каталитическими частицами. Эти
    представляют собой мелкие частицы катализаторов, используемых в процессе нефтепереработки. Они есть
    чрезвычайно абразивны и должны быть удалены из топлива перед тем, как оно попадет в
    двигатель.
    Подробнее…..

  • Обработка мазута для морского использования
  • Сырая нефть в настоящее время является источником большинства мазута для морского использования. Синтетическое топливо разрабатывается, но, вероятно, будет слишком
    дорого для судовой тяги. Твердое топливо, такое как уголь, возвращается в
    малый путь для определенных специализированных торговых пробегов. Различные изысканные
    продукты сырой нефти, вероятно, останутся основными формами морского
    топливо.
    Подробнее…..

  • Топливная система дизельного двигателя
  • Топливная система дизельного двигателя может быть рассмотрена в двух
    части системы подачи топлива и системы впрыска топлива. Поставка топлива связана с
    подача мазута, подходящего для использования системой впрыска.
    Подробнее…..

Machinery Spaces.com посвящен принципам работы, конструкции и работе всех машин
предметы на корабле предназначены в первую очередь для инженеров, работающих на борту, и тех, кто работает на берегу.