Содержание

Подключение однофазного двигателя: схемы, проверка, видео

Чаще всего к нашим домам, участкам, гаражам подведена однофазная сеть 220 В. Поэтому оборудование и все самоделки делают так, чтобы они работали от этого источника питания. В этой статье рассмотрим, как правильно сделать подключение однофазного двигателя.

Содержание статьи

  • 1 Асинхронный или коллекторный: как отличить
    • 1.1 Как устроены коллекторные движки
    • 1.2 Асинхронные
  • 2 Схемы подключения однофазных асинхронных двигателей
    • 2.1 С пусковой обмоткой
    • 2.2 Конденсаторный
      • 2.2.1 Схема с двумя конденсаторами
      • 2.2.2 Подбор конденсаторов
      • 2.2.3 Изменение направления движения мотора

Асинхронный или коллекторный: как отличить

Вообще, отличить тип двигателя можно по табличке — шильдику — на которой написаны его данные и тип. Но это только в том случае, если его не ремонтировали. Ведь под кожухом может быть что угодно. Так что если вы не уверены, лучше определить тип самостоятельно.

Так выглядит новый однофазный конденсаторный двигатель

Как устроены коллекторные движки

Отличить асинхронный и коллекторный двигатели можно по строению. У коллекторных обязательно есть щетки. Они расположены возле коллектора. Еще обязательный атрибут движка этого типа — наличие медного барабана, разделенного на секции.

Такие двигатели выпускаются только однофазные, они часто устанавливаются в бытовой технике, так как позволяют получить большое число оборотов на старте и после разгона. Также они удобны тем, что легко позволяют менять направление вращения — необходимо только поменять полярность. Несложно также организовать изменение скорости вращения — изменением амплитуды питающего напряжения или угла его отсечки. Потому и используются подобные двигатели в большей части бытовой и строительной техники.

Строение коллекторного двигателя

Недостатки коллекторных двигателей — высокая шумность работы на больших оборотах. Вспомните дрель, болгарку, пылесос, стиральную машину и т.д.. Шум при их работе стоит приличный. На малых оборотах коллекторные двигатели не так шумят (стиральная машина), но не все инструменты работают в таком режиме.

Второй неприятный момент — наличие щеток и постоянного трения приводит к необходимости регулярного технического обслуживания. Если токосъемник не чистить, загрязнение графитом (от стирающихся щеток) может привести к тому, что соседние секции в барабане соединятся, мотор попросту перестанет работать.

Асинхронные

Асинхронный двигатель имеет статор и ротор, может быть одно и трёхфазным. В данной статье рассматриваем подключение однофазных двигателей, потому речь пойдет только о них.

Асинхронные двигатели отличаются невысоким уровнем шумов при работе, потому устанавливаются в технике, шум работы которой критичен. Это кондиционеры, сплит-системы, холодильники.

Строение асинхронного двигателя

Есть два типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Вся разница состоит в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это необходимо, так как после разгона она только снижает КПД.

В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная — смещены относительно друг друга на 90°. Благодаря этому можно менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.

Более точно определить бифилярный или конденсаторный двигатель перед вами, можно при помощи измерений сопротивления обмоток. Если сопротивление вспомогательной обмотки больше в два раза (разница может быть еще более значительная), скорее всего, это бифилярный двигатель и эта вспомогательная обмотка пусковая, а значит, в схеме должен присутствовать выключатель или пусковое реле. В конденсаторных двигателях обе обмотки постоянно находятся в работе и подключение однофазного двигателя возможно через обычную кнопку, тумблер, автомат.

Схемы подключения однофазных асинхронных двигателей

С пусковой обмоткой

Для подключения двигателя с пусковой обмоткой потребуется кнопка, у которой один из контактов после включения размыкается. Эти размыкающиеся контакты надо будет подключить к пусковой обмотке. В магазинах есть такая кнопка — это ПНВС. У нее средний контакт замыкается на время удержания, а два крайних остаются в замкнутом состоянии.

Внешний вид кнопки ПНВС и состояние контактов после того как кнопка «пуск» отпущена»

Сначала при помощи измерений определяем какая обмотка рабочая, какая — пусковая. Обычно вывод от мотора имеет три или четыре провода.

Рассмотрим вариант с тремя проводами. В этом случае две обмотки уже объединены, то есть один из проводов — общий. Берем тестер, измеряем сопротивление между всеми тремя парами. Рабочая имеет самое меньшее сопротивление, среднее значение — пусковая обмотка, а наибольшее — это общий выход (меряется сопротивление двух последовательно включенных обмоток).

Если выводов четыре, они звонятся попарно. Находите две пары. Та, в которой сопротивление меньше — рабочая, в которой больше — пусковая. После этого соединяем один провод от пусковой и рабочей обмотки, выводим общий провод. Итого остается три провода (как и в первом варианте):

  • один с рабочей обмотки — рабочий;
  • с пусковой обмотки;
  • общий.

С этими тремя проводами и работаем дальше — используем для подключения однофазного двигателя.

Со всеми этими 

Все три провода подключаем к кнопке. В ней тоже имеется три контакта. Обязательно пусковой провод «сажаем на средний контакт (который замыкается только на время пуска), остальные два — на крайние (произвольно). К крайним входным контактам ПНВС подключаем силовой кабель (от 220 В), средний контакт соединяем перемычкой с рабочим (обратите внимание! не с общим). Вот и вся схема включения однофазного двигателя с пусковой обмоткой (бифилярного) через кнопку.

Конденсаторный

При подключении однофазного конденсаторного двигателя есть варианты: есть три схемы подключения  и все с конденсаторами. Без них мотор гудит, но не запускается (если подключить его по схеме, описанной выше).

Схемы подключения однофазного конденсаторного двигателя

Первая схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже. Схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском (бетономешалки, например), а с рабочим конденсором — если нужны хорошие рабочие характеристики.

Схема с двумя конденсаторами

Есть еще третий вариант подключение однофазного двигателя (асинхронного) — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и реализуется чаще всего.  Она на рисунке выше в середине или на фото ниже более детально. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

Подключение однофазного двигателя: схема с двумя конденсаторами — рабочим и пусковым

При реализации других схем — с одним конденсатором — понадобится обычная кнопка, автомат или тумблер. Там все соединяется просто.

Подбор конденсаторов

Есть довольно сложная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись рекомендациями, которые выведены на основании многих опытов:

  • рабочий конденсатор берут из расчета 70-80 мкФ на 1 кВт мощности двигателя;
  • пусковой — в 2-3 раза больше.

Рабочее напряжение этих конденсаторов должно быть в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 вольт берем емкости с рабочим напряжением 330 В и выше. А чтобы пуск проходил проще, для пусковой цепи ищите специальный конденсатор. У них в маркировке присутствует слова Start или Starting, но можно взять и обычные.

Изменение направления движения мотора

Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Когда собирали схему, один из проводов подали на кнопку, второй соединили с проводом от рабочей обмотки и вывели общий. Вот тут и надо перекинуть проводники.

Как все может выглядеть на практике

Однофазный асинхронный двигатель: 6 схем работы

Изготовление самодельных станков и механизмов требует наличия источника крутящего момента, способного развивать высокую механическую мощность на валу привода при питании от сети 220 вольт.

Для этих целей подходит электродвигатель от бетономешалки, стиральной машины, другого оборудования или просто приобретенный в продаже.

В статье я рассказываю все про однофазный асинхронный двигатель, схема подключения которого зависит от внутренней конструкции и может быть выполнена с пусковой обмоткой или конденсаторным запуском.

Содержание статьи

С чего обязательно следует начинать подключение двигателя: 2 важных момента, проверенные временем

Перед первым включением любого электродвигателя необходимо уточнить его устройство: конструкцию статора и ротора, состояние подшипников.

На собственном и чужом опыте могу заверить, что проще раскрутить несколько гаек, осмотреть внутреннюю конструкцию, выявить дефекты на начальном этапе и устранить их, чем после запуска в непродолжительную работу заниматься сложным ремонтом, который можно было предотвратить.

Важное предупреждение

Начинающие электрики довольно часто сами создают неисправности двигателя, нарушая технологию его разборки, работая обычным молотком: разбивают грани вала.

Для сохранения структуры деталей без их повреждения необходимо использовать специальный съемник подшипников электродвигателя.

В самом крайнем случае, когда его нет, удары молотком наносят через толстые пластины из мягкого металла (медь, алюминий) или плотную сухую древесину (яблоня, груша, дуб).

Как состояние подшипников влияет на работу двигателя

Любой асинхронный электродвигатель (АД) имеет ротор с короткозамкнутыми обмотками. В них наводится ток, создающий магнитный поток, взаимодействующий с вращающимся магнитным полем статора, которое и является его источником движения.

Ротор внутри корпуса крепится на подшипниках. Их состояние сильно влияет на качество вращения. Они призваны обеспечить легкое скольжение вала без люфтов и биений. Любые нарушения недопустимы.

Дело в том, что обмотку статора можно рассматривать как обыкновенный электромагнит. Если у ротора разбиты подшипники, то он под действием магнитного поля станет притягиваться, приближаясь к статорной обмотке.

Зазор между вращающейся и стационарной частями очень маленький. Поэтому касания или биения ротора могут задевать, царапать, деформировать статорные обмотки, безвозвратно повреждая их. Ремонт потребует полной перемотки статора, а это весьма сложная работа.

Обязательно разбирайте электродвигатель перед его подключением, тщательно осматривайте всю его внутреннюю конструкцию.

Обращайте особое внимание на состояние подшипников, выполнение нормативов по допускам и посадкам, качество смазки. Сухую и старую смазку обязательно необходимо заменять свежей.

Что надо учитывать в конструкции статорных обмоток и как их подготовить

Домашнему мастеру чаще всего попадают электродвигатели, которые уже где-то поработали, а, возможно, и прошли реконструкцию или перемотку. Никто об этом обычно не заявляет, на шильдиках и бирках информацию не меняют, оставляют прежней. Поэтому рекомендую визуально осмотреть их внутренности.

Статорные катушки у асинхронных двигателей для питания от однофазной и трехфазной сети отличаются количеством обмоток и конструкцией.

Трехфазный электродвигатель имеет три абсолютно одинаковые обмотки, разнесенные по направлению вращения ротора на 120 угловых градусов. Они выполнены из одного провода с одинаковым числом витков.

Все они имеют равное активное и индуктивное сопротивление, занимают одинаковое число пазов внутри статора.

Это позволяет первоначально оценивать их состояние обычным цифровым мультиметром в режиме омметра при отключенном напряжении.

Однофазный асинхронный двигатель имеет две разные обмотки на статоре, разнесенные на 90 угловых градусов. Одна из них создана для длительного прохождения тока в номинальном режиме работы и поэтому называется основной, главной либо рабочей.

Для уменьшения нагрева ее делают более толстым проводом, обладающим меньшим электрическим сопротивлением.

Перпендикулярно ей смонтирована вторая обмотка большего сопротивления и меньшего диаметра, что позволяет различать ее визуально. Она создана для кратковременного протекания пусковых токов и отключается сразу при наборе ротором номинального числа оборотов.

Пусковая или вспомогательная обмотка занимает примерно 1/3 пазов статора, а остальная часть отведена рабочим виткам.

Однако, приведенное правило имеет исключения: на практике встречаются однофазные электродвигатели с двумя одинаковыми обмотками.

Для подключения статора к питающей сети концы обмоток выводят наружу проводами. С учетом того, что одна обмотка имеет два конца, то у трехфазного электродвигателя может быть, как правило, шесть выводов, а у однофазного — четыре.

Но из этого простого правила встречаются исключения, связанные с внутренней коммутацией выводов для упрощения монтажа на специальном оборудовании:

  • у трехфазных двигателей из статора могут выводиться:
    • три жилы при внутренней сборке схемы треугольника;
    • или четыре — для звезды;
  • однофазный электродвигатель может иметь:
    • три вывода при внутреннем объединении одного конца пусковой и рабочей обмоток;
    • или шесть концов для конструкции с пусковой обмоткой и встроенным контактом ее отключения от центробежного регулятора.

Как видите, судить о конструкции асинхронного двигателя по количеству выведенных проводов на клеммнике от обмоток статора можно, но вероятность ошибки довольно высока. Нужен более тщательный анализ его устройства.

Техническое состояние изоляции обмоток

Где и в каких условиях хранился статор не всегда известно. Если он находился без защиты от атмосферных осадков или внутри влажных помещений, то его изоляция требует сушки.

В домашней обстановке разобранный статор можно поместить в сухую комнату для просушки. Ускорить процесс допустимо обдувом вентилятора или нагревом обычными лампами накаливания.

Обращайте внимание, чтобы разогретое стекло лампы не касалось провода обмоток, обеспечивайте воздушный зазор. Окончание процесса сушки связано с восстановлением свойств изоляции. Этот процесс необходимо контролировать замерами мегаомметром.

Как отличить конструкцию однофазного асинхронного электродвигателя и определить его тип по статистической таблице

Привожу выдержку из книги Алиева И И про асинхронные двигатели, вернее таблицу основных электрических характеристик.

Как видите, промышленностью массово выпущены модели с:

  • повышенным сопротивлением пусковой обмотки;
  • пусковым конденсатором;
  • рабочим конденсатором;
  • пусковым и рабочим конденсатором;
  • экранированными полюсами.

А еще здесь не указаны более новые разработки, называемые АЭД — асинхронные энергосберегающие двигатели, обеспечивающие:

  • значительное снижение реактивной мощности;
  • повышение КПД;
  • уменьшение потребления полной мощности при той же нагрузке на вал, что и у обычных моделей.

Их конструкторское отличие: внутри зубцов сердечника статора выполнены углубления. В них жестко вставлены постоянные магниты, взаимодействующие с вращающимся магнитным полем.

Во всем этом многообразии вам предстоит разбираться самостоятельно с неизвестной конструкцией. Здесь большую помощь может оказать техническое описание или шильдик на корпусе.

Я же дальше рассматриваю только две наиболее распространенные схемы запуска АД в работу.

Схема подключения асинхронного двигателя с пусковой обмоткой: последовательность сборки

Например, мы определили, что из статора выходят четыре или три провода. Вызваниваем между ними активное сопротивление омметром и определяем пусковую и рабочую обмотку.

Допустим, что у четырех проводов между собой вызваниваются две пары с сопротивлением 6 и 12 Ом. Скрутим произвольно по одному проводу от каждой обмотки, обозначим это место, как «общий провод» и получим между тремя выводами замер 6, 12, 18 Ом.

Точками на этой схеме я обозначил начала обмоток. Пока на этот вопрос не обращайте внимание. Но, к нему потребуется вернуться дальше, когда возникнет необходимость выполнять реверс.

Цепочка между общим выводом и меньшим сопротивлением 6Ω будет главной, а большим 12Ω — вспомогательной, пусковой обмоткой. Последовательное их соединение покажет суммарный результат 18 Ом.

Помечаем эти 3 конца уже понятной нам маркировкой:

  • О — общий;
  • П — пусковой;
  • Р — рабочий.

Дальше нам понадобиться кнопка ПНВС, специально созданная для запуска однофазных асинхронных двигателей. Ее электрическая схема представлена тремя замыкающими контактами.

Но, она имеет важное отличие от кнопки запуска трехфазных электродвигателей ПНВ: ее средний контакт выполнен с самовозвратом, а не фиксацией при нажатии.

Это означает, что при нажатии кнопки все три контакта замыкаются и удерживаются в этом положении. Но, при отпускании руки два крайних контакта остаются замкнутыми, а средний возвращается под действием пружины в разомкнутое состояние.

Эту кнопку и клеммы вывода обмоток статора из электродвигателя соединяем трехжильным кабелем так, чтобы на средний контакт ПНВС выходил контакт пусковой обмотки. Выводы П и Р подключаем на ее крайние контакты и помечаем.

С обратной стороны кнопки между контактами пусковой и рабочей обмоток жестко монтируем перемычку. На нее и второй крайний контакт подключаем кабель питания бытовой сети 220 вольт с вилкой для установки в розетку.

При включении этой кнопки под напряжение все три контакта замкнутся, а рабочая и пусковая обмотка станут работать. Буквально через пару секунд двигатель закончит набирать обороты, выйдет на номинальный режим.

Тогда кнопку запуска отпускают:

  • пусковая обмотка отключается самовозвратом среднего контакта;
  • главная обмотка двигателя продолжает раскручивать ротор от сети 220 В.

Это самая доступная схема подключения асинхронного двигателя с пусковой обмоткой для домашнего мастера. Однако, она требует наличия кнопки ПНВС.

Если ее нет, а электродвигатель требуется срочно запустить, то ее допустимо заменить комбинацией из двухполюсного автоматического выключателя и обычной электрической кнопки соответствующей мощности с самовозвратом.

