Подключение двухскоростного асинхронного двигателя схема с 6 выводами

11-15. Схема включения двухскоростного асинхронного двигателя

На рис. 11-22 показана схема управления пуском, двухскоростного асинхронного двигателя. Для получения меньшей скорости, когда число полюсов удвоено, нажимают кнопку Пуск М и обмотки статора присоединяются к сети зажимами , т. е. в треугольник. При этом включении обмотка статора создает большее число полюсов. Большая скорость получается при нажатии кнопки Пуск Б, когда включаются контакторы 1Б и 2Б и обмотки статора соединяются при параллельном соединении секций двойной звездой. При этом включении обмотка статора создает меньшее число полюсов. Переключение на большую скорость можно производить без предварительного нажатия кнопки Стоп, т. е. на ходу.
Рис. 11-22. Схема пуска двухскоростного асинхронного двигателя.

© 2021 Научная библиотека

Копирование информации со страницы разрешается только с указанием ссылки на данный сайт

Запуск трехфазных двухскоростных двигателей.

Подключение Даландера

Заточной станок на двигателе Даландера

Недавно попался станок с двухскоростным двигателем, выкладываю его схему.

Меня часто спрашивают, какую защиту сделать этому двигателю? Вот, на схеме – простое тепловое реле (РТ1), настроенное на бОльший ток (около 11 А).

Вот шильдик двигателя:

А вот – его обозначения выводов:

Как думаете, почему вместо схемы подключения показан прямоугольничек ПС (переключатель скоростей)? Правильно, схема тогда была бы в 2 раза больше и сложнее.

19.3. Запуск двухскоростного двигателя с переключающимися полюсами без инверсии вращения

Электрические характеристики элементов контроля и защиты необходимые для выполнения этого типа запуска, как минимум должны быть:

  • Контактор К1, для включения и выключения двигателя на маленькой скорости (PV). Мощность должна быть такой же либо превышать In двигателя в треугольном соединении и с категорией обслуживания АС3.
  • Контакторы К2 и К3, для включения и выключения двигателя на большой скорости (GV). Мощность этих контакторов должна быть такой же либо превышать In двигателя соединенного двойной звездой и категориеи обслуживания АС3.
  • Термореле F3 и F4, для защиты от перегрузок на обоих скоростях. Каждый из них будет измерять In, употребляемый двигателем на защищаемой скорости.
  • Предохранители F1 и F2, для защиты от К.З. должно быть типа аМ и мощностью такой же или превышающей максимальное In двигателя, в каждой из своих двух скоростей.
  • Предохранитель F5, для защиты цепей контроля.
  • Система кнопок, с простым прерывателем остановки S0 и двумя двойными прерывателями движения S1 и S2.

Перейдем к описанию в краткой форме процесса запуска, как на малой скорости, так и на большой:

  • а) запуск и остановка на маленькой скорости (PV).
  • Запуск путем нажатия на S1.
  • Замыкание контактора цепи К1 и запуск двигателя соединенного треугольником.
  • Автопитание через (К1, 13–14).
  • Открытие К1, которое действует как шторка для того, чтобы хотя запущен в движение S2, контакторы большой скорости К2 и К3 не были активизированы.
  • Остановка путем нажатия на S0.
  • б) запуск и остановка на большой скорости (GV).
  • Запуск путем нажатия на S2.
  • Замыкание контактора звезды К2, которое формирует звезду двигателя при коротком замыкании: U1, V1 и W1.
  • Замыкание контактора К3 (К2, 21–22) таким образом, что двигатель работает соединением в двойную звезду.
  • Автопитание через (К2, 13–14).
  • Открытие (К2, 21–22) и (К3, 21–22), которые действуют как шторки для того, чтобы никогда не закрывался К1 в то время, как закрыты К2 или К3.
  • Остановка путем нажатия на S0.

Вспомогательные контакты системы кнопок (S1 и S2, 21–22)действуют как защитные двойные шторки системы кнопок в том случае, если на оба прерывателя попытаются нажать одновременно, чтобы никакой из контакторов не активизировался и эти контакты можно было бы убрать в том случае, если есть защитные шторки механического типа между К1 и К2.

Рисунок 19.3 – Цепи мощности и контроля для запуска двигателя с переключаемыми полюсами

Двухскоростной асинхронный электродвигатель

Обмотки двухскоростного двигателя выглядят таким образом:

Схема двухскоростного двигателя Даландера

При подключении выводов U1, V1, W1 такого двигателя к трехфазному напряжению он будет включен в “треугольник” на пониженную скорость.

А если выводы U1, V1, W1 замкнуть между собой, а питание подать на выводы U2, V2, W2, то получатся две “звезды” (YY), и скорость будет в 2 раза выше.

Что будет, если обмотки вершин треугольника U1, V1, W1 и середин сторон U2, V2, W2 поменять местами? Я думаю, ничего не изменится, тут дело только в названиях. Хотя, я не пробовал. Кто знает – напишите в комментариях к статье.