Придется включать их одновременно, а кнопку отпускать после раскрутки электродвигателя.

Все запуски электродвигателей и любого электрического оборудования всегда выполняйте с защитой этих цепей автоматическими выключателями. Они предотвратят развитие аварийных ситуаций при возникновении любых случайных ошибок.

С целью закрепления материала по этой теме рекомендую посмотреть видеоролик владельца Oleg pl. Он как раз показывает конструкцию встроенного центробежного регулятора, предназначенного для автоматического отключения вспомогательной обмотки.

Схема подключения асинхронного двигателя с конденсаторным запуском: 3 технологии

Статор с обмотками для запуска от конденсаторов имеет примерно такую же конструкцию, что и рассмотренная выше. Отличить по внешнему виду и простыми замерами мультиметром его сложно, хотя обмотки могут иметь равное сопротивление.

Ориентируйтесь по заводскому шильдику и таблице из книги Алиева. Такой электродвигатель можно попробовать подключить по схеме с кнопкой ПНВС, но он не станет раскручиваться.

Ему не хватит пускового момента от вспомогательной обмотки. Он будет гудеть, дергаться, но на режим вращения так и не выйдет. Здесь нужно собирать иную схему конденсаторного запуска.

2 конца разных обмоток подключают с общим выводом О. На него и второй конец рабочей обмотки подают через коммутационный аппарат АВ напряжение бытовой сети 220 вольт.

Конденсатор подключают к выводам пусковой и рабочей обмоток.

В качестве коммутационного аппарата можно использовать сдвоенный автоматический выключатель, рубильник, кнопки типа ПНВ или ПНВС.

Здесь получается, что:

  • главная обмотка работает напрямую от 220 В;
  • вспомогательная — только через емкость конденсатора.

Эта схема используется для легкого запуска конденсаторных электродвигателей, включаемых в работу без тяжелой нагрузки на привод, например, вентиляторы, наждаки.

Если же в момент запуска необходимо одновременно раскручивать ременную передачу, шестеренчатый механизм редуктора или другой тяжелый привод, то в схему добавляют пусковой конденсатор, увеличивающий пусковой момент.

Принцип работы такой схемы удобно приводить с помощью все той же кнопки ПНВС.

Ее контакт с самовозвратом подключается на вспомогательную обмотку через дополнительный пусковой конденсатор Сп. Второй конец его обкладки соединяется с выводом П и рабочей емкостью Ср.

Дополнительный конденсатор в момент запуска электродвигателя с тяжелым приводом помогает ему быстро выйти на номинальные обороты вращения, а затем просто отключается, чтобы не создавать перегрев статора.

Эта схема таит в себе одну опасность, связанную с длительным хранением емкостного заряда пусковым конденсатором после снятия питания 220 при отключении электродвигателя.

При неаккуратном обращении или потере внимательности работником ток разряда может пройти через тело человека. Поэтому заряженную емкость требуется разряжать.

В рассматриваемой схеме после снятия напряжения и выдергивания вилки со шнуром питания из розетки это можно делать кратковременным включением кнопки ПНВС. Тогда емкость Сп станет разряжаться через пусковую обмотку двигателя.

Однако не все люди так поступают по разным причинам. Поэтому рекомендуется в цепочку пуска монтировать два дополнительных резистора.

Сопротивление Rр выбирается номиналом около 300÷500 Ом нескольких ватт. Его задача — после снятия напряжения питания осуществить разряд вспомогательной емкости Сп.

Резистор Rо низкоомный и мощный выполняет роль токоограничивающего сопротивления.

Добавление резисторов в схему пуска электродвигателя повышает безопасность его эксплуатации, автоматически ограничивает протекание емкостного тока разряда заряженного конденсатора через тело человека.

Где взять номиналы главного и вспомогательного конденсаторов?

Дело в том, что величину пусковой и рабочей емкости для конденсаторного запуска однофазного АД завод определяет индивидуально для каждой модели и указывает это значение в паспорте.

Отдельных формул для расчета, как это делается для конденсаторного запуска трехфазного двигателя в однофазную сеть по схемам звезды или треугольника просто нет.

Вам потребуется искать заводские рекомендации или экспериментировать в процессе наладки с разными емкостями, выбирая наиболее оптимальный вариант.

Владелец
видеоролика “I V Мне интересно” показывает способы оптимальной настройки параметров схемы запуска конденсаторных двигателей.

Как поменять направление вращения однофазного асинхронного двигателя: 2 схемы

Высока вероятность того, что АД запустили по одному из вышеперечисленных принципов, а он крутится не в ту сторону, что требуется для привода.

Другой вариант: на станке необходимо обязательно выполнять реверс для обработки деталей. Оба эти случаи поможет реализовать очередная разработка.

Возвращаю вас к начальной схеме, когда мы случайным образом объединяли концы главной и вспомогательной обмоток. Теперь нам надо сменить последовательность включения одной из них. Показываю на примере смены полярности пусковой обмотки.

В принципе так можно поступить и с главной. Тогда ток по этой последовательно собранной цепочке изменит направление одного из магнитных потоков и направление вращения ротора.

Для одноразового реверса этого переключения вполне достаточно. Но для станка с необходимостью периодической смены направления движения привода предлагается схема реверса с управлением тумблером.

Этот переключатель можно выбрать с двумя или тремя фиксированными положениями и шестью выводами. Подбирать его конструкцию необходимо по току нагрузки и допустимому напряжению.

Схема реверса однофазного АД с пусковой обмоткой через тумблер имеет такой вид.

Пускать токи через тумблер лучше от вспомогательной обмотки, ибо она работает кратковременно. Это позволит продлить ресурс ее контактов.

Реверс АД с конденсаторным запуском удобно выполнить по следующей схеме.

Для условий тяжелого запуска параллельно основному конденсатору через средний контакт с самовозвратом кнопки ПНВС подключают дополнительный конденсатор. Эту схему не рисую, она показана раньше.

Переключать положение тумблера реверса необходимо исключительно при остановленном роторе, а не во время его вращения. Случайная смена направления работы двигателя под напряжением связана с большими бросками токов, что ограничивает его ресурс.

Поэтому место расположения тумблера реверса на станке необходимо выбирать так, чтобы исключить случайное оперирование им во время работы. Устанавливайте его в углублениях конструкции.

Если у вас еще остались неясные моменты про однофазный асинхронный двигатель и схему подключения, то задавайте их в комментариях. Обязательно обсудим.

Подключение однофазного двигателя : с конденсатором, схемы, видео

Как правило, наши дома, гаражи и другие хозяйственные постройки подключены к источнику 220V, представляющую однофазную сеть. В связи с этим все потребители рассчитываются для работы от однофазной сети, выполненной двумя проводами, один из которых является нулевым, а другой фазным. В работе многих электрических приборов задействованы однофазные электрические двигатели, подключение которых связано с некоторыми тонкостями.

Содержание

  • 1 Как определиться с типом двигателя
    • 1. 1 Коллекторные двигатели
    • 1.2 Асинхронные двигатели
  • 2 Варианты подключения однофазных асинхронных двигателей
    • 2.1 Двигатели с пусковой обмоткой
    • 2.2 Конденсаторные двигатели
      • 2.2.1 Схема с двумя конденсаторами
      • 2.2.2 Подбор емкости конденсаторов
      • 2.2.3 Как изменить направление вращения двигателя
  • 3 В заключение

Как определиться с типом двигателя

Если двигатель новый, то особых проблем не будет, поскольку на его табличке указан тип двигателя и другие данные. Если двигатель подвергался ремонту, то определение его типа связано с некоторыми трудностями: табличку могли просто потерять или повредить ее механически. Поэтому в таких случаях лучше знать, как самостоятельно определить тип двигателя.

Коллекторные двигатели

Коллекторный двигатель

Определить, двигатель коллекторный или асинхронный, совсем несложно, поскольку они имеют разное строение. Характерное отличие коллекторного двигателя – это наличие щеток, которые находятся неподвижно, а также коллектора, который вращается и представляет набор медных пластин. К этим пластинам прижимаются щетки, передающие электрический ток на обмотку якоря двигателя.

Достоинство таких двигателей заключается в том, что они быстро разгоняются и позволяют получить большие обороты. К тому же, поменяв полярность, допустимо сменить направление вращения устройства. Не менее важным можно считать тот фактор, что можно легко организовать контроль частоты вращения двигателя, с его регулировкой в широких пределах.

К существенному минусу коллекторных двигателей следует отнести их повышенную шумность в работе, особенно на повышенных оборотах. Что касается небольших оборотов, то работу этих двигателей можно считать вполне приемлемой. Следует учитывать также тот факт, что трение щеток и коллектора приводят к тому, что изнашиваются, как щетки, так и коллектор. В результате приходится менять щетки или протачивать коллектор. Если не осуществлять постоянного контроля за состоянием щеток и коллектора, то имеется высокая вероятность того, что устройство придется ремонтировать.

Асинхронные двигатели

Строение асинхронного двигателя

Конструкция асинхронного двигателя несколько отличается от конструкции коллекторного двигателя несмотря на то, что у него также имеется статор и ротор (якорь), при этом асинхронные двигатели могут быть, как однофазными, так и трехфазными. Как правило, бытовые электроприборы оснащаются однофазными асинхронными двигателями.

Достоинство асинхронных двигателей заключается в том, что они более бесшумные, поэтому их устанавливают в бытовых приборах, работа которых связана с критическими уровнями шумов при длительной работе.

Различают два типа асинхронных двигателей – конденсаторные и с пусковой обмоткой (бифилярные). Пусковая обмотка необходима лишь для запуска двигателя, после чего она отключается и в работе двигателя никакого участия не принимает.

Конденсаторные двигатели отличаются тем, что дополнительная конденсаторная обмотка работает постоянно. Эта обмотка смещается по отношению к рабочей обмотке на 90 градусов. Благодаря такому построению, возможно менять направление вращения двигателя. Наличие конденсатора на двигателе свидетельствует о том, что это конденсаторный двигатель.

Если измерить сопротивление пусковой и рабочей обмоток, то можно легко определить тип асинхронного двигателя. Как правило, пусковая обмотка выполняется более тонким проводом и ее сопротивление больше в несколько раз, по сравнению с рабочей обмоткой. Нормальная работа таких двигателей обеспечивается за счет специального включающего устройства. Конденсаторные двигатели запускаются обычным выключателем, тумблером или кнопкой.

Варианты подключения однофазных асинхронных двигателей

Двигатели с пусковой обмоткой

Чтобы управлять работой асинхронным двигателем, имеющим пусковую обмотку, разработана специальная кнопка. Она состоит из трех контактов, один из которых отключается после включения устройства. Называется эта кнопка «ПНВС» и включает в себя средний контакт, который не фиксируется после включения и два крайних контакта с фиксацией.

Внешний вид кнопки ПНВС и состояние контактов после того как кнопка «пуск» отпущена

Если двигатель с пусковой обмоткой, то у него может быть 3 или 4 вывода. Измерив их сопротивление, можно узнать, какой из концов или каких 2 конца имеют отношение к пусковой обмотке.

У двигателя, имеющего 3 вывода, один из концов пусковой обмотки уже соединен с рабочей обмоткой. Как уже было сказано выше, рабочая обмотка всегда имеет меньшее сопротивление, по сравнению с пусковой. У двигателя с 4-мя выводами пусковую обмотку придется соединять с рабочей самостоятельно, на пусковой кнопке. В результате, получится также 3 вывода, которые принимают участие в работе двигателя:

  • Один конец от рабочей обмотки.
  • Другой конец от пусковой обмотки.
  • Третий конец общий (соединение рабочей и пусковой обмотки).

Поэтому подключение таких двигателей ничем не отличается друг от друга, достаточно найти обмотки и соответствующим образом подключить их на реле ПНВС.

  • Подключение однофазного двигателя с пусковой обмоткой посредством кнопки ПНВС.

Правильное подключение:

Три провода, выходящие из двигателя, подключаются так: провод, представляющий пусковую обмотку, крепится к среднему контакту (верхнему), а остальные два на крайние (тоже верхние) контакты. Питание 220 V подается на крайние контакты (нижние), при этом средний нижний контакт соединяется перемычкой с боковым контактом (нижним), который включает рабочую обмотку, но не общую, представляющую соединение рабочей и пусковой обмотки. В противном случае двигатель просто не запустится.

Конденсаторные двигатели

Существует три варианта (схемы) подключения конденсаторных двигателей к сети 220V. Без конденсаторов двигатель работать не будет. Он не запустится и будет гудеть. Такая длительная работа может привести к перегреву и выходу его из строя.

Первая схема связана с включением конденсатора в цепь питания конденсаторной обмотки. Подобная схема легко запускает двигатель, но его работа связана с низким К.П.Д. Схема, где конденсатор включен к цепи питания рабочей обмотки обладает лучшими показателями к. п.д., но при этом возникают проблемы с пуском двигателя. Поэтому первая схема используется для условий с тяжелым пуском, если при этом не требуются высокие рабочие характеристики.

Схема с двумя конденсаторами

Третий вариант подключения связан с установкой 2-х конденсаторов, поэтому схема представляет что-то среднее между вышеописанными двумя вариантами. Схема располагается в середине и более детально ее подключение представлено на фото ниже. Для реализации такой схемы включения потребуется кнопка ПНВС. Она необходима лишь для того, чтобы кратковременно подключать второй конденсатор, на время разгона двигателя. После отключения пускового конденсатора в работе останется две обмотки, причем пусковая обмотка должна быть подключена через конденсатор.

Подключение с двумя конденсаторами

Другие схемы подключения не требуют кнопки ПНВС, поскольку подключение конденсаторов фиксированное, на все время работы электродвигателя. Поэтому достаточно воспользоваться обычным автоматическим выключателем с фиксацией включенных контактов.

Подключение однофазного двигателя.

Watch this video on YouTube

Подбор емкости конденсаторов

Чтобы точно определить емкость конденсаторов для конкретного двигателя, придется заняться серьезными вычислениями и знаниями школьного уровня здесь не обойтись. При этом, на основании многолетних опытов установлено:

  • Рабочие конденсаторы подбирают по емкости из расчета 70-80 мкф на 1 кВт мощности двигателя.
  • Емкости пусковых конденсаторов должны быть, как минимум в 2 раза больше.

Очень важно позаботиться о том, чтобы их рабочее напряжение было, как минимум в полтора раза больше напряжения питающей сети. Для сети в 220V наиболее подходящими окажутся конденсаторы с рабочим напряжением в 400V. Пуск двигателя окажется менее проблемным, если применить специальные конденсаторы, хотя в основном применяются обычные конденсаторы. При этом следует знать, что для работы в сети переменного тока нельзя использовать электролитические конденсаторы.

Пусковые конденсаторы

Watch this video on YouTube

Как изменить направление вращения двигателя

Двигатели с пусковой и конденсаторной обмотками характеризуются тем, что можно легко поменять их направление вращения. Для этого нужно взять и поменять подключение концов вспомогательной обмотки, сохранив схему подключения двигателя в целом.

В заключение

В настоящее время, как ни странно, но все усложняется, в том числе и электродвигатели. Встречаются двигатели, особенно в стиральных машинах, которые самому подключить вряд ли удастся. Существуют и другие устройства со сложными двигателями, с количеством выводов, больше, чем 3 или 4. Остается только думать о том, какое их предназначение. Если нет соответствующих навыков, то очередное подключение такого двигателя может просто вывести его из строя, причем после этого вряд ли кто возьмется за его восстановление.

Что касается электроинструментов, в которых применяются в основном коллекторные двигатели, то устройство их настолько простое, что их может подключить любой человек, не будучи профессионалом в этом деле. При этом следует заметить, что их работой управляет электронная схема, которая позволяет регулировать частоту вращения. Что касается электронной схемы, то здесь не каждый может разобраться, хотя ее после поломки можно легко заменить на исправную.

В настоящее время тенденции развития бытовых электроприборов связаны с тем, чтобы их ремонтом занимались профессионалы. Скорее всего, что это правильно, поскольку каждый должен заниматься своим делом.

Схема Подключения Однофазного Электродвигателя — tokzamer.ru

Поэтому ток I2обр, имеющий большую индуктивную составляющую, оказывает сильное размагничивающее действие на обратный магнитный поток Фобр, значительно ослабляя его. Другие способы При рассмотрении методов подключения однофазных асинхронных двигателей нельзя обойти внимание два способа, конструктивно отличающихся от схем для подключения через конденсатор.

Подключение однофазного асинхронного двигателя и принцип его работы

Расчет емкости конденсатора мотора

Проводку маркируют и убирают в сторону, а остальные контакты продолжают прозванивать по приведенной схеме.

Но в этом случае момент пуска более продолжительный по времени, и пусковые токи больше.

Именно в этом причина популярности двигателя среди населения. Кроме того, сдвиг фаз может быть получен путем использования пусковой фазы с большим значением сопротивления и меньшей индуктивностью. В результате их взаимодействия между собой ротор приводится в движение.

Конденсатор подбирается по потребляемому двигателем току. Мы постараемся разобрать в этой статье основные приемы решения проблемы и представим несколько альтернативных схем с описанием для подключения однофазного электродвигателя с конденсатом на вольт. Почему так происходит? В рамках этой схемы конденсатор постоянно подключен к источнику электричества, а не только во время старта.

Для пуска мотора не понадобятся различные пусковики и обмотки, потому что вращающееся магнитное поле возникает в статоре сразу после подключения к сети В. Самые распространенные двигатели такого типа можно разделить на две группы: однофазные двигатели с пусковой обмоткой и двигатели с рабочим конденсатором. Однако многолетний опыт профессионалов показывает, что достаточно придерживаться следующих рекомендаций: на 1 кВт мощности мотора необходимо 0,8 мкФ рабочего конденсатора; пусковая обмотка требует, чтобы это значение было в 2 или 3 раза выше. Только после того, как будет достоверно установлено, что нет короткого замыкания на корпусе, определены контакты каждой из обмоток, можно приступать к подключению.

Подключение

Существует несколько режимов работы конденсаторного двигателя: С пусковым конденсатором и дополнительной обмоткой, которые подключаются только на время запуска. На практике для приборов, требующих создания сильного пускового момента используется первая схема с соответствующим конденсатором, а в обратной ситуации — вторая, с рабочим.

Подключение остальных типов электродвигателей либо требует использования специальных устройств запуска, либо, как, например, шаговые, управляются электронными схемами. Некоторые конденсаторные электродвигатели имеют центробежный контакт, используемый при запуске, размыкающийся при наборе оборотов.

Схема подключения однофазного двигателя через конденсатор

Во втором случае, для моторов с рабочим конденсатором, дополнительная обмотка подключена через конденсатор постоянно.

По информации на бирке мотора можно определить какая система в нем использована. Сложность схемы заключается в том, что емкость конденсатора для выравнивания магнитного поля подбирается с учетом токовых нагрузок.

Здесь каждая обмотка используется на свое рабочее напряжение, отсюда и мощность. Расчёт емкости производится исходя из рабочего напряжения и тока, или паспортной мощности мотора. Кратковременным подключением пускового конденсатора на валу двигателя создается мощный стартовый вращающий момент, время запуска сокращается в разы.

Из-за сложности формул расчёта принято выбирать емкости, исходя из приведённых выше пропорций. Расчет емкости конденсатора мотора Существует сложная формула, с помощью которой высчитывают необходимую точную емкость конденсатора. В этих двигателях, рабочая и пусковая — одинаковые обмотки по конструкции трехфазных обмоток. После списания прибора в утиль в большинстве случаев электродвигатели сохраняют работоспособность и могут еще довольно долго послужить в виде самодельных электронасосов, точил, станков, вентиляторов и газонокосилок.

Статья по теме: Виды электромонтажных работ по смете

Заключение

В результате получается два разнонаправленных потока с отличной от основного поля скоростью вращения. Это схема обмотки звездой Красные стрелки — это распределение напряжения в обмотках мотора, говорит о том, что на одной обмотке распределяется напряжение единичной фазы в В, а двух других — линейного напряжения В.

После запуска двигателя, конденсаторы содержат определенное количество заряда, потому прикасаться к проводникам запрещается. В этой обмотке которая еще имеет название рабочей магнитный поток изменяется с такой частотой, с которой протекает по обмотке ток. Вычислить, какие провода к какой обмотке относятся, можно путем измерения сопротивления. Обмотка, у которой сопротивление меньше — есть рабочая. В статоре однофазного электродвигателя находится однофазная обмотка, что отличает его от трехфазного.

Двигатели с высотой вращения более 90 мм представлены в чугунном исполнении. Такая схема исключает блок электроники, а следовательно — мотор сразу же с момента старта, будет работать на полную мощность — на максимальных оборотах, при запуске буквально срываясь с силой от пускового электротока, который вызывает искры в коллекторе; существуют электромоторы с двумя скоростями. Это необходимый запас для компенсации потерь мощности при старте — создании вращающегося момента магнитного поля. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле в холодильниках.

Схема подключения однофазного электродвигателя 220В (видео)

Вопрос как подключить однофазный электродвигатель очень часто возникает на практике из-за высокой популярности применения подобных агрегатов для решения различных бытовых задач.

Схема подключения однофазного электродвигателя достаточно проста и требует учета всего одного принципиального момента: для обеспечения его работоспособности необходимо вращающееся магнитное поле. При наличии только однофазной сети переменного тока на момент запуска электродвигателя его приходится формировать искусственно через применение соответствующих схемных решений.

1
Обмотки электромотора

1.1
Укладка обмоток в статоре однофазного электродвигателя

2
Особенности формирования вращающего момента

2.1
Варианты создания сдвига фаз

3
Конденсаторы

4
Косвенное включение

4.1
Подключение однофазного двигателя

5
Особенности применения магнитного пускателя

5. 1
Схема подключения однофазного двигателя

6
Заключение

Обмотки электромотора

Укладка обмоток в статоре однофазного электродвигателя

Конструкция любого однофазного электродвигателя предполагает использование как минимум трех катушек. Две из них являются элементов конструкции статора,включены параллельно. Одна из них является рабочей, а вторая выполняет функции пусковой. Их клеммы выведены на корпус двигателя и используются для подключения к сети. Обмотка ротора выполнена короткозамкнутой. К сети подключатся две из них, остальные служат для коммутации.

Для изменения мощности рабочая катушка может формироваться из двух частей, которые включаются последовательно.

Визуально идентифицировать рабочую и пусковую обмотку можно по сечению провода: у первой из них оно заметно больше. Можно замерить сопротивление тестером подключением его к клеммам: у рабочей обмотки его величина будет меньше. Как правило, сопротивления обмоток будет составлять не более нескольких десятков Ом.

Особенности формирования вращающего момента

Магнитное поле, создаваемое катушками электродвигателя, имеет фазовый сдвиг на 90 градусов. Это обычно достигается через конденсатор, который последовательно включается в цепь запуска. Возможные варианты соединения показаны на рисунке ниже.

Варианты создания сдвига фаз

Пусковая катушка может работать постоянно. Допустима также схема, основанная на ее отключении после достижения номинальной частоты вращения ротора. Постоянное подключение пусковой обмотки усложняет конструкцию двигателя, но улучшает его характеристики. На особенностях подключения к сети эти различия не сказываются.

Для упрощения запуска двигателя с рабочим конденсатором, перед подачей на него тока от сети параллельно ему подключают вспомогательную емкость.

Однофазный электромотор позволяет простыми средствами изменить направление вращения вала на противоположное. Для этого производится сдвиг фазы тока, поступающего от сети и протекающего через цепи запуска, меняется на противоположный. Данная процедура реализуется простым изменением порядка включения пусковой обмотки при ее соединении с рабочей обмоткой.

Конденсаторы

Схема подключения однофазных конденсаторных двигателей: а – с рабочей емкостью Ср, б – с рабочей емкостью Ср и пусковой емкостью Сп.

Электродвигатель может комплектоваться двумя разновидностями конденсаторов. Наличие емкости, включаемой последовательно спусковой обмоткой и пропускающей через себя ток для сдвига фазы, является обязательным. Ее значение заимствуется из паспортных данных электродвигателя и дублируется на его шильдике.

При отсутствии конденсатора нужной емкости допустимо применять любой другой с близким номиналом. При слишком сильном отклонении в меньшую сторону двигатель может не начать вращаться без ручной прокрутки его вала, а затем не будет развивать нужную мощность. При значительном превышении емкости начнется сильный нагрев.

Емкость дополнительного пускового компонента выбирается в два-три раза выше по сравнению с основным. Такая величина обеспечивает максимальный стартовый момент.

Для включения пускового элемента может использоваться как обычная кнопка, так и более сложные схемы.

Косвенное включение

Подключение однофазного двигателя

Основным компонентом схемы косвенного включения является магнитный пускатель, который включается в разрыв между выходом силовой сети и электродвигателем.

Силовые контакты этого блока выполнены как нормально разомкнутые. Магнитный пускатель по величине максимального протекающего через него тока относится к одной из семи нормированных групп. Из-за небольшой мощности однофазных электродвигателей обычно достаточно устройства первой группы, максимальное значение коммутируемого тока которого составляет 10 А.

Управляющая часть катушки предназначена для подключения к сетям с различным напряжением. Наиболее удобным является магнитный пускатель с управлением от 220в переменного тока.

Особенности применения магнитного пускателя

В управляющей части устройства предусмотрено несколько пар контактов, на которых собирается схема релейной автоматики. Один из них всегда является нормально замкнутым, а второй – нормально разомкнутым.

У кнопки «Пуск» рабочим считается нормально разомкнутый контакт, а у кнопки «Стоп» задействован нормально замкнутый элемент.

При выполнении подключения рассматриваемого устройства осуществляются соединения нескольких типов.

Схема подключения однофазного двигателя

Фаза, наряду с входной клеммой, подключается также к входу контакта кнопки «Стоп», а ноль соединяется с входной клеммой катушки, что обеспечивает протекание через нее управляющего тока.

Активный контакт кнопки «Пуск» при работающем двигателе шунтируется аналогичным элементом катушки. Для формирования этой цепи выполняются два дополнительных соединения, схема которых показана на рисунке выше:

  • выход рабочего контакта кнопки «Стоп» параллельно соединяется с контактами выхода кнопки «Пуск» и входа управляющей катушки,
  • выход нормально разомкнутого контакта управляющей катушки параллельно соединяется с ее выходной клеммой и с входом рабочего контакта кнопки «Пуск».

Заключение

Процесс подключения однофазного электромотора к сети 220в не отличается большой сложностью и фактически требует только желания, минимального набора простейших инструментов, наличия схемы соединений и аккуратности в работе. Из расходных материалов нужны только провода. Из-за опасности короткого замыкания и больших величин токов, протекающих через обмотки двигателя, необходимо обязательно выполнять требования техники безопасности и не забывать про старое, но очень действенное правило: «Семь раз отмерь, один раз отрежь».

Однофазный асинхронный электродвигатель

Дмитрий Левкин

  • Однофазный электродвигатель с пусковой обмоткой
    • Конструкция однофазного асинхронного двигателя
    • Принцип работы однофазного двигателя
    • Пуск однофазного двигателя
    • Подключение однофазного двигателя

  • Однофазный электродвигатель с экранированными полюсами
  • Электродвигатель с асимметричным магнитопроводом статора

Конструкция однофазного двигателя с вспомогательной или пусковой обмоткой


Основными компонентами любого электродвигателя являются ротор и статор. Ротор — вращающаяся часть электродвигателя, статор — неподвижная часть электродвигателя, с помощью которого создается магнитное поле для вращения ротора.

Основные части однофазного двигателя: ротор и статор

Статор имеет две обмотки, расположенные под углом 90° относительно друг друга. Основная обмотка называется главной (рабочей) и обычно занимает 2/3 пазов сердечника статора, другая обмотка называется вспомогательной (пусковой) и обычно занимает 1/3 пазов статора.

Двигатель фактически является двухфазным, но так как рабочей является только одна обмотка, электродвигатель называют однофазным.

Ротор обычно представляет из себя короткозамкнутую обмотку, также из-за схожести называемой «беличьей клеткой». Медные или алюминиевые стержни которого с торцов замкнуты кольцами, а пространство между стержнями чаще всего заливается сплавом алюминия. Так же ротор однофазного двигателя может быть выполнен в виде полого немагнитного или полого ферромагнитного цилиндра.

Однофазный двигатель с вспомогательной обмоткой имеет 2 обмотки расположенные перпендикулярно относительно друг друга

Принцип работы однофазного асинхронного двигателя

Для того чтобы лучше понять работу однофазного асинхронного двигателя, давайте рассмотрим его только с одним витком в главной и вспомогательной обмотки.

Проанализируем случай с двумя обмотками имеющими по оному витку

Рассмотрим случай когда в вспомогательной обмотки не течет ток. При включении главной обмотки статора в сеть, переменный ток, проходя по обмотке, создает пульсирующее магнитное поле, неподвижное в пространстве, но изменяющееся от +Фmах до -Фmах.

Остановить

Пульсирующее магнитное поле

Если поместить ротор, имеющий начальное вращение, в пульсирующее магнитное поле, то он будет продолжать вращаться в том же направлении.

Чтобы понять принцип действия однофазного асинхронного двигателя разложим пульсирующее магнитное поле на два одинаковых круговых поля, имеющих амплитуду равную Фmах/2 и вращающихся в противоположные стороны с одинаковой частотой:

,

  • где nпр – частота вращения магнитного поля в прямом направлении, об/мин,
  • nобр – частота вращения магнитного поля в обратном направлении, об/мин,
  • f1 – частота тока статора, Гц,
  • p – количество пар полюсов,
  • n1 – скорость вращения магнитного потока, об/мин

Остановить

Разложение пульсирующего магнитного потока на два вращающихся

Действие пульсирующего поля на вращающийся ротор

Рассмотрим случай когда ротор, находящийся в пульсирующем магнитном потоке, имеет начальное вращение. Например, мы вручную раскрутили вал однофазного двигателя, одна обмотка которого подключена к сети переменного тока. В этом случае при определенных условиях двигатель будет продолжать развивать вращающий момент, так как скольжение его ротора относительно прямого и обратного магнитного потока будет неодинаковым.

Будем считать, что прямой магнитный поток Фпр, вращается в направлении вращения ротора, а обратный магнитный поток Фобр — в противоположном направлении. Так как, частота вращения ротора n2 меньше частоты вращения магнитного потока n1, скольжение ротора относительно потока Фпр будет:

,

  • где sпр – скольжение ротора относительно прямого магнитного потока,
  • n2 – частота вращения ротора, об/мин,
  • s – скольжение асинхронного двигателя

Прямой и обратный вращающиеся магнитные потоки вместо пульсирующего магнитного потока

Магнитный поток Фобр вращается встречно ротору, частота вращения ротора n2 относительно этого потока отрицательна, а скольжение ротора относительно Фобр

,

  • где sобр – скольжение ротора относительно обратного магнитного потока

Запустить

Остановить

Вращающееся магнитное поле пронизывающее ротор

Ток индуцируемый в роторе переменным магнитным полем

Согласно закону электромагнитной индукции прямой Фпр и обратный Фобр магнитные потоки, создаваемые обмоткой статора, наводят в обмотке ротора ЭДС, которые соответственно создают в короткозамкнутом роторе токи I2пр и I2обр. При этом частота тока в роторе пропорциональна скольжению, следовательно:

,

  • где f2пр – частота тока I2пр наводимого прямым магнитным потоком, Гц

,

  • где f2обр – частота тока I2обр наводимого обратным магнитным потоком, Гц

Таким образом, при вращающемся роторе, электрический ток I2обр, наводимый обратным магнитным полем в обмотке ротора, имеет частоту f2обр, намного превышающую частоту f2пр тока ротора I2пр, наведенного прямым полем.

Пример: для однофазного асинхронного двигателя, работающего от сети с частотой f1 = 50 Гц при n1 = 1500 и n2 = 1440 об/мин,

скольжение ротора относительно прямого магнитного потока sпр = 0,04;
частота тока наводимого прямым магнитным потоком f2пр = 2 Гц;
скольжение ротора относительно обратного магнитного потока sобр = 1,96;
частота тока наводимого обратным магнитным потоком f2обр = 98 Гц

Согласно закону Ампера, в результате взаимодействия электрического тока I2пр с магнитным полем Фпр возникает вращающий момент

,

  • где Mпр – магнитный момент создаваемый прямым магнитным потоком, Н∙м,
  • сM — постоянный коэффициент, определяемый конструкцией двигателя

Электрический ток I2обр, взаимодействуя с магнитным полем Фобр, создает тормозящий момент Мобр, направленный против вращения ротора, то есть встречно моменту Мпр:

,

  • где Mобр – магнитный момент создаваемый обратным магнитным потоком, Н∙м

Результирующий вращающий момент, действующий на ротор однофазного асинхронного двигателя,

,

Справка: В следствие того, что во вращающемся роторе прямым и обратным магнитным полем будет наводиться ток разной частоты, моменты сил действующие на ротор в разных направлениях будут не равны. Поэтому ротор будет продолжать вращаться в пульсирующем магнитном поле в том направлении в котором он имел начальное вращение.