Электродвигатели многоскоростные

Многоскоростные электродвигатели изготавливаются на базе основного исполнения односкоростных двигателей и подразделяются на:

  • двухскоростные с отношением числа оборотов 1500/3000 (4/2 — число полюсов), 1000/1500 (6/4), 750/1500 (8/4), 750/1000 (8/6), 500/1000 (12/6)
  • трехскоростные — 1000/1500/3000 (6/4/2), 750/1500/3000 (8/4/2), 750/1000/1500 (8/6/4)
  • четырехскоростные — 500/750/1000/1500 (12/8/6/4)

Схемы подключения двухскоростных электродвигателей отличаются в зависимости от соотношения числа оборотов. При соотношении 1/2, т. е — 1500/3000, 750/1500 и 500/1000 применяется следующая схема:

При соотношении 2/3 и 3/4, т.е -1000/1500, 750/1000 применяется другая схема:

Схема подключения трехскоростных электродвигателей:

Схема подключения четырехскоростных электродвигателей:

Основные технические характеристики двухскоростных двигателей

МаркаМощн. кВтОб/минТок, АМомент Н*мIп/IнМомент инерции кгм 2Масса кг
1500/3000 об/мин
АИР132S4/26145512,539,470,03270
7,1290014,623,47
АИР132М4/28,5145517,355,87,50,04583,5
9,5292519,1318,5
АИР180S4/217147034,51106,70,16170
20293039,365,26,4
АИР180М4/222147043,71437,50,2190
26293550,584,67,5
5А200М4/227147553,41757,40,27245
35294564,91147,2
5А200L4/230147057,619570,32270
38294567,81237
5А225М4/242148081,727170,5345
48296087,61557,5
5АМ250S4/25514851023547,31,2485
6029751141937,8
5АМ250М4/26614851214247,21,7520
8029701482577,2
1000/1500 об/мин
АИР132S6/459651249,55,60,05368,5
5,5143511,136,65,7
АИР132М6/46,797016666,20,07481,5
7,5144014,749,76,2
АИР180М6/41597533,61476,60,27180
171450331126
5А200М6/420980441956,50,41245
22146042,21446
5А200L6/42498055,22346,90,46265
27148051,51746,5
500/1000 об/мин
АИР180М12/6748522,41384,50,27200
1397525,91276
5А200М12/6848530,615840,41245
1598030,11466
5А200L12/61048531,119740,46265
18,597536,31816
5А225М12/61448543,927640,65320
2598048,52446
5АМ250S12/61649556,53094,41,2435
3099058,32896,6
5АМ250М12/618,549060,136141,4455
3698571,13495,3
750/1500 об/мин
АИР132S8/43,67159,748,14,80,05368,5
5143510,333,35,9
АИР132М8/44,771512,462,850,07482
7,5144015,849,76,4
АИР180М8/41373033,61705,50,27180
18,5146535,91216,7
5А200М8/41573040,21965,30,41245
22146042,21446,4
5А200L8/4177253922450,46275
24145045,51585,5
5А225М8/42373555,32995,50,7330
34147562,72206,5
5АМ250S8/43374075,34265,31,2435
47148087,23036,4
5АМ250М8/43774081,547861,4465
55148099,83557
750/1000 об/мин
АИР132S8/63,27258,742,24,60,05368,5
49659,139,65
АИР132М8/64,572011,959,75,40,07481,5
5,597012,354,16
АИР180М8/61173026,31445,30,27180
1597030,11486
5А200М8/61573035,41965,50,41245
18,597537,21816
5А200L8/618,573043,62425,50,46265
2397546,22256
5А225М8/62274051,728460,7330
3098558,62916
5АМ250S8/63074070,838761,2435
3799073,23576,4
5АМ250М8/64274093,25425,51,4485
5098596,64856,1

Устройство и конструкция

Конструктивно двухскоростные электродвигатели отличаются от стандартных, особой конструкцией статора, ротор – обычный короткозамкнутый. Наиболее распространённые типы конструкции двухобмоточных электродвигателей:

  • с двумя зависимыми обмотками;
  • с двумя независимыми обмотками.

Устройство двухскоростных электродвигателей с двумя зависимыми обмотками может отличаться исходя из соотношения числа полюсов – 1:2, 3:2, 4:3. При соотношении частоты вращения 1:2, используется одна полюснопереключаемая обмотка статора по схеме Даландера. При соотношениях 3:2, 4:3 – одна полюснопереключаемая обмотка по методу амплитудно-фазной модуляции.

При использовании зависимых обмоток 2-х скоростные электродвигатели производятся в стандартных габаритах, независимые – имеют незначительно большие размеры.

Стоит обратить внимание, двухскоростной электродвигатель АИР на каждой частоте вращения будет выдавать разную мощность. В тоже при использовании частотных преобразователей, мощность остается не изменой. Большинство общепромышленных приводов, согласно руководству по эксплуатации, не предусматривают работу с частотными преобразователями. Преобразователи частоты могут уменьшить паспортный ресурс в разы или вывести оборудование из строя

Схемы подключения

Схемы подключения асинхронных двухскоростных электродвигателей зависят от соотношения числа оборотов:

  • 500/1000, 750/1500, 1500/3000 об/мин – треугольник-двойная звезда (Δ/YY)
  • 500/750, 1000/1500, 750/1000 об/мин — тройная звезда — тройная звезда (YYY/YYY)

На чертежах показано устройство схемы обмотки двухобмоточных электродвигателей и принцип подключения двигателя на 2 скорости.

Теоретическая часть схемы подключения двухскоростного двигателя изложена мною на Дзене пару дней назад.

В этой статье выкладываю фото и схемы практического включения двухскоростного электродвигателя.

Двигатель работает на гидростанции. На пониженной скорости он дает малое давление, позволяющее управлять механизмами с гидравлическим приводом более точно. На повышенной скорости – давление возрастает примерно в 2 раза, и скорость перемещения соответственно.

Тут по китайски написано: «Две звезды» и «Треугольник»:

Как реализована защита двигателя: отдельная защита на каждую скорость, т.к. номинальные токи двигателя разные:

Коротко о схеме включения двигателя Даландера. Двигатель включается через реле времени с задержкой отключения.

Реле времени 215А2 включается сразу, а отключается через 5 секунд. Это нужно, чтобы двигатель и контакторы не дергать по пустякам, и кратковременные остановки гидравлических перемещений не отключали двигатель гидростанции.

Далее реле 261К0 включает режим работы треугольник, реле 261К1 – звёзды.

Практическая реализация схемы подключения двухскоростного электродвигателя

На практике мне попадались только схемы на переключателях ПКП-25-2. Это универсальное чудо советской коммутации, у которого может быть миллион возможных сочетаний контактов. Внутри есть кулачок (их тоже несколько вариантов по форме), который можно переставлять.

Это реальная головоломка и ребус, требующий высокой концентрации сознания. Хорошо, что каждый контакт просматривается в небольшую щёлку, и можно посмотреть, когда он замкнут или разомкнут. Кроме того, через эти прорези в корпусе можно чистить контакты.

Количество положений может быть несколько, их количество ограничивается упорами, показанными на фото:

Переключатель пакетный ПКП-25-2

Переключатель ПКП 25. Головоломка на любителя.

Переключатель пакетный ПКП-25-2 – контакты

Общая электротехника с основами электроники

Общая электротехника с основами электроники








  

Попов В. С., Николаев С. А. Общая электротехника с основами электроники, М., «Энергия», 1972, — 504 c.

В книге рассмотрены электрические цепи, электрические машины и трансформаторы, электротехнические намерения и приборы, электропривод и аппаратура управления, передача и распределение электрической энергии, электронные лампы, газоразрядные приборы, полупроводниковые приборы, фотоэлектрические приборы, усилители и генераторы,

Книга предназначена для учащихся техникумов неэлектротехнических специальностей.