Тормозящее действие обратного поля

При работе однофазного двигателя в пределах номинальной нагрузки, то есть при небольших значениях скольжения s = sпр, крутящий момент создается в основном за счет момента Мпр. Тормозящее действие момента обратного поля Мобр — незначительно. Это связано с тем, что частота f2обр много больше частоты f2пр, следовательно, индуктивное сопротивление рассеяния обмотки ротора х2обр = x2sобр току I2обр намного больше его активного сопротивления. Поэтому ток I2обр, имеющий большую индуктивную составляющую, оказывает сильное размагничивающее действие на обратный магнитный поток Фобр, значительно ослабляя его.

,

  • где r2 — активное сопротивление стержней ротора, Ом,
  • x2обр — реактивное сопротивление стержней ротора, Ом.

Если учесть, что коэффициент мощности невелик, то станет, ясно, почему Мобр в режиме нагрузки двигателя не оказывает значительного тормозящего действия на ротор однофазного двигателя.

С помощью одной фазы нельзя запустить ротор

Ротор имеющий начальное вращение будет продолжать вращаться в поле создаваемом однофазным статором

Действие пульсирующего поля на неподвижный ротор

При неподвижном роторе (n2 = 0) скольжение sпр = sобр = 1 и Мпр = Мобр, поэтому начальный пусковой момент однофазного асинхронного двигателя Мп = 0. Для создания пускового момента необходимо привести ротор во вращение в ту или иную сторону. Тогда s ≠ 1, нарушается равенство моментов Мпр и Мобр и результирующий электромагнитный момент приобретает некоторое значение .

Пуск однофазного двигателя. Как создать начальное вращение?

Одним из способов создания пускового момента в однофазном асинхронном двигателе, является расположение вспомогательной (пусковой) обмотки B, смещенной в пространстве относительно главной (рабочей) обмотки A на угол 90 электрических градусов. Чтобы обмотки статора создавали вращающееся магнитное поле токи IA и IB в обмотках должны быть сдвинуты по фазе относительно друг друга. Для получения фазового сдвига между токами IA и IB в цепь вспомогательной (пусковой) обмотки В включают фазосмещающий элемент, в качестве которого используют активное сопротивление (резистор), индуктивность (дроссель) или емкость (конденсатор) [1].

После того как ротор двигателя разгонится до частоты вращения, близкой к установившейся, пусковую обмотку В отключают. Отключение вспомогательной обмотки происходит либо автоматически с помощью центробежного выключателя, реле времени, токового или дифференциального реле, или же вручную с помощью кнопки.

Таким образом, во время пуска двигатель работает как двухфазный, а по окончании пуска — как однофазный.

Подключение однофазного двигателя

С пусковым сопротивлением

Двигатель с расщепленной фазой — однофазный асинхронный двигатель, имеющий на статоре вспомогательную первичную обмотку, смещенную относительно основной, и короткозамкнутый ротор [2].

Однофазный асинхронный двигатель с пусковым сопротивлением — двигатель с расщепленной фазой, у которого цепь вспомогательной обмотки отличается повышенным активным сопротивлением.

Омический сдвиг фаз, биффилярный способ намотки пусковой обмотки

Разное сопротивление и индуктивность обмоток

Для запуска однофазного двигателя можно использовать пусковой резистор, который последовательно подключается к пусковой обмотки. В этом случае можно добиться сдвига фаз в 30° между токами главной и вспомогательной обмотки, которого вполне достаточно для пуска двигателя. В двигателе с пусковым сопротивлением разность фаз объясняется разным комплексным сопротивлением цепей.

Также сдвиг фаз можно создать за счет использования пусковой обмотки с меньшей индуктивностью и более высоким сопротивлением. Для этого пусковая обмотка делается с меньшим количеством витков и с использованием более тонкого провода чем в главной обмотке.

Отечественной промышленностью изготавливается серия однофазных асинхронных электродвигателей с активным сопротивлением в качестве фазосдвигающего элемента серии АОЛБ мощностью от 18 до 600 Вт при синхронной частоте вращения 3000 и 1500 об/мин, предназначенных для включения в сеть напряжением 127, 220 или 380 В, частотой 50 Гц.

С конденсаторным пуском

Двигатель с конденсаторным пуском — двигатель с расщепленной фазой, у которого цепь вспомогательной обмотки с конденсатором включается только на время пуска.

Ёмкостной сдвиг фаз с пусковым конденсатором


Чтобы достичь максимального пускового момента требуется создать круговое вращающееся магнитное поле, для этого требуется чтобы токи в главной и вспомогательной обмотках были сдвинуты друг относительно друга на 90°. Использование в качестве фазосдвигающего элемента резистора или дросселя не позволяет обеспечить требуемый сдвиг фаз. Лишь включение конденсатора определенной емкости позволяет обеспечить фазовый сдвиг 90°.

Среди фазосдвигающих элементов, только конденсатор позволяет добиться наилучших пусковых свойств однофазного асинхронного электродвигателя.

Двигатели в цепь которых постоянно включен конденсатор используют для работы две фазы и называются — конденсаторными. Принцип действия этих двигателей основан на использовании вращающегося магнитного поля.

Двигатель с экранированными полюсами — двигатель с расщепленной фазой, у которого вспомогательная обмотка короткозамкнута.

Статор однофазного асинхронного двигателя с экранированными полюсами обычно имеет явно выраженные полюса. На явно выраженных полюсах статора намотаны катушки однофазной обмотки возбуждения. Каждый полюс статора разделен на две неравные части аксиальным пазом. Меньшую часть полюса охватывает короткозамкнутый виток. Ротор однофазного двигателя с экранированными полюсами — короткозамкнутый в виде «беличьей» клетки.

При включении однофазной обмотки статора в сеть в магнитопроводе двигателя создается пульсирующий магнитный поток. Одна часть которого проходит по неэкранированной Ф’, а другая Ф» — по экранированной части полюса. Поток Ф» наводит в короткозамкнутом витке ЭДС Ek, в результате чего возникает ток Ik отстающий от Ek по фазе из-за индуктивности витка. Ток Ik создает магнитный поток Фk, направленный встречно Ф», создавая результирующий поток в экранированной части полюса Фэ=Ф»+Фk. Таким образом, в двигателе потоки экранированной и неэкранированной частей полюса сдвинуты во времени на некоторый угол.

Пространственный и временной углы сдвига между потоками Фэ и Ф’ создают условия для возникновения в двигателе вращающегося эллиптического магнитного поля, так как Фэ ≠ Ф’.

Пусковые и рабочие свойства рассматриваемого двигателя невысоки. КПД намного ниже, чем у конденсаторных двигателей такой же мощности, что связано со значительными электрическими потерями в короткозамкнутом витке.

Статор такого однофазного двигателя выполняется с ярко выраженными полюсами на не симметричном шихтованном сердечнике. Ротор — короткозамкнутый типа «беличья клетка».

Данный электродвигатель для работы не требует использования фазосдвигающих элементов. Недостатком данного двигателя является низкий КПД.

Основные параметры электродвигателя

Общие параметры для всех электродвигателей

  • Момент электродвигателя
  • Мощность электродвигателя
  • Коэффициент полезного действия
  • Номинальная частота вращения
  • Момент инерции ротора
  • Номинальное напряжение
  • Электрическая постоянная времени

    Библиографический список

  • М. М.Кацман. Электрические машины и электропривод автоматических устройств: Учебник для электротехнических специальностей техникумов.- М.: Высш. шк., 1987.
  • ГОСТ 27471-87 Машины электрические вращающиеся. Термины и определения.

Как запустить трехфазный двигатель от однофазного источника питания?

В зависимости от типа источника питания переменного тока асинхронные двигатели делятся на два типа; трехфазный асинхронный двигатель и однофазный асинхронный двигатель. В большинстве промышленных и сельскохозяйственных приложений трехфазный асинхронный двигатель широко используется по сравнению с однофазным асинхронным двигателем.

Из-за нехватки электроэнергии трехфазное питание не всегда доступно в сельском хозяйстве. При этом одна фаза отключается от группового оперативного выключателя (ГОС). Таким образом, в большинстве случаев доступны две из трех фаз. Но при любом особом расположении невозможна работа трехфазного двигателя от однофазного источника питания.

Как известно, трехфазный асинхронный двигатель является двигателем с самозапуском. Так как обмотка статора трехфазного асинхронного двигателя создает вращающееся магнитное поле. Это создаст фазовый сдвиг на 120˚. Но в случае однофазного асинхронного двигателя индуцируется пульсирующее магнитное поле. Следовательно, однофазный асинхронный двигатель не является самозапускающимся двигателем. Для старта требуется дополнительное вспомогательное оборудование.

  • Связанный пост: Что произойдет, если вы подключите 3-Φ асинхронный двигатель к однофазной сети?

То же самое здесь, нам нужно сделать некоторые дополнительные меры, чтобы привести трехфазный асинхронный двигатель в однофазную сеть. Есть три метода;

  • Использование статического конденсатора (метод фазового сдвига)
  • Использование VFD (преобразователь частоты)
  • Использование поворотного преобразователя

В этой статье мы кратко обсудим каждый метод.

Использование статического конденсатора

При подаче трехфазного переменного тока на статор трехфазного асинхронного двигателя создается сбалансированное вращающееся магнитное поле, изменяющееся во времени на 120° друг от друга. Но в случае однофазного асинхронного двигателя индуцируется пульсирующее магнитное поле. И в этом случае начальный крутящий момент (пусковой момент) не создается. В однофазном асинхронном двигателе дополнительная обмотка используется для создания фазового сдвига. Вместо пусковой обмотки также используется конденсатор или дроссель для создания смещения фаз.

Аналогично этому принципу можно использовать трехфазную обмотку трехфазного асинхронного двигателя и сдвинуть одну обмотку с помощью конденсатора или индуктора. После запуска трехфазного асинхронного двигателя от однофазной сети он постоянно работает с пониженной мощностью. Полезная мощность или КПД двигателя снижается на 2/3 rd от его номинальной мощности.

Этот метод также известен как метод статического преобразователя фазы или метод фазового сдвига или метод перемотки .

В некоторых схемах используются два конденсатора; один для запуска, второй для работы. Емкость пускового конденсатора в 4-5 раз выше по сравнению с рабочим конденсатором. Принципиальная схема такого устройства показана на рисунке ниже.

Пусковой конденсатор используется только для запуска. Он отключится от цепи после запуска. Рабочий конденсатор всегда остается в цепи. Здесь, как показано на рисунке, двигатель соединен звездой. И оба конденсатора подключены между двумя фазами обмотки.

Однофазное питание имеет две клеммы. Одна клемма соединена с последовательной комбинацией обмотки, а вторая клемма соединена с оставшейся клеммой трехфазной обмотки. Иногда используется только один конденсатор. Такой тип расположения показан на рисунке ниже.

В большинстве случаев небольшие асинхронные двигатели подключаются по схеме «звезда». Здесь мы взяли трехфазный асинхронный двигатель, соединенный звездой. Для повышения уровня напряжения используется автотрансформатор. Потому что уровень напряжения трехфазного питания составляет 400-440 В, а уровень напряжения однофазного питания составляет 200-230 В для 50 Гц питания.

Мы можем использовать эту схему без использования автотрансформатора. В этом случае уровень напряжения остается на уровне однофазного питания (200-230 В). В этом состоянии двигатель также будет работать. Но поскольку напряжение низкое, крутящий момент, создаваемый двигателем, низкий. Эту проблему можно решить, подключив дополнительный пусковой конденсатор (рис. 1). Этот конденсатор известен как пусковой конденсатор или конденсатор фазовой синхронизации.

Если вам нужно изменить направление вращения двигателя, измените схему подключения, как показано на рисунке ниже.

Ограничения:

Ограничения метода статического конденсатора перечислены ниже.

  • Выходная мощность трехфазного асинхронного двигателя уменьшена на 2/3 rd от полной мощности нагрузки.
  • Этот метод можно использовать для временных целей. Он не подходит для непрерывно работающих приложений.
  • В этом методе эффект загрузки постоянно состоит из двух фаз. Это сократит срок службы двигателя.

Похожие сообщения:

  • Что происходит с трехфазным двигателем, когда 1 из 3 фаз теряется?
  • Что происходит с трехфазным двигателем при потере двух из трех фаз?

Использование ЧРП

ЧРП означает частотно-регулируемый привод . Это устройство, которое используется для управления двигателем (регулируемая скорость при работе). ЧРП регулирует входной ток двигателя в соответствии с потребностью (нагрузкой). Это устройство позволяет двигателю эффективно работать при различных условиях нагрузки.

Этот метод лучше всего подходит для работы трехфазного асинхронного двигателя с однофазным питанием. В этом случае доступное однофазное питание подается на вход частотно-регулируемого привода. VFD преобразует однофазное питание в постоянный ток путем выпрямления. Опять же, он преобразует источник постоянного тока в трехфазный источник переменного тока. А частота трехфазного выхода регулируется частотно-регулируемым приводом.

Следовательно, доступная мощность (однофазная) подается на ЧРП, а выходная мощность (трехфазная) ЧРП используется в качестве входа трехфазного двигателя. Это также устраняет бросок тока во время запуска двигателя. Он также обеспечивает плавный пуск двигателя от состояния покоя до полной скорости. Существуют различные типы и характеристики ЧРП для различных применений и двигателей. Вам нужно всего лишь выбрать подходящий частотно-регулируемый привод для ваших приложений.

Стоимость частотно-регулируемого привода превышает стоимость статического конденсатора. Но это дает лучшую производительность двигателя. Стоимость частотно-регулируемого привода меньше, чем у преобразователя с вращающейся фазой. Таким образом, в большинстве приложений частотно-регулируемый привод используется вместо вращающихся преобразователей фазы.

Преимущества ЧРП:

Преимущества использования ЧРП для работы трехфазного асинхронного двигателя от однофазного источника питания.

  • Регулируя параметр частотно-регулируемого привода, мы можем добиться плавного пуска двигателя.
  • Легко работать с максимальной производительностью и большей эффективностью.
  • Имеет функцию самодиагностики, которая используется для защиты двигателя от перенапряжения, перегрузки, перегрева и т.д.
  • Запрограммирован на автоматическое управление двигателем.

Использование вращающегося преобразователя фаз

Другой используемый метод заключается в работе трехфазного асинхронного двигателя от однофазного источника питания с использованием вращательного преобразователя фаз (RPC). Этот процесс очень дорогой. Это даст наилучшую производительность по сравнению со всеми другими методами. Потому что поворотный фазоинвертор выдает на выходе идеальный трехфазный сигнал. Кроме того, он не используется широко, поскольку стоимость вращающегося преобразователя очень высока.

Схема подключения поворотного преобразователя фаз показана на рисунке ниже.

Похожие сообщения:

  • Разница между однофазным и трехфазным асинхронным двигателем
  • Разница между однофазным и трехфазным источником питания
  • Почему трехфазное питание? Почему не 6, 12 или больше для силовой передачи?
  • Если 1-фазное питание 230 В, почему 3-фазное 400 В, а не 690 В?
  • Преимущества трехфазной системы по сравнению с однофазной системой
  • Значения трехфазного тока в трехфазной системе
  • Соединение звездой (Y): значения трехфазной мощности, напряжения и тока
  • Соединение треугольником (Δ): 3-фазная мощность, значения напряжения и тока

Показать полную статью

Связанные статьи

Кнопка «Вернуться к началу»

Однофазные двигатели переменного тока (часть 2)



(продолжение с части 1)

ОПРЕДЕЛЕНИЕ НАПРАВЛЕНИЯ ВРАЩЕНИЯ РАСПРЕДЕЛЕННЫХ ДВИГАТЕЛЕЙ

==

ФГР. 26 Определение направления вращения двухфазного двигателя.

==

ФГР. 27 Двигатель с конденсаторным пуском и питанием от конденсатора.

==

ФГР. 28 Конденсаторно-пусковой двигатель конденсаторного типа с дополнительным пуском
конденсатор.

==

ФГР. 29 Возможные пусковые реле.

==

ФГР. 30 Возможное подключение реле.

==

Направление вращения однофазного двигателя обычно можно определить
когда двигатель подключен.

Направление вращения определяется лицом к задней или задней части
мотор. ФГР. 26 показана схема подключения для вращения. Если по часовой стрелке
желательно вращение, T5 должен быть подключен к T1. Если вращение против часовой стрелки
желательно, T8 (или T6) должен быть подключен к T1. Эта схема подключения
предполагается, что двигатель содержит два набора рабочих и два набора пусковых обмоток.
Тип используемого двигателя будет определять фактическое соединение.

Например, FGR. 24 показано подключение двигателя с двумя рабочими обмотками.
и только одна пусковая обмотка. Если бы этот двигатель был подключен по часовой стрелке
вращения, клемма T5 должна быть подключена к T1, а клемма T8
должен быть подключен к T2 и T3. Если вращение против часовой стрелки
желательно, клемма T8 должна быть подключена к T1, а клемма T5
должен быть подключен к T2 и T3.

КОНДЕНСАТОР-СТАРТ ДВИГАТЕЛИ С КОНДЕНСАТОРОМ

Хотя двигатель с конденсаторным пуском и питанием от конденсатора представляет собой двигатель с расщепленной фазой,
он работает по другому принципу, чем индукционный запуск с сопротивлением.
двигатель или асинхронный двигатель с конденсаторным пуском. Конденсатор-старт-конденсатор-бег
двигатель сконструирован таким образом, что его пусковая обмотка остается под напряжением
всегда. Конденсатор включен последовательно с обмоткой, чтобы обеспечить
непрерывный опережающий ток в пусковой обмотке (ФГР. 27). Поскольку
пусковая обмотка все время остается под напряжением, центробежный переключатель не
необходимо отключить пусковую обмотку при приближении двигателя к полной скорости.

Конденсатор, используемый в этом типе двигателя, обычно представляет собой маслонаполненный конденсатор.
тип, так как он предназначен для постоянного использования. Исключение из этого общего
правило, это небольшие двигатели мощностью в несколько лошадиных сил, используемые в реверсивных потолках.
фанаты. Эти вентиляторы имеют низкое потребление тока и используют электролитический конденсатор переменного тока.
чтобы помочь сэкономить место.

Двигатель с конденсаторным пуском фактически работает по принципу
вращающегося магнитного поля в статоре. Так как и беговые, и пусковые обмотки
остаются под напряжением все время, магнитное поле статора продолжает вращаться
и двигатель работает как двухфазный двигатель. У этого мотора отличный пуск
и рабочий крутящий момент. Он тихий в работе и имеет высокий КПД.
Поскольку конденсатор все время остается включенным в цепь,
коэффициент мощности двигателя близок к единице.

Хотя двигатель с конденсаторным пуском не требует центробежного
переключатель для отключения конденсатора от пусковой обмотки, некоторые двигатели
используйте второй конденсатор в течение пускового периода, чтобы улучшить запуск
крутящий момент (ФГР. 28).

Хороший пример этого можно найти на компрессоре системы кондиционирования воздуха.
блок кондиционирования, предназначенный для работы от однофазной сети. Если
двигатель не герметичен, для отключения используется центробежный выключатель
пусковой конденсатор из цепи, когда двигатель достигает примерно
75% от номинальной скорости. Однако герметичные двигатели должны использовать некоторые
тип внешнего переключателя для отключения пускового конденсатора от цепи.

Двигатель с конденсаторным пуском, работающий от конденсатора, или постоянный разделенный конденсатор
двигатель, как его обычно называют в кондиционерах и холодильных установках.
промышленность, как правило, использует потенциальное пусковое реле для отключения
пусковой конденсатор, когда нельзя использовать центробежный переключатель. потенциал
пусковое реле, ФГР. 29А и В, работает, обнаруживая увеличение
напряжение, возникающее в пусковой обмотке при работе двигателя. Схема
схема потенциальной цепи пускового реле показана на FGR. 30. В этой схеме
реле потенциала служит для отключения пускового конденсатора от цепи
когда двигатель достигает примерно 75% своей полной скорости. Пусковое реле
Катушка SR включена параллельно пусковой обмотке двигателя.
Нормально замкнутый контакт SR включен последовательно с пусковым конденсатором.
Когда контакт термостата замыкается, питание подается как на рабочий, так и на
пусковые обмотки. В этот момент подключены пусковой и рабочий конденсаторы.
в цепи.

Когда ротор начинает вращаться, его магнитное поле индуцирует напряжение в
пусковая обмотка, создающая более высокое напряжение на пусковой обмотке
чем приложенное напряжение. Когда двигатель разогнался примерно до 75% от
полной скорости, напряжение на пусковой обмотке достаточно велико, чтобы
подайте питание на катушку потенциального реле. Это приводит к нормально закрытому
Контакт СР разомкнуть и отключить пусковой конденсатор от цепи.
Поскольку пусковая обмотка этого двигателя никогда не отключается от
питающей сети, катушка потенциального пускового реле остается под напряжением
пока двигатель работает.

===

ФГР. 31 Заштрихованный столб.

ФГР. 32 Затеняющая катушка препятствует изменению потока при увеличении тока.

ФГР. 34 Затеняющая катушка препятствует изменению потока при уменьшении тока.

ФГР. 33 Существует противодействие магнитному потоку, когда ток не
меняется.

====

ЭЛЕКТРОДВИГАТЕЛИ С ЭКРАНИРОВАННЫМИ ПОЛЮСАМИ

Асинхронный двигатель с расщепленными полюсами популярен из-за своей простоты.
и долгая жизнь. Этот двигатель не содержит пусковых обмоток или центробежного выключателя.
Он содержит короткозамкнутый ротор и работает по принципу вращающегося
магнитное поле, создаваемое затеняющей катушкой, намотанной с одной стороны каждого полюса
кусок.

Двигатели с экранированными полюсами обычно представляют собой двигатели с дробной мощностью, используемые для
приложения с низким крутящим моментом, такие как работающие вентиляторы и воздуходувки.

ЗАТЕМНЯЮЩАЯ КАТУШКА

Экранирующая катушка намотана на один конец полюсного наконечника (FGR. 31).
На самом деле это большая петля из медной проволоки или медная лента. Два конца
соединяются, образуя полную цепь. Затеняющая катушка действует как
трансформатор с короткозамкнутой вторичной обмоткой. Когда ток переменного тока
форма волны увеличивается от нуля к своему положительному пику, магнитное поле
создается в полюсном наконечнике. Когда магнитные линии потока пересекают
катушка затенения, в катушке индуцируется напряжение. Так как катушка низкая
короткое замыкание сопротивления, в петле протекает большой ток.
Этот ток вызывает противодействие изменению магнитного потока (FGR.
32). Пока напряжение индуцируется в затеняющей катушке, будет
сопротивление изменению магнитного потока.

Когда переменный ток достигает своего пикового значения, он больше не изменяется,
и на затеняющую катушку не подается напряжение. Поскольку нет
ток течет в затеняющей катушке, нет сопротивления магнитному
поток. Магнитный поток полюсного наконечника теперь однороден поперек полюса.
лицо (ФГР. 33).

Когда переменный ток начинает уменьшаться от пикового значения обратно к
нуля, магнитное поле полюсного наконечника начинает разрушаться. напряжение
снова индуцируется в затеняющую катушку. Это индуцированное напряжение создает
ток, противодействующий изменению магнитного потока (ФГР. 34). Это вызывает
магнитный поток должен быть сосредоточен в заштрихованной части полюса
кусок.

Когда переменный ток проходит через ноль и начинает увеличиваться в
отрицательное направление, происходит тот же набор событий, за исключением того, что полярность
магнитного поля меняется на противоположное. Если бы эти события рассматривались в
в быстром порядке магнитное поле будет вращаться поперек лица.
полюсного наконечника.

==

ФГР. 35 Четырехполюсный асинхронный двигатель с расщепленными полюсами.

==

ФГР. 36 Обмотка статора и ротор асинхронного двигателя с расщепленными полюсами. .

===

СКОРОСТЬ

Скорость асинхронного двигателя с расщепленными полюсами определяется тем же
факторы, определяющие синхронную скорость других асинхронных двигателей:
частота и количество полюсов статора.

Двигатели с экранированными полюсами обычно наматываются как четырех- или шестиполюсные. ФГР.
35 показан чертеж четырехполюсного асинхронного двигателя с расщепленными полюсами.

ОБЩИЕ ЭКСПЛУАТАЦИОННЫЕ ХАРАКТЕРИСТИКИ

Двигатель с расщепленными полюсами содержит стандартный короткозамкнутый ротор. Количество
создаваемого крутящего момента определяется силой магнитного поля
статора, напряженность магнитного поля ротора и
разность фаз между потоками ротора и статора. Индукция заштрихованного полюса
двигатель имеет низкий пусковой и рабочий крутящий момент.

Направление вращения определяется направлением, в котором
вращающееся магнитное поле перемещается по поверхности полюса. Ротор вращается.
направление, указанное стрелкой в ​​FGR. 35.

Направление можно изменить, сняв обмотку статора и повернув
это вокруг. Однако это не является общепринятой практикой. Как правило,
Асинхронный двигатель с расщепленными полюсами считается нереверсивным. ФГР. 36
показаны обмотка статора и ротор асинхронного двигателя с расщепленными полюсами.

==

ФГР. 37 Трехскоростной двигатель.

==

МНОГОСКОРОСТНЫЕ ДВИГАТЕЛИ

Существует два основных типа многоскоростных однофазных двигателей. Один из них
последовательный тип полюса, а другой — специально намотанный пусковой конденсатор.
конденсаторный двигатель или асинхронный двигатель с расщепленными полюсами. Последующий полюс
однофазный двигатель работает за счет изменения направления тока через переменный
полюсов и увеличение или уменьшение общего количества полюсов статора.
двигатель с последовательным полюсом используется там, где необходимо поддерживать высокий вращающий момент
на разных скоростях; например, в двухскоростных компрессорах для центрального
кондиционеры.

ДВИГАТЕЛИ ВЕНТИЛЯТОРОВ МНОГОСКОРОСТНЫЕ

Многоскоростные двигатели вентиляторов

используются уже много лет. Они, как правило,
наматывать на два-пять ступеней скорости и включать вентиляторы и короткозамкнутую клетку
воздуходувки. Схематический чертеж трехскоростного двигателя показан на FGR. 37.
Обратите внимание, что рабочая обмотка имеет ответвления для получения низкого, среднего и
высокоскоростной. Пусковая обмотка включена параллельно рабочей обмотке.
раздел. Другой конец провода пусковой обмотки подключается к внешнему
маслонаполненный конденсатор. Этот двигатель изменяет скорость, вводя индуктивность
последовательно с рабочей обмоткой. Фактическая рабочая обмотка для этого двигателя
между клеммами, помеченными как высокий и общий. Обмотка показана между
высокий и средний включены последовательно с основной обмоткой.

Когда поворотный переключатель подключен к положению средней скорости,
индуктивное сопротивление этой катушки ограничивает величину тока, протекающего через
рабочая обмотка. При уменьшении тока рабочей обмотки сила
его магнитного поля уменьшается, и двигатель создает меньший крутящий момент. Этот
вызывает большее скольжение, и скорость двигателя снижается.

Если поворотный переключатель переведен в нижнее положение, увеличивается индуктивность.
включен последовательно с рабочей обмоткой. Это приводит к меньшему течению тока
через рабочую обмотку и другое снижение крутящего момента. Когда крутящий момент
снижается, скорость двигателя снова снижается.

Общие скорости для четырехполюсного двигателя этого типа: 1625, 1500 и 1350.
об/мин. Обратите внимание, что этот двигатель не имеет широкого диапазона скоростей, как
было бы в случае с последующим двигателем полюса. Большинство асинхронных двигателей
перегрев и повреждение обмотки двигателя, если скорость была снижена до этой
степень. Однако этот тип двигателя имеет обмотки с гораздо более высоким импедансом.
чем большинство моторов. Рабочие обмотки большинства двигателей с расщепленной фазой имеют провод
сопротивление от 1 до 4 Ом. Этот двигатель обычно имеет сопротивление
10-15 Ом в рабочей обмотке. Это высокое сопротивление обмоток.
что позволяет эксплуатировать двигатель таким образом без повреждений.

Поскольку этот двигатель предназначен для замедления при добавлении нагрузки, он не
используется для управления нагрузками с высоким крутящим моментом и нагрузками с низким крутящим моментом, такими как вентиляторы и
воздуходувки.

ОДНОФАЗНЫЕ СИНХРОННЫЕ ДВИГАТЕЛИ

Однофазные синхронные двигатели малы и развивают только дробные
Лошадиные силы. Они работают по принципу вращающегося магнитного поля.
развиваемый статором с экранированными полюсами. Хотя они будут работать синхронно
скорости, они не требуют постоянного тока возбуждения. Они используются там, где постоянно
требуется скорость, например, в часах, таймерах и записывающих устройствах,
и как движущая сила для маленьких вентиляторов, потому что они маленькие и недорогие
для изготовления. Существует два основных типа синхронных двигателей: Уоррена,
или двигатель General Electric, и двигатель Holtz. Эти двигатели также упоминаются
в качестве двигателей с гистерезисом.

==

ФГР. 38 Двигатель Уоррена.

==

ФГР. 39 мотор Хольц.

==

ФГР. 40 Якорь и щетки универсального двигателя.

==

ФГР. 41 Компенсационная обмотка включена последовательно с последовательностью
обмотка возбуждения.

==

УОРРЕН МОТОРС

Двигатель Уоррена состоит из многослойного сердечника статора и одного
катушка. Катушка обычно намотана для работы с напряжением 120 В переменного тока. Ядро содержит
два полюса, которые разделены на две секции каждый.

Половина каждого полюсного наконечника содержит экранирующую катушку для создания вращающегося
магнитное поле (ФГР. 38). Поскольку статор разделен на два полюса,
скорость синхронного поля 3600 об/мин при подключении к 60 Гц.

Разница между двигателем Уоррена и Хольца заключается в типе ротора
использовал. Ротор двигателя Уоррена изготовлен путем штабелирования закаленных
стальные пластины на вал ротора. Эти диски имеют высокий гистерезис
потеря. Пластины образуют две перекладины для ротора. Когда питание подключено
к двигателю вращающееся магнитное поле индуцирует напряжение в роторе,
и создается сильный пусковой момент, заставляющий ротор ускоряться
до почти синхронной скорости. Как только двигатель разогнался почти до синхронного
скорости поток вращающегося магнитного поля следует по пути минимума
сопротивление (магнитное сопротивление) через две перекладины. Это вызывает
ротор синхронизируется с вращающимся магнитным полем, а двигатель
работает на 3600 об/мин. Эти двигатели часто используются с небольшими зубчатыми передачами.
снизить скорость до нужного уровня.

ХОЛЬЦ МОТОРС

В двигателе Holtz используется другой тип ротора (FGR. 39). Этот ротор
вырезается таким образом, что образуется шесть пазов. Эти слоты образуют шесть
выступающие (выступающие или выступающие) полюса ротора. Обмотка с короткозамкнутым ротором
строится путем вставки металлического стержня в нижней части каждой щели. Когда
питание подключено к двигателю, короткозамкнутая обмотка обеспечивает
крутящий момент, необходимый для запуска вращения ротора. Когда ротор приближается
синхронная скорость, выступающие полюса синхронизируются с полюсами поля
каждый полупериод. Это обеспечивает скорость вращения ротора 1200 об/мин (одна треть от
синхронная скорость) для двигателя.

УНИВЕРСАЛЬНЫЕ МОТОРС

Универсальный двигатель часто называют двигателем переменного тока. это
очень похож на двигатель серии постоянного тока по своей конструкции, поскольку он содержит
намоточная арматура и кисти (ФГР. 40). Однако универсальный двигатель
добавление компенсационной обмотки. Если бы двигатель постоянного тока был подключен
к переменному току двигатель будет работать плохо по нескольким причинам.
Обмотки якоря будут иметь большое индуктивное сопротивление.
при подключении к переменному току. Кроме того, полюса поля
большинство машин постоянного тока содержат цельнометаллические полюсные наконечники. Если бы поле было связано
к переменному току большое количество энергии будет потеряно из-за индукции вихревых токов
в полюсных наконечниках. Универсальные двигатели содержат многослойный сердечник для предотвращения
Эта проблема. Компенсационная обмотка намотана вокруг статора и функционирует
для противодействия индуктивному сопротивлению в обмотке якоря.

Универсальный двигатель назван так потому, что может работать от переменного или постоянного тока.
Напряжение. При работе от постоянного тока компенсационная обмотка
включается последовательно с последовательной обмоткой возбуждения (ФГР. 41).

==

ФГР. 42 Кондуктивная компенсация.

==

ФГР. 43 Индуктивная компенсация.

==

ФГР. 44 Использование поля серии для установки кистей в нейтральной плоскости
должность.

==

ПОДКЛЮЧЕНИЕ КОМПЕНСАЦИОННОЙ ОБМОТКИ ДЛЯ ПЕРЕМЕННОГО ТОКА

Когда универсальный двигатель работает от сети переменного тока, компенсирующий
обмотка может быть подключена двумя способами. Если он соединен последовательно с
арматура, как показано на FGR. 42, он известен как кондуктивная компенсация.

Компенсационная обмотка также может быть подключена путем замыкания ее выводов между собой
как показано в FGR. 43. При таком соединении обмотка действует как
закороченная вторичная обмотка трансформатора. Наведенный ток позволяет
обмотка для работы при таком подключении. Эта связь известна
как индуктивная компенсация. Индуктивную компенсацию нельзя использовать, когда
двигатель подключен к постоянному току.