Оглавление


Предисловие
Введение
Часть первая. Общая электротехника
1-1. Основные понятия
1-2. Электрическое напряжение. Потенциал
1-3. Электропроводность
1-4. Электрическая емкость. Конденсаторы
1-5. Соединение конденсаторов
1-6. Энергия электрического поля
1-8. Электроизоляционные материалы
Глава вторая. Электрические цепи постоянного тока
2-1. Электрический ток
2-2. Электрическая цепь и ее элементы
2-3. Закон Ома
2-4. Электрические сопротивление и проводимость
2-5. Зависимость сопротивления от температуры
2-6. Проводниковые материалы
2-7. Работа и мощность
2-8. Преобразование электрической энергии в тепловую
2-9. Электрическая нагрузка проводов и защита их от перегрузки
2-10. Потеря напряжения в проводах
2-11. Первый закон Кирхгофа
2-12. Последовательное соединение сопротивлений — приемников энергии
2-13. Параллельное соединение сопротивлений — приемников энергии
2-14. Смешенное соединение сопротивлений
2-15. Два режима работы источника питания
2-16. Второй закон Кирхгофа
2-17. Расчет сложных цепей
2-18. Химические источники питания
2-19. Соединение химических источников питания
2-20. Нелинейные электрические цепи
2-21. Лабораторная работа. Потеря напряжения в линии
Глава третья. Электромагнетизм
3-1. Магнитное поле тока. Магнитная индукция. Магнитный поток
3-2. Электромагнитная сила
3-3. Взаимодействие параллельных проводов с токами
3-4. Магнитная проницаемость
3-5. Напряженность магнитного поля. Магнитное напряжение
3-6. Закон полного тока
3-7. Магнитное поле катушки с током
3-8. Ферромагнетики, их намагничивание и перемагничивание
3-9. Ферромагнитные материалы
3-10. Магнитная цепь и ее расчет
3-11. Электромагниты
3-12. Электромагнитная индукция
3-13. Принцип работы электрического генератора
3-14. Принцип работы электродвигателя
3-15. Вихревые токи
3-16. Индуктивность. Электродвижущая сила самоиндукции
3-17. Энергия магнитного поля
3-18. Взаимная индуктивность
Глава четвертая. Электрические машины постоянного тока
4-1. Назначение машин постоянного тока
4-2. Устройство машины постоянного тока
4-3. Принцип работы машины постоянного тока
4-4. Устройство обмотки якоря
4-5. Электродвижущая сила обмотки якоря
4-6. Электромагнитный момент на валу машины
4-7. Механическая мощность машины постоянного тока
4-8. Реакция якоря машины постоянного тока
4-9. Коммутация тока
4-10. Понятие о номинальных данных и характеристиках электрических машин
4-11. Генератор с независимым возбуждением
4-12. Генератор с параллельным возбуждением
4-13. Генератор со смешанным возбуждением
4-14. Электродвигатели постоянного тока
4-15. Электродвигатель с параллельным возбуждением
4-16. Электродвигатель с независимым возбуждением
4-17. Электродвигатели с. последовательным и со смешанным возбуждением
4-18. Потери и коэффициент полезного действия
4-19. Лабораторная работа. Электродвигатель с параллельным возбуждением
4-20. Лабораторная работа. Генератор с параллельным возбуждением
Главе пятая. Основные понятия, относящиеся к переменным токам
5-1. Переменный ток
5-2. Получение синусоидальной э. д. с.
5-3. Сдвиг фаз
5-4. Действующие значения тока и напряжения
5-5. Векторная диаграмма
Глава шестая. Цепи переменного тока
6-1. Особенности цепей переменного тока
6-2. Цепь с сопротивлением
6-3. Цепь с индуктивностью
6-4. Цепь с активным сопротивлением и индуктивностью
6-5. Неразветвленная цепь с активными сопротивлениями и индуктивностями
6-6. Разветвленная цепь с активными сопротивлениями и индуктивностями
6-7. Цепь с емкостью
6-8. Колебательный контур
6-9. Резонанс напряжений
6-10. Резонанс токов
6-11. Коэффициент мощности
6-12. Активная и реактивная энергия
6-13. Лабораторная работа. Цепь переменного тока с активным сопротивлением, индуктивностью и емкостью
6-14. Лабораторная работа. Параллельное соединение катушки и конденсатора
Глава седьмая. Трехфазные цепи
7-1. Трехфазные системы
7-2. Соединение обмоток генератора звездой
7-3. Соединение обмоток генератора треугольником
7-4. Соединение приемников энергии звездой
7-5. Соединение приемников энергии треугольником
7-6. Лабораторная работа. Трехфазные цепи
Глава восьмая. Электротехнические измерения и приборы
8-1. Основные понятия
8-2. Классификация электроизмерительных приборов
8-3. Измерительные механизмы приборов
8-4. Измерение тока и напряжения
8-5. Измерение мощности
8-6. Измерение электрической энергии
8-7. Измерение сопротивлений
8-8. Измерение неэлектрических величин электрическими методами
8-9. Лабораторная работа. Измерение сопротивлений
8-10. Лабораторная работа. Поверка индукционного счетчика
8-11. Лабораторная работа. Измерение мощности в трехфазной цепи
Глава девятая. Трансформаторы
9-1. Назначение трансформаторов
9-2. Принцип действия и устройство однофазного трансформатора
9-3. Холостой ход однофазного трансформатора
9-4. Работа нагруженного трансформатора и диаграмма магнитодвижущих сил (м. д. с.)
9-5. Изменение напряжения трансформатора при нагрузке
9-6. Мощность потерь в обмотках нагруженного трансформатора
9-7. Трехфазный трансформатор
9-8. Регулирование напряжения трансформаторов
9-9. Автотрансформаторы
9-10. Трансформаторы для дуговой электросварки
9-11. Измерительные трансформаторы
9-12. Коэффициент полезного действия трансформатора
9-13. Нагрев и охлаждение трансформаторов
9-14. Лабораторная работа. Однофазный трансформатор
Глава десятая. Электрические машины переменного тока
10-1. Назначение машин переменного тока. Асинхронные электродвигатели
10-2. Получение вращающегося магнитного поля
10-3. Обмотка статора асинхронного электродвигателя
10-4. Обмотка ротора асинхронного двигателя
10-5. Принцип действия асинхронного двигателя
10-6. Электродвижущие силы в обмотках статора и ротора
10-7. Сопротивления обмотки ротора
10-8. Токи в обмотке ротора
10-9. Вращающий момент двигателя
10-10. Пуск в ход асинхронных двигателей
10-11. Регулирование частоты вращения асинхронного двигателя
10-12. Однофазный асинхронный двигатель
10-13. Потери и к. п. д. асинхронного двигателя
10-14. Синхронные машины
10-15. Универсальный коллекторный двигатель
10-16. Лабораторная работа. Трехфазный асинхронный электродвигатель
Глава одиннадцатая. Электропривод и аппаратура управления
11-1. Система электропривода
11-2. Нагрев и охлаждение электрических машин
11-3. Выбор мощности двигателя при продолжительном режиме
11-4. Выбор мощности двигателя при кратковременном режиме
11-5. Выбор мощности двигателя при повторно-кратковременном режиме
11-6. Рубильники
11-7. Пакетные выключатели
11-8. Реостаты для пуска и регулирования электродвигателей
11-9. Контроллеры
11-10. Плавкие предохранители
11-11. Автоматические воздушные выключатели
11-12. Контакторы
11-13. Реле
11-14. Схема управления асинхронным двигателем с помощью реверсивного магнитного пускателя
11-15. Схема включения двухскоростного асинхронного двигателя
11-16. Автоматический пуск асинхронного двигателя с кольцами
11-17. Автоматический пуск двигателя постоянного тока с параллельным возбуждением
11-18. Лабораторная работа. Сборка и проверка работы схемы релейноконтакторного управления трехфазным асинхронным двигателем с короткозамкнутым ротором
Глава двенадцатая. Передача и распределение электрической энергии
12-1. Схемы электроснабжения промышленных предприятий.
12-2. Трансформаторные подстанции и распределительные устройства промышленных предприятий
12-3. Электрические сети промышленных предприятий
12-4. Защитное заземление
Часть вторая. Основы промышленной электроники
13-1. Классификация и применение электронных приборов
13-2. Движение электронов в электрическом поле
13-3. Движение электронов в магнитном поле
13-4. Электронная эмиссия
13-5. Катоды электровакуумных приборов
13-6. Двухэлектродные электронные лампы — диоды
13-7. Применение двухэлектродных ламп
Глава четырнадцатая. Трехэлектродные лампы. Четырех- и пятиэлектродные лампы. Усилители
14-1. Устройство и принцип работы триода
14-2. Статические характеристики триода
14-3. Параметры триода
14-4. Простейший каскад усиления
14-5. Характеристики и параметры простейшего каскада усиления
14-6. Типы триодов
14-7. Четырехэлектродные лампы — тетроды
14-8. Пятиэлектродные лампы — пентоды
14-9. Комбинированные и многосеточные лампы. Типы ламп
14-10. Общие понятия, относящиеся к усилителям
14-11. Режимы работы усилителей
14-12. Многокаскадные ламповые усилители
14-13. Обратная связь в усилителях
14-14. Лабораторная работа. Снятие анодных и анодно-сеточных характеристик триода и определение по ним статических параметров
14-15. Лабораторная работа. Снятие частотных характеристик усилителя напряжения низкой частоты
Глава пятнадцатая. Газоразрядные приборы и их применение
15-1. Виды газового разряда и его вольт-амперная характеристика
15-2. Ионные приборы с несамостоятельным дуговым разрядом
15-3. Приборы с тлеющим разрядом
15-4. Ионные приборы с самостоятельным дуговым разрядом
15-5. Обозначения газоразрядных приборов
15-6. Лабораторная работа. Снятие анодносеточных и пусковых характеристик тиратрона
Глава шестнадцатая. Электронные генераторы. Осциллографы
16-1. Генераторы синусоидальных напряжений
16-2. Зарядка и разряд конденсатора
16-3. Релаксационные генераторы (генераторы пилообразного напряжения)
16-4. Мультивибраторы
16-5. Электроннолучевые трубки
16-6. Электроннолучевой осциллограф
16-7. Обозначения электроннолучевых трубок
16-8. Лабораторная работа. Экспериментальное, определение кривых напряжений в схемах выпрямителей
Глава семнадцатая. Полупроводниковые приборы и их применение
17-1. Собственная электропроводность полупроводников
17-2. Примесная электропроводность полупроводников
17-3. Полупроводниковый вентиль
17-4. Германиевые и кремниевые диоды
17-5. Меднозакисные и селеновые диоды
17-6. Применение полупроводниковых вентилей и схемы выпрямителей
17-7. Обозначения полупроводниковых диодов
17-8. Кремниевые стабилитроны (опорные диоды)
17-9. Транзисторы
17-10. Применение транзисторов для усиления колебаний
17-11. Схемы включения и характеристики транзисторов
17-12. Обозначения полупроводниковых триодов
17-13. Лабораторная работа. Снятие характеристик транзистора
Глава восемнадцатая. Фотоэлектронные приборы и электронные реле
18-1. Фотоэлементы с внешним фотоэффектом
18-2. Фоторезисторы
18-3. Полупроводниковые фотоэлементы
18-4. Электронные и ионные реле
18-5. Лабораторная работа. Электронное реле — триггер