НЕЙТРАЛЬНЫЙ САМОЛЕТ

Поскольку универсальный двигатель содержит обмотку якоря, коллектор и
щетки, щетки должны быть установлены в положение нейтральной плоскости. Этот
можно сделать в универсальном двигателе аналогично настройке
нейтральная плоскость машины постоянного тока. При установке щеток в нейтральное положение
положение плоскости в универсальном двигателе, последовательном или компенсирующем
можно использовать обмотку. Чтобы установить щетки в положение нейтральной плоскости с помощью
к якорю подключена последовательная обмотка (ФГР. 44) переменного тока
ведет. Вольтметр подключен к последовательной обмотке. Тогда напряжение
применяется к арматуре. Затем положение щетки перемещается до тех пор, пока вольтметр не
соединенное с полем серии достигает нулевой позиции. (Нулевая позиция
достигается, когда вольтметр достигает своей нижней точки. )

===

ФГР. 45: Использование компенсационной обмотки для установки щеток в нейтральную плоскость
должность.

===

Если компенсационная обмотка используется для установки нейтральной плоскости, переменная
к якорю снова подключают ток и подключают вольтметр
к компенсационной обмотке (ФГР. 45). Затем подается переменный ток
к якорю, а щетки перемещают до тех пор, пока вольтметр не покажет
максимальное или пиковое напряжение.

РЕГУЛИРОВКА СКОРОСТИ

Регулировка скорости универсального двигателя очень плохая. Так как это
серийный двигатель, он имеет такую ​​же плохую регулировку скорости, как и серийный двигатель постоянного тока.
Если универсальный двигатель подключен к легкой нагрузке или без нагрузки, его скорость
практически неограничен. Нет ничего необычного в том, что этот двигатель работает на
несколько тысяч оборотов в минуту. Универсальные двигатели используются в
количество портативных приборов, где высокая мощность и легкий вес
необходимые, такие как бурильные машины, профессиональные пилы и пылесосы. Универсальный
двигатель способен производить высокую мощность для своего размера и веса, потому что
своей высокой скоростью работы.

ИЗМЕНЕНИЕ НАПРАВЛЕНИЯ ВРАЩЕНИЯ

Направление вращения универсального двигателя можно изменить в
так же, как изменение направления вращения двигателя постоянного тока.
Чтобы изменить направление вращения, измените выводы якоря относительно
к полевым ведет.

ОБЗОР

• Не все однофазные двигатели работают по принципу вращающегося магнита.
поле.

• Двигатели с расщепленной фазой запускаются как двухфазные, производя противофазный сигнал.
условие тока в рабочей обмотке и тока в пусковой
обмотка.

• Сопротивление провода в пусковой обмотке сопротивления-пуска
асинхронный двигатель используется для создания разности фаз между
ток в пусковой обмотке и ток в рабочей обмотке.

• В асинхронном двигателе с пусковым конденсатором используется электролитический конденсатор переменного тока.
увеличить разность фаз между пусковым и рабочим током.
Это приводит к увеличению пускового момента.

• Максимальный пусковой момент для двигателя с расщепленной фазой развивается, когда
Пусковой ток обмотки и рабочий ток обмотки не совпадают по фазе на 90° с
друг друга.

• Большинство асинхронных двигателей с пуском от сопротивления и асинхронных двигателей с пуском от конденсатора
двигатели используют центробежный переключатель для отключения пусковых обмоток, когда
двигатель достигает примерно 75% скорости полной нагрузки.

• Двигатель с конденсаторным пуском работает как двухфазный двигатель.
потому что и пусковая, и рабочая обмотки остаются под напряжением во время работы двигателя.

• В большинстве двигателей с конденсаторным пуском используется маслонаполненный конденсатор переменного тока.
включен последовательно с пусковой обмоткой.

• Конденсатор пускового двигателя с конденсатором помогает исправить
коэффициент мощности.

• Асинхронные двигатели с экранированными полюсами работают по принципу вращающегося
магнитное поле.

• Создается вращающееся магнитное поле асинхронного двигателя с расщепленными полюсами.
путем размещения затеняющих петель или катушек на одной стороне полюсного наконечника.

• Синхронная скорость возбуждения однофазного двигателя определяется
число полюсов статора и частота приложенного напряжения.

• Двигатели с последовательным расположением полюсов используются, когда требуется изменение скорости двигателя.
и должен поддерживаться высокий крутящий момент.

• Многоскоростные двигатели вентиляторов сконструированы путем последовательного соединения обмоток.
с основной рабочей обмоткой.

• Многоскоростные двигатели вентиляторов имеют обмотки статора с высоким импедансом для предотвращения
их от перегрева при снижении скорости.

• Направление вращения двигателей с расщепленной фазой изменяется путем реверсирования
пусковая обмотка по отношению к рабочей обмотке.

• Двигатели с экранированными полюсами обычно считаются нереверсивными.

• Существует два типа однофазных синхронных двигателей: Уоррена и
Хольц.

• Однофазные синхронные двигатели иногда называют двигателями с гистерезисом.

• Двигатель Уоррена работает со скоростью 3600 об/мин.

• Двигатель Holtz работает со скоростью 1200 об/мин.

• Универсальные двигатели работают от постоянного или переменного тока.

• Универсальные двигатели содержат обмотку якоря и щетки.

• Универсальные двигатели также называются двигателями переменного тока.

• Универсальные двигатели имеют компенсирующую обмотку, которая помогает преодолеть
реактивное сопротивление.

• Направление вращения универсального двигателя можно изменить путем реверсирования.
выводы якоря по отношению к проводам возбуждения.

ВИКТОРИНА

1. Какие существуют три основных типа двигателей с расщепленной фазой?

2. Напряжения двухфазной системы на сколько градусов не совпадают по фазе
друг с другом?

3. Как соединены пусковая и рабочая обмотки двухфазного двигателя
по отношению друг к другу?

4. Чтобы обеспечить максимальный пусковой момент в двигателе с расщепленной фазой,
на сколько градусов должны быть сдвинуты по фазе пусковые и рабочие токи обмотки
быть друг с другом?

5. В чем преимущество асинхронного двигателя с конденсаторным пуском по сравнению с
асинхронный двигатель с пусковым сопротивлением?

6. На сколько градусов в среднем не совпадают по фазе
пусковой и рабочий токи обмотки асинхронного двигателя с пусковым сопротивлением?

7. Какое устройство используется для отключения пусковых обмоток по цепи
в большинстве негерметичных асинхронных двигателей с конденсаторным пуском?

8. Почему двухфазный двигатель продолжает работать после пусковых обмоток
были отключены от цепи?

9. Как изменить направление вращения двигателя с расщепленной фазой?

10. Если двухфазный двигатель с двойным напряжением должен работать на высоком напряжении,
как рабочие обмотки соединены друг с другом?

11. При определении направления вращения двухфазного двигателя
смотреть на двигатель спереди или сзади?

12. Какой тип двигателя с расщепленной фазой обычно не содержит центробежного
выключатель?

13. Принцип работы конденсаторно-пускового конденсатора
запустить мотор?

14. Что заставляет магнитное поле вращаться при индукции с заштрихованными полюсами?
двигатель?

15. Как изменить направление вращения асинхронного двигателя с расщепленными полюсами?
быть изменен?

16. Как изменяется скорость последовательного полюсного двигателя?

17. Почему двигатель многоскоростного вентилятора может работать на более низкой скорости, чем большинство
асинхронные двигатели без вреда для обмотки двигателя?

18. Какова скорость работы двигателя Уоррена?

19. Какова скорость работы двигателя Holtz?

20. Почему двигатель серии переменного тока часто называют универсальным двигателем?

21. Какова функция компенсационной обмотки?

22. Как меняется направление вращения универсального двигателя?

23. Когда двигатель подключен к напряжению постоянного тока, как должен компенсировать
обмотка должна быть подключена? 24. Объясните, как установить нейтральное положение плоскости
кистей с помощью поля серии.

25. Объясните, как установить положение нейтральной плоскости с помощью компенсирующего
обмотка.

ПРАКТИЧЕСКОЕ ПРИМЕНЕНИЕ:

Вы работаете электриком, и вас вызвали на дом
установить скважинный насос. Хозяин дома купил насос, но не
не знаю как его подключить. Вы открываете крышку соединительного разъема и
обнаружите, что двигатель содержит 8 клеммных выводов, помеченных от T1 до T8.
Двигатель должен быть подключен к сети 240 В. В настоящее время Т-провода подключены
следующим образом: Т1, Т3, Т5 и Т7 соединены вместе; и Т2, Т4, Т6 и
T8 соединены вместе. Линия L1 подключена к группе терминалов
с T1, а линия L2 подключена к группе терминалов с T2. Является
нужно менять провода для работы на 240 В? Если да, то как следует
они связаны?

ОДНОФАЗНЫЕ АИНХАРНЫЕ ДВИГАТЕЛИ (электродвигатели)

1.2
Существует много типов однофазных электродвигателей. В этом разделе обсуждение будет ограничено теми типами, которые наиболее распространены для интегральных двигателей мощностью 1 л.с. и выше.
В промышленных применениях по возможности следует использовать трехфазные асинхронные двигатели. В целом трехфазные электродвигатели имеют более высокий КПД и коэффициент мощности и более надежны, поскольку не имеют пусковых выключателей и конденсаторов.
В тех случаях, когда трехфазные электродвигатели недоступны или не могут быть использованы из-за источника питания, для промышленного и коммерческого применения рекомендуются следующие типы однофазных двигателей: (1) двигатель с конденсаторным пуском, (2 ) двигатель с двухзначным конденсатором и (3) двигатель с постоянным раздельным конденсатором.
Краткое сравнение характеристик однофазных и трехфазных асинхронных двигателей поможет лучше понять, как работают однофазные двигатели:
1. Трехфазные двигатели имеют заблокированный крутящий момент, поскольку в состоянии покоя в воздушном зазоре имеется вращающееся поле. . Однофазный двигатель не имеет вращающегося поля в состоянии покоя и, следовательно, не развивает крутящий момент с заблокированным ротором. Вспомогательная обмотка необходима для создания вращающегося поля, необходимого для запуска. В однофазном двигателе со встроенным двигателем это часть сети RLC.
2. Ток ротора и потери в роторе на холостом ходу в трехфазном двигателе незначительны. Однофазные двигатели имеют значительный ток ротора и потери ротора на холостом ходу.
3. Для заданного пробивного момента однофазному двигателю требуется значительно больший поток и больше активного материала, чем эквивалентному трехфазному двигателю.
4. Сравнение потерь между однофазными и трехфазными двигателями показано на рис. 1.11. Обратите внимание на значительно более высокие потери в однофазном двигателе.
Общие характеристики этих типов однофазных асинхронных двигателей следующие.
1.2.1


Двигатели с конденсаторным пуском

Двига конденсатор и пусковой выключатель для отключения вспомогательной обмотки от источника питания после пуска. На рис. 1.12 представлена ​​принципиальная схема двигателя с конденсаторным пуском. Наиболее часто используемый тип пускового выключателя представляет собой выключатель с центробежным приводом, встроенный в двигатель. Рисунок

РИСУНОК 1.11 Сравнение процентных потерь однофазных и трехфазных двигателей.

РИСУНОК 1.12 Однофазный двигатель с пусковым конденсатором.
1.13 представляет собой однофазный электродвигатель промышленного качества с защитой от капель и конденсаторным пуском; обратите внимание на центробежный механизм переключения.
Однако в качестве пусковых выключателей используются и другие типы устройств, такие как реле, чувствительные к току и напряжению. Совсем недавно были разработаны твердотельные переключатели, которые использовались для

РИСУНОК 1.13 Однофазный двигатель с пусковым конденсатором. (Предоставлено компанией Magnetek, Сент-Луис, Миссури.)
ограниченная часть. Твердотельный коммутатор станет коммутатором будущего, поскольку он совершенствуется, а его стоимость снижается.
Все выключатели остаются замкнутыми и поддерживают работу цепи вспомогательной обмотки до тех пор, пока двигатель не запустится и не разгонится приблизительно до 80 % скорости при полной нагрузке. На этой скорости переключатель размыкается, отключая цепь вспомогательной обмотки от источника питания.
Затем двигатель работает от основной обмотки как асинхронный двигатель. Типичные характеристики скорости и момента для двигателя с конденсаторным пуском показаны на рис. 1. 14. Обратите внимание на изменение крутящего момента двигателя в точке перехода, в которой срабатывает пусковой переключатель.
Типовые рабочие характеристики для двигателей с интегральной мощностью, 1800 об/мин, конденсаторным пуском, асинхронными двигателями показаны в таблице 1.6. Для этих однофазных двигателей будет значительно больший разброс значений крутящего момента при заторможенном роторе, пробивного момента и тягового момента, чем для сопоставимых трехфазных двигателей, и такие же различия существуют для эффективности и коэффициента мощности. (ПФ). Обратите внимание, что подтягивающий момент является фактором в однофазных двигателях для обеспечения пуска при нагрузках с высокой инерцией или с трудным пуском. Поэтому важно знать характеристики конкретного двигателя с конденсаторным пуском, чтобы убедиться, что он подходит для применения.
1.2.2

Двигатели с двухзначным конденсатором

Двигатели с двухзначным конденсатором представляют собой конденсаторный двигатель с различными значениями емкости для запуска и работы. Очень часто этот тип двигателя упоминается как двигатель с конденсаторным пуском и работой с конденсатором.
Изменение значения емкости от пускового режима к рабочему происходит автоматически с помощью пускового переключателя, который используется для двигателей с конденсаторным пуском. Предусмотрены два конденсатора: с высокой емкостью для пусковых условий и с меньшей емкостью для рабочих условий. Пусковой конденсатор обычно электролитического типа, что обеспечивает высокую емкость на единицу объема. Рабочий конденсатор обычно представляет собой блок из металлизированного полипропилена, рассчитанный на непрерывную работу. На рис. 1.15 показан один из способов установки обоих конденсаторов на двигатель.
Принципиальная схема двигателя с двухтактным конденсатором показана на рис. 1.16. Как показано, при запуске, как при запуске, так и при работе

РИСУНОК 1.14 Кривая скорость-момент для двигателя с конденсаторным пуском. Конденсаторы
включены последовательно со вспомогательной обмоткой. Когда пусковой ключ размыкается, он отключает пусковой конденсатор от цепи вспомогательной обмотки, но оставляет рабочий конденсатор последовательно со вспомогательной обмоткой, подключенной к источнику питания. Таким образом, как основная, так и вспомогательная обмотки находятся под напряжением во время работы двигателя и вносят свой вклад в выходную мощность двигателя. типичный

ТАБЛИЦА 1.6 Типовые характеристики двигателей с конденсаторным пуском3

л.с. Производительность при полной нагрузке Крутящий момент, фунт-фут
об/мин А Эфф. Момент затяжки PF Заблокировано Поломка Подтягивание
1 1725 7,5 71 70 3,0 9,9 7,5 7,6
2 1750 12,5 72 72 6,0 17,5 14,7 11,5
3 1750 17,0 74 79 9,0 23,0 21,0 18,5
5 1745 27,3 78 77 15,0 46,0 32,0 35,0

a Четырехполюсные, 230 В, однофазные двигатели. Источник: предоставлено Magnetek, Сент-Луис, Миссури. Кривая
скорость-момент для двухклапанного конденсаторного двигателя показана на рис. 1.17.
Для данного двигателя с конденсаторным пуском эффект от добавления рабочего конденсатора в цепь вспомогательной обмотки следующий: 2-7 баллов

РИСУНОК 1.15 Конденсатор с двумя номиналами, однофазный двигатель. (Предоставлено Magnetek, Сент-Луис, Миссури)

РИСУНОК 1.16 Конденсатор с двумя номиналами, однофазный двигатель.
Улучшенный коэффициент мощности при полной нагрузке: 10–20 баллов. Уменьшенный рабочий ток при полной нагрузке. Уменьшенный магнитный шум. трехфазный двигатель. Типичные рабочие характеристики двигателей с двумя конденсаторами с интегральной мощностью в лошадиных силах показаны в таблице 1.7. Сравнение этих характеристик с характеристиками, показанными в таблице 1.6 для двигателей с конденсаторным пуском, показывает улучшение как эффективности, так и коэффициента мощности.
Оптимальная производительность, которая может быть достигнута в однофазном двигателе с двухзначным конденсатором, зависит как от экономических факторов, так и от технических соображений конструкции двигателя. Чтобы проиллюстрировать это, в таблице 1.8 показаны характеристики однофазного двигателя с конструкцией, оптимизированной для различных значений рабочей емкости. Базой для сравнения производительности является асинхронный двигатель с пусковым конденсатором и без рабочего конденсатора. Таблица 1.9 показывает, что производительность улучшается с увеличением значений 9/кВтч. Обратите внимание, что основное улучшение характеристик двигателя достигается при первоначальном переходе от двигателя с пусковым конденсатором к двигателю с двумя конденсаторами и относительно низким значением рабочей емкости. Это первоначальное изменение конструкции также показывает самый короткий период окупаемости.
Определение оптимального двигателя с двумя конденсаторами для конкретного применения требует сравнения стоимости двигателя и энергопотребления всех таких доступных двигателей. /кВтч, срок окупаемости этих двигателей составил 8-20 месяцев.

ТАБЛИЦА 1.8 Сравнение производительности двигателей с конденсаторным пуском и двухзначным конденсатором

Тип двигателя
Пусковой конденсатор Двузначный конденсатор
Рабочий конденсатор, МФУ 0 7,5 15 30 65
Эффективность при полной нагрузке 70 78 79 81 83
Полная загрузка PF 79 9-1 97 99а 99:1
Снижение потребляемой мощности, % 0 10,1 11,5 13,3 15
Стоимость, % 100 130 110 151 196
Ориентировочный срок окупаемости 1,3 1,0 1,8 2,9

a Опережающий коэффициент мощности.

ТАБЛИЦА 1.9 Сравнение эффективности: стандартные и энергоэффективные однофазные двигатели для бассейна со скоростью вращения 3600 об/мин

л.с. Стандартные эффективные двигатели Энергоэффективные двигатели
0,75 0,677 0,76
1,00 0,709 0,788
1,50 0,749 0,827
2,00 0,759 0,85
3,00 0,809 0,869

РИСУНОК 1.18 Сравнение эффективности энергоэффективных и стандартных однофазных двигателей насосов для бассейнов. (Предоставлено компанией Magnetek, Сент-Луис, Миссури.)

РИСУНОК 1.19 Годовая экономия для энергоэффективного двигателя для бассейнов мощностью 1 л.с., работающего 365 дней в году. (Предоставлено Magnetek, Сент-Луис, Миссури)
1.2.3

Двигатели с разделенными конденсаторами постоянного действия

Однофазные асинхронные двигатели с разделенными конденсаторами постоянного тока определяются как конденсаторные двигатели с одинаковым значением емкости, используемым как для пуска, так и для работы. Этот тип двигателя также называют двигателем с однозначным конденсатором. Применение этого типа однофазного двигателя обычно ограничивается прямым приводом таких нагрузок, как вентиляторы, воздуходувки или насосы, для которых не требуется нормальный или высокий пусковой момент. Следовательно, основное применение двигателя с постоянным раздельным конденсатором было в вентиляторах и нагнетателях с прямым приводом. Эти двигатели не подходят для применения с ременным приводом и обычно имеют более низкую номинальную мощность.
Принципиальная схема двигателя с постоянными конденсаторами с разделенными конденсаторами показана на рис. 1.20. Обратите внимание на отсутствие пускового переключателя. Этот тип двигателя по существу аналогичен двигателю с двухзначным конденсатором

. Поскольку при пуске последовательно со вспомогательной обмоткой подключается только рабочий конденсатор (имеющий относительно малую емкость), пусковой момент значительно снижается. Пусковой крутящий момент составляет всего 20-30% крутящего момента при полной нагрузке. Типичная кривая скорость-момент для двигателя с постоянными конденсаторами с раздельными конденсаторами показана на рис. 1.21. Рабочие характеристики этого типа двигателя с точки зрения КПД и коэффициента мощности такие же, как у двигателя с двухзначным конденсатором. Однако из-за низкого пускового момента его успешное применение требует тесной координации между производителем двигателя и производителем приводимого оборудования.
Специальная версия конденсаторного двигателя используется для многоскоростных приводов вентиляторов. Этот тип конденсаторного двигателя обычно имеет основную обмотку с отводами и высокоомный ротор. Ротор с высоким сопротивлением используется для улучшения стабильной работы на скорости и для увеличения пускового момента. Существует ряд вариантов и способов намотки двигателей. Наиболее распространена конструкция двухскоростного двигателя, имеющего три обмотки: основную, промежуточную и вспомогательную. Для сети 230 В общее соединение обмоток называется Т-образным соединением. Принципиальные схемы двухскоростных двигателей с Т-образным соединением показаны на рис. 1.22 и 1.23. Для

РИСУНОК 1.21 Кривая скорость-момент для двигателя с постоянными конденсаторами с разделенными конденсаторами.
высокоскоростной режим, промежуточная обмотка не включена в схему, как показано на рис. 1.23, а линейное напряжение приложено к основной обмотке и последовательно к вспомогательной обмотке и конденсатору. Для работы на малых оборотах промежуточная обмотка включается последовательно с основной обмоткой и со вспомогательной цепью, как показано на рис. 1.23. Это соединение снижает напряжение как на основной обмотке, так и на вспомогательной цепи, тем самым уменьшая крутящий момент

РИСУНОК 1. 22 Однофазный двигатель с конденсатором постоянного тока с Т-образным соединением и двухскоростным режимом работы.
двигатель будет развиваться и, следовательно, скорость двигателя будет соответствовать требованиям нагрузки. Величина снижения скорости зависит от соотношения витков между основной и промежуточной обмотками и характеристик скорость-момент ведомой нагрузки. Следует признать, что с этим типом двигателя изменение скорости достигается за счет того, что скорость двигателя снижается до требуемого низкого уровня 9.0552
РИСУНОК 1.23 Однофазный двигатель с конденсатором постоянного тока с Т-образным соединением и расположением обмотки.
скорость; это не многоскоростной двигатель с более чем одной синхронной скоростью.
Пример кривых скорость-момент для конденсаторного двигателя с отводной обмоткой показан на рис. 1.24. Кривая нагрузки типичной нагрузки вентилятора накладывается на кривые скорости двигателя, чтобы показать снижение скорости, полученное при низкоскоростном соединении.

РИСУНОК 1.24 Кривые скорость-момент для однофазного двигателя с постоянными конденсаторами с разделенными конденсаторами и обмоткой с ответвлениями.

Трехфазный двигатель, работающий от однофазного источника питания

Трехфазный асинхронный двигатель переменного тока широко используется в промышленном и сельскохозяйственном производстве благодаря своей простой конструкции, низкой стоимости, простоте обслуживания и эксплуатации. 3-фазный двигатель переменного тока использует 3-фазный источник питания (3 фазы 220 В, 380 В, 400 В, 415 В, 480 В и т. д.), но в некоторых реальных приложениях у нас есть только однофазные источники питания (1 фаза 110 В, 220 В, 230 В, 240 В и т. д.). .), особенно в бытовой технике. В случае запуска трехфазных машин от однофазных источников питания, есть 3 способа сделать это:

  1. Перемотка двигателя
  2. Купить частотно-регулируемый привод GoHz
  3. Купить преобразователь частоты/фазы

I: Перемотка двигателя
Необходимо выполнить некоторые работы по преобразованию работы трехфазного двигателя на однофазное питание. Здесь показано, как преобразовать 3-фазный двигатель 380 В для работы от однофазного источника питания 220 В.

Принцип перемотки
Трехфазный асинхронный двигатель использует три взаимно разделенных угла 120° сбалансированного тока через обмотку статора для создания изменяющегося во времени вращающегося магнитного поля для привода двигателя. Прежде чем говорить об использовании трехфазного асинхронного двигателя, перестраиваемого для работы от однофазного источника питания, следует пояснить вопрос создания вращающегося магнитного поля однофазного асинхронного двигателя, так как запуск однофазного двигателя возможен только после установления вращающегося магнитного поля. . Причина, по которой он не имеет начального пускового момента, заключается в том, что однофазная обмотка в магнитном поле не вращается, а пульсирует. Другими словами, он закреплен относительно статора. В этом случае пульсирующее магнитное поле статора взаимодействует с током в проводнике ротора и не может создавать крутящий момент, поскольку вращающееся магнитное поле отсутствует, поэтому двигатель не может быть запущен. Однако положение двух обмоток внутри двигателя имеет разный пространственный угол. Если он пытается создать другой фазный ток, двухфазный ток имеет определенную разницу фаз во времени для создания вращающегося магнитного поля. Так статор однофазного двигателя должен иметь не только рабочую обмотку, но и обязательно иметь пусковую обмотку. В соответствии с этим принципом мы можем использовать трехфазную обмотку трехфазного асинхронного двигателя и сместить одну из катушек обмотки с помощью конденсатора или индуктивности, чтобы две фазы могли проходить через другой ток для создания вращающегося магнитного поля для управлять двигателем. Когда трехфазный асинхронный двигатель использует однофазное питание, мощность составляет всего 2/3 от первоначальной.

Метод перемотки
Чтобы использовать 3-фазный двигатель с 1-фазным источником питания, мы можем соединить любые 2-фазные катушки обмотки последовательно, а затем подключить к другой фазе. В это время магнитный поток в двух обмотках имеет разность фаз, но рабочая обмотка и пусковая обмотка подключены к одному и тому же источнику питания, поэтому ток одинаков. Поэтому подключите конденсатор, катушку индуктивности или резистор к пусковой обмотке последовательно, чтобы ток имел разность фаз. Для увеличения пускового момента на соединении можно использовать автотрансформатор для повышения напряжения однофазной сети с 220 В до 380 В, как показано на рисунке 1.9.0177

Небольшие двигатели общего назначения имеют Y-образное соединение. Для трехфазного асинхронного двигателя Y-типа клемма обмотки конденсатора C подключается к пусковой клемме автотрансформатора. Если вы хотите изменить направление вращения вала, подключите его, как показано на рисунке 2.

Если вы не хотите повышать напряжение, источник питания 220 В также может использовать это. Поскольку исходная трехфазная обмотка напряжения питания 380 В теперь используется для питания 220 В, напряжение слишком низкое, поэтому крутящий момент слишком низкий.

Рис. 3 крутящий момент проводки слишком мал. Если вы хотите увеличить крутящий момент, вы можете подключить фазовый конденсатор к двухфазной обмотке вместе в катушке и использовать ее в качестве пусковой обмотки. Одиночная катушка, подключенная напрямую к источнику питания 220 В, см. рис. 4.

На рис. 3 и 4, если вам нужно изменить направление вращения вала, вы можете просто изменить сквозное направление пусковой обмотки или рабочей обмотки. .

Магнитный момент после последовательного соединения двух обмоток (одна из которых обратная) складывается из двух углов магнитного момента 60° (рис. 5). Магнитный момент намного выше, чем у магнитного момента 120° (показан на рис. 6), поэтому пусковой момент проводки на рис. 5 больше, чем у проводки на рис. 6.

Величина входного резистора R (рисунок 7) на обмотке пускателя должна быть замкнута на сопротивление фазы обмотки статора и должна выдерживать пусковой ток, равный 0,1-0,12-кратному пусковому моменту.

Выбор фазовращающего конденсатора
Рабочий конденсатор c=1950×Ie/Ue×cosφ (микрозакон), Ie, ue, cosφ – исходный номинальный ток двигателя, номинальное напряжение и мощность.
Общий рабочий конденсатор, используемый в однофазном источнике питания трехфазного асинхронного двигателя (220 В): каждые 100 Вт используют от 4 до 6 микроконденсаторов. Пусковой конденсатор можно выбрать в зависимости от пусковой нагрузки, обычно в 1-4 раза превышающей рабочий конденсатор. Когда двигатель достигает 75%~80% номинальной скорости, пусковой конденсатор должен быть отключен, иначе двигатель сгорит.

Емкость конденсатора должна быть правильно подобрана, чтобы токи 11, 12 двух фазных обмоток были равны и равны номинальному току Ie, значит 11=12=Ie. Если требуется высокий пусковой момент, можно добавить пусковой конденсатор и подключить его к рабочему конденсатору. Когда пуск нормальный, отсоедините пусковой конденсатор.

Работа трехфазного двигателя от однофазного источника питания дает много преимуществ, перемотка упрощается. Однако общая мощность однофазного источника питания слишком мала, он должен выдерживать высокий пусковой ток, поэтому этот метод можно применять только к двигателю мощностью 1 кВт или менее.

II: Купите частотно-регулируемый привод (ГГц)
ЧРП, сокращение от Variable Frequency Drive, это устройство для управления двигателем, работающим на регулируемых скоростях. Однофазный на 3-фазный ЧРП является лучшим вариантом для трехфазного двигателя, работающего от однофазного источника питания (1 фаза 220 В, 230 В, 240 В), он устранит пусковой ток во время запуска двигателя, заставит двигатель работать с нулевой скорости до полной. скорость плавная, плюс, цена абсолютно доступная. Доступны частотно-регулируемые приводы GoHz мощностью от 1/2 л.с. до 7,5 л.с., частотно-регулируемые приводы большей мощности могут быть настроены в соответствии с фактическими двигателями.

Преимущества использования GoHz VFD для трехфазного двигателя:

  1. Плавный пуск может быть достигнут путем настройки параметров VFD, время пуска может быть установлено на несколько секунд или даже десятков.
  2. Функция бесступенчатой ​​регулировки скорости, обеспечивающая оптимальную работу двигателя.
  3. Превратите двигатель с индуктивной нагрузкой в ​​емкостную нагрузку, что может увеличить коэффициент мощности.
  4. VFD имеет функцию самодиагностики, а также защиту от перегрузки, перенапряжения, низкого давления, перегрева и более 10 функций защиты.
  5. Можно легко запрограммировать с помощью клавиатуры для достижения автоматического управления.

III: Купите преобразователь частоты/фазы
В таких ситуациях также можно использовать преобразователь частоты или фазочастотный преобразователь, он может преобразовывать одну фазу (110 В, 120 В, 220 В, 230 В, 240 В) в три фазы (0- регулируемое напряжение 520 В) с чистым синусоидальным выходным сигналом, который лучше подходит для работы двигателя, а не для ШИМ-сигнала частотно-регулируемого привода. Они предназначены для лабораторных испытаний, самолетов, военных и других приложений, требующих высококачественных источников питания, это очень дорого.

Статья по теме: Влияние двигателя 60 Гц (50 Гц) на источник питания 50 Гц (60 Гц)

Однофазный двигатель переменного тока — STMicroelectronics

Тип файлаPDFZIP

Последнее обновление

Пожалуйста, введите желаемый поисковый запрос и повторите поиск

Quick filters

File type

All file typesPDFZIP

Latest update

All dates

Served country/regionWorldwideAfricaAsiaEuropeNorth AmericaOceaniaSouth AmericaAfghanistanAlbaniaAlgeriaAndorraAngolaAntigua and BarbudaArgentinaArmeniaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelgiumBelizeBeninBhutanBoliviaBosnia and HerzegovinaBotswanaBrazilBruneiBulgariaBurkinaBurma (Myanmar)BurundiCambodiaCameroonCanadaCape VerdeCentral African RepublicChadChileChinaColombiaComorosCosta RicaCroatiaCyprusCzech RepublicDemocratic Republic of CongoDenmarkDjiboutiDominicaDominican RepublicEast TimorEcuadorEgyptEl SalvadorEquatorial GuineaEritre aEstoniaEthiopiaFijiFinlandFranceGabonGambiaGeorgiaGermanyGhanaGreeceGrenadaGuatemalaGuineaGuinea-BissauGuyanaHaitiHondurasHungaryIcelandIndiaIndonesiaIraqIrelandIsraelItalyIvory CoastJamaicaJapanJordanKazakhstanKenyaKiribatiKuwaitKyrgyzstanLaosLatviaLesothoLiberiaLibyaLiechtensteinLithuaniaLuxembourgMacedoniaMadagascarMalawiMalaysiaMaldivesMaliMaltaMarshall IslandsMauritaniaMauritiusMexicoMicronesiaMoldovaMonacoMongoliaMontenegroMoroccoMozambiqueNamibiaNauruNepalNetherlandsNew ZealandNicaraguaNigerNigeriaNorwayOmanPakistanPalauPanamaPapua New GuineaParaguayPeruPhilippinesPolandPortugalQatarRomaniaRussian FederationRwandaSaint Kitts and NevisSaint LuciaSaint Vincent and the GrenadinesSamoaSan MarinoSao Tome and PrincipeSaudi ArabiaSenegalSerbiaSeychellesSierra LeoneSingaporeSlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSouth KoreaSpainSri LankaSurinameSwazilandSwedenSwitzerlandTaiwanTajikistanTanzaniaThailandTogoTongaTrinidad and TobagoTunisiaTurkeyTurkmenistanTuvaluUgandaUkraineUn Объединенные Арабские ЭмиратыВеликобританияСоединенные ШтатыУругвайУзбекистанВануатуВатиканВенесуэлаВьетнамЙеменЗамбияЗимбабве

Show only products supplied by ST

Please enter your desired search query and search again

Quick filters

Served country/regionWorldwideAfricaAsiaEuropeNorth AmericaOceaniaSouth AmericaAfghanistanAlbaniaAlgeriaAndorraAngolaAntigua and BarbudaArgentinaArmeniaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelgiumBelizeBeninBhutanBoliviaBosnia and HerzegovinaBotswanaBrazilBruneiBulgariaBurkinaBurma (Myanmar)BurundiCambodiaCameroonCanadaCape VerdeCentral African RepublicChadChileChinaColombiaComorosCosta RicaCroatiaCyprusCzech RepublicDemocratic Republic of CongoDenmarkDjiboutiDominicaDominican RepublicEast TimorEcuadorEgyptEl SalvadorEquatorial ГвинеяЭритреяЭстонияЭфиопияФиджиФинляндияФранцияГабонГамбияГрузияГерманияГанаГрецияГренадаГватемалаГвинеяГвинея-БисауГайанаГаитиГондурасВенгрияИсландияИндияИндонезияИракИрландияИзраильИталияБерег Слоновой КостиЯмайкаЯпонияИорданияКазахстанКенияКирибатиКувейтКыргызстанЛаосЛаосЛатвия yaLiechtensteinLithuaniaLuxembourgMacedoniaMadagascarMalawiMalaysiaMaldivesMaliMaltaMarshall IslandsMauritaniaMauritiusMexicoMicronesiaMoldovaMonacoMongoliaMontenegroMoroccoMozambiqueNamibiaNauruNepalNetherlandsNew ZealandNicaraguaNigerNigeriaNorwayOmanPakistanPalauPanamaPapua New GuineaParaguayPeruPhilippinesPolandPortugalQatarRomaniaRussian FederationRwandaSaint Kitts and NevisSaint LuciaSaint Vincent and the GrenadinesSamoaSan MarinoSao Tome and PrincipeSaudi ArabiaSenegalSerbiaSeychellesSierra LeoneSingaporeSlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSouth KoreaSpainSri LankaSurinameSwazilandSwedenSwitzerlandTaiwanTajikistanTanzaniaThailandTogoTongaTrinidad and TobagoTunisiaTurkeyTurkmenistanTuvaluUgandaUkraineUnited Arab EmiratesUnited KingdomUnited StatesUruguayUzbekistanVanuatuVatican CityVenezuelaVietnamYemenZambiaZimbabwe

Показать только продукты, поставляемые ST

Однофазный асинхронный двигатель переменного тока представляет собой бесщеточный двигатель с одной катушкой статора.