A Учебник по двухскоростным двигателям

Устранение загадок.

Кажется, что в двухскоростных двигателях много загадок, но на самом деле они довольно просты. Сначала их можно разделить на два разных типа обмотки.

Двухскоростной, двухобмоточный

Двухобмоточный двигатель выполнен таким образом, что фактически представляет собой два двигателя, намотанных на один статор. Одна обмотка при подаче питания дает одну из скоростей. Когда вторая обмотка находится под напряжением, двигатель приобретает скорость, которая определяется второй обмоткой. Двухскоростной двигатель с двумя обмотками можно использовать для получения практически любой комбинации обычных скоростей двигателя, и две разные скорости не обязательно должны быть связаны друг с другом коэффициентом скорости 2:1. Таким образом, двухскоростной двигатель, требующий 1750 об/мин и 1140 об/мин, обязательно должен быть двухобмоточным.

Двухскоростной, с одной обмоткой

Второй тип двигателя — двухскоростной, с одной обмоткой. В этом типе двигателя должно существовать соотношение 2:1 между низкой и высокой скоростью. Двухскоростные однообмоточные двигатели имеют конструкцию, называемую последовательным полюсом. Эти двигатели намотаны для одной скорости, но когда обмотка повторно подключена, количество магнитных полюсов в статоре удваивается, и скорость двигателя уменьшается до половины исходной скорости.

Двухскоростной двигатель с одной обмоткой по своей природе более экономичен в производстве, чем двухскоростной двигатель с двумя обмотками. Это связано с тем, что одна и та же обмотка используется для обеих скоростей, а пазы, в которых размещаются проводники внутри двигателя, не должны быть такими большими, как они должны были бы быть для размещения двух отдельных обмоток, работающих независимо. Таким образом, размер корпуса двухскоростного двигателя с одной обмоткой обычно может быть меньше, чем у эквивалентного двигателя с двумя обмотками.

Класс нагрузки

Вторым элементом, который вызывает много путаницы при выборе двухскоростных двигателей, является классификация нагрузки, для которой должны использоваться эти двигатели. В этом случае необходимо определить тип приводимой нагрузки и выбрать двигатель, соответствующий требованиям нагрузки. Доступны три типа: постоянный крутящий момент, переменный крутящий момент и постоянная мощность.

Постоянный крутящий момент

Нагрузки с постоянным крутящим моментом — это такие типы нагрузок, при которых требуемый крутящий момент не зависит от скорости. Этот тип нагрузки является обычной нагрузкой на такие устройства, как конвейеры, поршневые насосы, экструдеры, гидравлические насосы, упаковочное оборудование и другие подобные типы нагрузок.

Переменный крутящий момент

Второй тип нагрузки, сильно отличающийся от постоянного крутящего момента, представляет собой вид нагрузки, создаваемой двигателем центробежными насосами и воздуходувками. В этом случае требование к крутящему моменту нагрузки изменяется от низкого значения при низкой скорости до очень высокого значения при высокой скорости.

При типичной нагрузке с переменным крутящим моментом удвоение скорости приведет к увеличению требуемого крутящего момента в 4 раза и требуемой мощности в 8 раз. Таким образом, на этом типе нагрузки грубая сила должна быть приложена на высокой скорости, а на низкой скорости требуются значительно меньшие уровни мощности и крутящего момента. Типичный двухскоростной двигатель с переменным крутящим моментом может иметь номинальную мощность 1 л.с. при 1725 и 0,25 л.с. при 850 об/мин.

Характеристики многих насосов, вентиляторов и воздуходувок таковы, что уменьшение скорости наполовину приводит к выходу на низкой скорости, что может быть неприемлемым. Таким образом, многие двухскоростные двигатели с переменным крутящим моментом изготавливаются с комбинацией скоростей 1725/1140 об/мин. Эта комбинация дает производительность вентилятора или насоса примерно вдвое меньше, когда используется низкая скорость.

Постоянная мощность

Последним типом двухскоростного двигателя, который используется, является двухскоростной двигатель постоянной мощности. В этом случае двигатель сконструирован так, что мощность остается постоянной, когда скорость снижается до низкого значения. Для этого необходимо, чтобы крутящий момент двигателя удваивался, когда он работает в режиме низкой скорости. Обычно двигатель этого типа применяется в процессах металлообработки, таких как сверлильные станки, токарные станки, фрезерные станки и другие подобные машины для удаления металла.

Потребность в постоянной мощности, пожалуй, лучше всего можно представить, если рассмотреть требования простой машины, такой как сверлильный станок. В этом случае при сверлении большого отверстия большим сверлом скорость низкая, но требуемый крутящий момент очень высок.

Сравните это с противоположной крайностью сверления небольшого отверстия, когда скорость сверления должна быть высокой, но требуемый крутящий момент низкий. Таким образом, существует требование, чтобы крутящий момент был высоким, когда скорость низкая, и крутящий момент должен быть низким, когда скорость является его. это ситуация с постоянной мощностью.

Двигатель с постоянной мощностью — самый дорогой двухскоростной двигатель. Достаточно легко доступны трехфазные двухскоростные двигатели с постоянным и переменным крутящим моментом. Двухскоростные двигатели постоянной мощности обычно доступны только по специальному заказу.

Двухскоростные однофазные двигатели

Двухскоростные однофазные двигатели для требований постоянного крутящего момента сложнее обеспечить, поскольку существует проблема обеспечения пускового выключателя, который будет срабатывать в нужное время для обеих скоростей. Таким образом, однофазный двигатель с нормальной скоростью предлагается в качестве двигателя с переменным крутящим моментом в конфигурации с постоянным разделенным конденсатором. Двигатель с постоянным раздельным конденсатором имеет очень низкий пусковой момент, но подходит для использования с небольшими центробежными насосами и вентиляторами.

Резюме

Использование двухскоростных двигателей в будущем будет расти довольно быстро, поскольку пользователи промышленных двигателей начинают осознавать желательность использования этого типа двигателя на вытяжных вентиляторах и циркуляционных насосах, чтобы поток воздуха и воды могли быть оптимизирована для соответствия условиям, существующим на заводе или в процессе. При использовании двухскоростного подхода может быть достигнута очень значительная экономия энергии. TMD

Магазин двухскоростных электродвигателей Канада

  • Home
  • Motors
  • Two Speed ​​Motor

Done

Brand
  • Leeson
  • Marathon
HP

Find a HP

See more

RPM
  • 900
  • 1200
  • 1800
Корпус
  • ODP
  • TEFC
    Монтаж

    86 Frame

    Find a Frame

    See more

    Voltage
    • 230V
    • 460V
    Material
    • Rolled Steel
    • Cast Iron
    Number of Speeds
    • 2 Speed ​​

    Общего назначения

    Взрывозащищенный

    Сельскохозяйственный

    Oilwell

    Двигатель постоянного тока

    Промывка

    Двигатель печи

    Мотор IEC

    Охлаждающая жидкость

    Тормозное двигатель

    1000: 1 ОБРАВЛЕНИЕ

    IEEE 841

    Определенная цель

    Generators

    Джашта

    Motor

    Grinder

    Мотор

    Perment Perment Perment AC

    9000MET Motor

    AC Perment Permant Permant Perment Ac.

    л.с.

    7 1/2

    об/мин

    1200, 1800

    напряжение

    200-230 В

    типоразмер

    9 02002 2004T0005

    3

    Корпуса

    ODP

    Материал

    Скалола.

    Фаза

    3

    Корпус

    ODP

    Материал

    Стальной прокат

    Крепление

    Жесткий

    Свяжитесь с нами для уточнения сроков поставки0005

    HP

    1 1/2

    RPM

    1800

    Voltage

    208-230V

    Frame

    145T

    Phase

    3

    Enclosure

    TEFC

    Material

    Rolled Steel

    Монтаж

    Жесткие

    Свяжитесь с нами для дат доставки

    об / мин

    1800

    Напряжение

    460 В

    Кадр

    145T

    Фаза

    3

    0005

    Enclosure

    TEFC

    Material

    Rolled Steel

    Mounting

    Rigid

    Contact us for delivery dates

    RPM

    1800

    Voltage

    208-230V

    Frame

    145T

    Phase

    3

    Корпус

    TEFC

    Материал

    Катаная сталь

    Крепление

    Жесткий

    Свяжитесь с нами для уточнения сроков поставки

    об / мин

    1200, 1800

    Напряжение

    460V

    Кадр

    286t

    Фаза

    3

    Корпус

    . Даты

    об / мин

    1200, 1800

    Напряжение

    460 В

    Кадр

    284T

    Фаза

    3

    .0005

    Material

    Cast Iron

    Mounting

    Rigid

    Contact us for delivery dates

    RPM

    900, 1800

    Voltage

    460V

    Frame

    284T

    Phase

    3

    Enclosure

    ODP

    Материал

    Чугун

    Монтаж

    Жесткий

    Свяжитесь с нами для уточнения сроков поставки

    Об/мин

    Напряжение 1200, 1800

    5

    5

    460V

    Frame

    256T

    Phase

    3

    Enclosure

    ODP

    Material

    Rolled Steel

    Mounting

    Rigid

    Contact us for delivery dates

    RPM

    1200, 1800

    Напряжение

    200-230 В

    Рама

    256T

    Фаза

    3

    Корпус

    ODP

    Сталь

    5

    Материал0005

    Mounting

    Rigid

    Contact us for delivery dates

    RPM

    900, 1800

    Voltage

    460V

    Frame

    256T

    Phase

    3

    Enclosure

    ODP

    Material

    Катаная сталь

    Монтажная

    Жесткая

    Свяжитесь с нами для уточнения сроков поставки

    л. с.0005

    460V

    Кадра

    254T

    Фаза

    3

    Корпус

    ODP

    Материал

    Стало

    Модинг

    2.

    об / мин

    900, 1800

    Напряжение

    460 В

    Кадр

    254T

    Фаза

    3

    Корпус

    ODP

    Материал

    0005

    Rolled Steel

    Mounting

    Rigid

    Contact us for delivery dates

    RPM

    1200, 1800

    Voltage

    460V

    Frame

    215T

    Phase

    3

    Enclosure

    ODP

    Материал

    Катаная сталь

    Монтаж

    Жесткий

    Свяжитесь с нами для уточнения сроков поставки0005

    напряжение

    460V

    рамки

    145T

    Фаза

    3

    Корпуса

    ODP

    Материал

    Стали

    . 1/2

    об/мин

    900, 1800

    Напряжение

    460 В

    Кадр

    145t

    Фаза

    3

    Корпуса

    ODP

    Material

    Rolled Steel

    Mounting

    Rigid

    Contact us for delivery dates

    RPM

    900, 1800

    Voltage

    460V

    Frame

    145T

    Phase

    3

    Enclosure

    ODP

    Материал

    Катаная сталь

    Крепление

    Жесткий

    Свяжитесь с нами для уточнения сроков поставки

    RPM

    900, 1800

    Voltage

    460V

    Frame

    256T

    Phase

    3

    Enclosure

    ODP

    Material

    Rolled Steel

    Mounting

    Rigid

    Contact us for delivery dates

    RPM

    900, 1800

    Напряжение

    460 В

    Кадр

    215T

    Фаза

    3

    Корпус

    ODP

    Материал

    Сталь

    . 0005

    Mounting

    Rigid

    Contact us for delivery dates

    RPM

    900, 1800

    Voltage

    460V

    Frame

    184T

    Phase

    3

    Enclosure

    ODP

    Material

    Катаная сталь

    Монтаж

    Жесткий

    Свяжитесь с нами для уточнения сроков поставки

    Об/мин

    900, 1800

    Напряжение

    200-230 В

    5 Рама

    182T

    Фаза

    3

    Корпус

    ODP

    Материал

    Стало

    Монтаж

    ГРИДЕ

    Свяжитесь с нами даты.

    Рама

    405T

    Фаза

    3

    Корпус

    TEFC

    Материал

    Чугун

    Ridgi

    Монтаж

    0005

    Contact us for delivery dates

    RPM

    900, 1800

    Voltage

    460V

    Frame

    365T

    Phase

    3

    Enclosure

    TEFC

    Material

    Cast Iron

    Mounting

    Жесткий

    Свяжитесь с нами для уточнения сроков поставки

    Об/мин

    900, 1800

    Напряжение

    460В

    Рама

    2 Фаза

    364T

    00002 3

    Enclosure

    TEFC

    Material

    Cast Iron

    Mounting

    Rigid

    Contact us for delivery dates

    RPM

    900, 1800

    Voltage

    460V

    Frame

    326T

    Фаза

    3

    Корпус

    TEFC

    Материал

    Чугун

    Монтаж

    Жесткий

    Свяжитесь с нами для уточнения сроков поставки

    RPM

    900, 1800

    Voltage

    460V

    Frame

    324T

    Phase

    3

    Enclosure

    TEFC

    Material

    Cast Iron

    Mounting

    Rigid

    Contact us for delivery Даты

    об / мин

    900, 1800

    Напряжение

    460 В

    Кадр

    286t

    Фаза

    3

    Клоч0005

    Material

    Cast Iron

    Mounting

    Rigid

    Contact us for delivery dates

    RPM

    900, 1800

    Voltage

    460V

    Frame

    284T

    Phase

    3

    Enclosure

    TEFC

    Материал

    Чугун

    Монтаж

    Жесткий

    Свяжитесь с нами для уточнения сроков поставки

    Об/мин

    900, 1800

    5

    5

    460V

    Frame

    256T

    Phase

    3

    Enclosure

    TEFC

    Material

    Cast Iron

    Mounting

    Rigid

    Contact us for delivery dates

    RPM

    900, 1800

    Напряжение

    460 В

    Рама

    254T

    Фаза

    3

    Корпус

    TEFC

    Чугун 5

    Материал

    002 Mounting

    Rigid

    Contact us for delivery dates

    HP

    7 1/2

    RPM

    900, 1800

    Voltage

    460V

    Frame

    215T

    Phase

    3

    Enclosure

    TEFC

    Материал

    Чугун

    Крепление

    Жесткий

    Свяжитесь с нами для уточнения сроков поставки0002 460V

    Frame

    213T

    Phase

    3

    Enclosure

    TEFC

    Material

    Cast Iron

    Mounting

    Rigid

    Contact us for delivery dates

    RPM

    900, 1800

    Напряжение

    460 В

    Корпус

    184T

    Фаза

    3

    Корпус

    TEFC

    Материал крепления

    Чугун

    0005

    Жесткий

    Свяжитесь с нами для уточнения сроков поставки

    На складе eMotors Direct имеются двухскоростные электродвигатели для использования в системах ОВКВ, где требуется несколько скоростей.