Наши продукты и решения

ST предлагает современные надежные устройства, такие как симисторы, тиристоры и переключатели переменного тока, а также микроконтроллеры, позволяющие регулировать скорость двигателя различными способами, в зависимости от стоимости и требований к производительности конечного продукта. заявление.

Однофазные двигатели переменного тока, основные сведения

Однофазный двигатель с обмоткой является простейшим типом двигателя переменного тока , но для него требуется пусковой механизм. Это приводит к трем основным типам однофазных асинхронных двигателей: с расщепленными полюсами , с расщепленной фазой и конденсаторные двигатели .

Пуск двигателя может быть обеспечен за счет конструкции статора с двумя обмотками, основной и вспомогательной катушкой. Подключение конденсатора последовательно с вспомогательной обмоткой означает, что ток, протекающий через обе катушки, не совпадает по фазе. Именно эта разность фаз создает крутящий момент для начала вращения.

Электролитический пусковой конденсатор используется для достижения наилучших фазовых углов между пусковой и главной обмотками и отключается от пусковой цепи, когда скорость двигателя достигает примерно 75% от полной нагрузки. Он предназначен для  кратковременной работы , и его использование дольше, чем необходимо, может вызвать проблемы, поэтому   точный контроль необходим .

Основные типы

Асинхронные двигатели с экранированными полюсами

В двигателе с экранированными полюсами используется с короткозамкнутым ротором и обычно варьируется от 1/20 до 1/6 лошадиных сил для небольших двигателей. Он имеет дополнительные обмотки в каждом углу статора, называемые теневыми обмотками. Они не связаны, но генерируют ток из индуцированного поля. Это подавляет поле, создавая низкий крутящий момент, чтобы заставить двигатель двигаться.

Двухфазные асинхронные двигатели

Двухфазные асинхронные двигатели имеют две обмотки , рабочую обмотку и вторичную пусковую обмотку, и обычно имеют мощность до 1/3 л. с. для привода лопастей потолочного вентилятора, баков стиральных машин , двигатели вентиляторов для нефтяных печей и небольшие насосы.

Пусковая обмотка с более высокой мощностью заставляет двигатель двигаться со скоростью от 75 до 80% от его скорости, а затем центробежный переключатель используется для переключения на менее мощную рабочую обмотку для экономии энергии.

Прочие соображения

Однофазные двигатели переменного тока чрезвычайно распространены во всех сферах жизни. Подавляющее большинство двигателей, питаемых от бытовой сети или сети легкой промышленности, являются однофазными. Одним из ключевых моментов является правильный выбор размера двигателя для применения . Если двигатель не создает достаточного крутящего момента для конструкции, он всегда будет работать на максимуме, создавая большую нагрузку на компоненты и выделяя слишком много тепла. Точно так же, если двигатель слишком большой, он не будет работать эффективно и будет тратить энергию.

Однако однофазные источники питания можно использовать для создания трехфазного источника питания переменной частоты для привода трехфазного асинхронного двигателя.

Привод однофазного асинхронного двигателя также может видеть пульсацию крутящего момента , которая представляет собой регулярное изменение выходного крутящего момента, а разница между максимальным и минимальным значением часто выражается в процентах, чтобы подчеркнуть управляемость двигателя.

Обнаружение неисправностей  в однофазных асинхронных двигателях обычно  требуются датчики , так как недостаточно информации для реализации более сложных алгоритмов без датчиков.

All resources

Expand all categories

Application Notes (5 of 6)

Resource title Version Latest update
PDF

AN4607 Basics on the структура тиристора (SCR) и его применение

2,0 13 сентября 2018

13 сентября 2018

AN4607 Основы на структуре Thyristor (SCR) и его применение 2,0614

PDF
PDF
. 12 сентября 2022 г.

12 сентября 2022 г.

AN5789 Рассмотрение схемы начальной загрузки для драйверов затворов 1.0

PDF

AN4363 Как выбрать Triac, ACS или ACST, подходящий для вашего приложения

2.1 15 января 2019 г.

15 января 2019 г. 2.1

PDF

AN3168 Non-insulated SCR / Triac control circuits

1.2 13 Sep 2018

13 Sep 2018

AN3168 Non-insulated SCR / Triac control circuits 1.2

PDF

AN5765 STSPIN32F0x low voltage brushless motor controller layout guidelines

1. 0 12 Sep 2022

12 Sep 2022

AN5765 STSPIN32F0x low voltage brushless motor controller layout guidelines 1.0

PDF

AN303 Тиристоры и симисторы: ток фиксации

3,4 16 января 2019 г.

16 января 2019 г.

AN303 Thyristors and Triacs: Clatching Current 3.4

Flyers (1)

.

PDF

Триаки серии T: защита от помех и коммутация для устройств переменного тока

3. 0 18 декабря 2017 г.

18 декабря 2017 г.

Triacs T Triacs: иммунитет и коммутация, приводимые к приборам AC 3.0

Нагрузка больше

главный фактор нашего комфорта и удобства на розничном рынке и в наших домах. Хотя они не так активно используются на промышленных и коммерческих рынках,
это не значит, что они вообще не используются… просто не так часто, как в розничной торговле и на жилых рынках. И это в первую очередь связано с тем, что «однофазная мощность» является единственной электрической системой.
доступно до 99% жилого рынка, в то время как «Трехфазная мощность» — это система, доступная для большинства коммерческих/промышленных рынков. Таким образом, использование однофазных двигателей требует большего внимания.
с доступными источниками питания, чем что-либо еще.

В общем и целом, выбор доступных однофазных двигателей, из которых мы можем сделать выбор, безусловно, ограничен по сравнению с тем, что доступно на рынке трехфазных двигателей. И это связано с
рынок, который необходимо обслуживать, и эффективность трехфазного питания по сравнению с однофазным питанием. В приведенной ниже таблице вы можете сравнить различные типы однофазных двигателей с точки зрения мощности,
пусковой момент, пусковой ток, КПД и применение. Это, безусловно, должно дать вам представление о том, почему вы должны использовать определенный тип и какую пользу он вам принесет, когда вы это сделаете.

от

Рабочие характеристики однофазного двигателя
Тип Размер — HP Момент пуска Пусковой ток Приложения Эффективность
Двухфазный 1/20 — 1/2 л. с. Низкий Высокий

вентиляторы, воздуходувки, центробежные насосы, стиральные машины, шлифовальные машины, токарные станки, кондиционеры и вентиляторы печей

низкий
Конденсатор Пуск-индукционный запуск от 1/3 до 10 л.с. Высокий Высокий

конвейеры, измельчитель, кондиционеры, компрессор

Умеренный
Конденсатор Пуск-Конденсатор Работа от 1/3 до 10 л.с. Высокий Высокий

конвейеры, кондиционеры, компрессоры, разгрузчики силосов для сельскохозяйственной промышленности

Высокий
Постоянный разделительный конденсатор от 1/20 до 3/4 л. с. Низкий Умеренный

вентиляторы и воздуходувки в обогревателях и кондиционерах вентиляторы конденсатора

Высокий
Заштрихованный столб 1/300 — 1/20 л.с. Очень низкий Низкий

мелкие инструменты, фены, игрушки, проигрыватели, маленькие вентиляторы, электрические часы

Низкий
Универсальный до 2500 Вт Низкий Умеренный Бытовая техника и электроинструменты. Низкий
Отталкивающий пуск-индукционный ход от 1/2 до 40 л.с. Очень высокий Умеренный Строгальные станки, деревообрабатывающие станки, разгрузчики силосов, холодильные компрессоры Умеренный

Для этих однофазных двигателей доступен ряд опций, которые зависят от фактических потребностей применения. Большинство двигателей доступны в различных
типы крепления, варианты корпуса и расположение валов.

Например, варианты корпусов могут включать: ODP (открытая защита от капель), TEAO (полностью закрытый воздуховод), TENV (полностью закрытый, невентилируемый) и TEFC (полностью закрытый вентилятор).
Охлажденный). Для типов крепления список включает: крепление на жестком основании, крепление на упругом основании, крепление на упругом кольце (только), крепление на сквозных болтах, крепление на поясе, крепление на пьедестале,
и, вероятно, некоторые дополнительные опции, которые не так уж распространены. И вот еще один момент, о котором следует помнить при выборе одного из конкретных типов корпусов; т. е. TEAO (полностью закрытый
Воздух закончился). Этот двигатель ПРЕДНАЗНАЧЕН для того, чтобы технологический воздух (воздух, который перемещается) проходил над двигателем и действовал как «охлаждающий» воздух. Если вы поместите этот тип двигателя в
применение, когда двигатель находится «вне» воздушного потока, двигатель сгорит, так как ему не хватает охлаждающего воздуха.

Варианты вала также различаются в зависимости от области применения и размера рамы. Например, некоторые двигатели могут иметь основание с пробитыми монтажными отверстиями для рамы 48 и 56.
монтаж, но вал двигателя будет 1/2 дюйма с «плоской поверхностью». Также есть двигатели с «двусторонним валом» для установки 2 вентиляторов с короткозамкнутым ротором. В то время как нормальная длина вала составляет
двигатель может иметь длину 2-1/2 дюйма или 3 дюйма, некоторые двигатели PSC или другие двигатели могут иметь вал длиной 8 дюймов или более, чтобы соответствовать длине, необходимой для установки вентилятора конденсатора при использовании в
уличный тепловой насос. Поэтому убедитесь, что вы ЗНАЕТЕ, какой диаметр вала вам нужен и какой длины он должен быть для вашего применения.

И последнее замечание, направление вращения… Вы должны сделать это правильно! Некоторые конструкции двигателей, в частности PSC, обычно имеют простую сборку типа «вилка и домкрат».
которую вы отключаете, поверните ее на 180° и снова вставьте вилку, чтобы изменить направление вращения. Другие имеют дополнительные электрические соединительные контакты на клеммной колодке.
подключить входящее питание. В этом типе вам нужно переместить определенный провод из исходного положения на этот другой контакт, чтобы изменить направление. И тогда НАСТОЯЩАЯ проблема…! Моторы
которые просто НЕОБРАТИМО. С этими двигателями вы ДОЛЖНЫ знать, в каком направлении вам нужно вращать двигатель при его покупке. Трудно понять направление
вращение? Вот определение «ротации», взятое с веб-сайта поддержки продукции Siemens:

В соответствии с DIN EN 60034-8 направление вращения двигателя определяется следующим образом:

  • Направление вращения
    это направление, если смотреть со стороны привода.

    • Это означает, что нужно смотреть на «приводной» конец вала.
  • Приводной конец — это сторона с продолжением вала.
    • Для машин с двумя концами вала приводной конец:
      • а) конец с большим диаметром вала
        б) конец на противоположной стороне от вентилятора,

        7 , если оба конца вала имеют одинаковый диаметр.

  • Вращение по часовой стрелке
    • Поверните вал по часовой стрелке, если смотреть со стороны привода.
    • Направление взгляда от приводного конца к неприводному концу.
  • Вращение против часовой стрелки
    • Поверните вал против часовой стрелки, если смотреть со стороны привода.
    • Направление взгляда от приводного конца к неприводному концу.
  • Типы однофазных двигателей

    Двухфазные

    Двигатели с расщепленной фазой имеют пусковой выключатель, но не имеют конденсатора или дополнительного пускового механизма. Их пусковая обмотка просто электрически смещена от рабочей обмотки на
    количество, достаточное для начала вращения элемента в определенном направлении. Поскольку нет «дополнительной» помощи при пуске, этот двигатель имеет средний или низкий пуск.
    крутящий момент…. в диапазоне от 100% до 125% крутящего момента при полной нагрузке. Кроме того, пусковой ток будет довольно высоким. Двигатели этого типа используются в приложениях, которые
    относительно легко запускается, но может увеличивать требования к мощности по мере увеличения скорости вращения.

    Типичные области применения: вентиляторы с ременным приводом и некоторые насосы.

    Конденсатор Пуск-Индукция Работа

    Это настоящая «рабочая лошадка» линейки однофазных двигателей. Эти двигатели включают пусковую обмотку, пусковой переключатель и электролитический конденсатор. Когда двигатель
    При запросе на запуск конденсатор разряжается в пусковую обмотку, давая ей «выстрел в руку», чтобы она заработала. Тогда, как и в других однофазных двигателях с пусковыми выключателями, при
    ротор достигает примерно от 75% до 80% полной скорости, пусковой переключатель ОТКЛЮЧАЕТСЯ, удаляя конденсатор и пусковую обмотку из цепи и разрешая ГЛАВНУЮ или работающую
    обмотки для завершения набора скорости до полных рабочих оборотов.

    Эти двигатели могут изготавливаться с пусковым моментом от среднего до высокого, в зависимости от номинала конденсатора и конструкции пусковой обмотки. Мотор также будет иметь высокую
    опрокидывающий момент, который удерживает двигатель «запертым» на рабочей скорости даже при высоких перегрузках. Эти двигатели с УМЕРЕННЫМ пусковым моментом 175% или меньше обычно используются
    на вентиляторы, воздуходувки и насосы. Двигатели с высоким пусковым моментом…. используемые при нагрузках, требующих крутящего момента полной нагрузки до 300 % и выше для пуска, могут использоваться на компрессорах и
    промышленное, торговое и сельскохозяйственное оборудование. На сельскохозяйственном рынке такие приложения, как разгрузчики силосов и другие нагрузки, которые трудно запустить, являются естественными для этих устройств.

    Конденсаторный пуск-Конденсаторный режим

     

    Эти двигатели аналогичны конструкции и применению двигателя с конденсаторным пуском, указанным выше, за исключением того, что они заполнены маслом.
    РАБОЧИЙ конденсатор в цепи с ОСНОВНОЙ или рабочей обмоткой. Этот конденсатор остается в цепи ВСЕ ВРЕМЯ и помогает улучшить эффективность работы и снизить полное
    рабочий ток нагрузки. Эти двигатели обычно имеют более высокие однофазные номинальные мощности … выше 2 л.с., при этом сельскохозяйственная промышленность является основным потребителем этих двигателей.

    Постоянный разделительный конденсатор

    Двигатели этого типа используются во многих случаях, как и двигатели с расщепленными полюсами. Основные отличия заключаются в том, что двигатель PSC имеет гораздо более высокий КПД,
    ток (на 50% — 60% меньше) и более высокая выходная мощность. Двигатель PSC получил свое название из-за того, что в цепи двигателя вообще есть конденсатор «RUN».
    раз. Это устройство помогает поддерживать высокий КПД и коэффициент мощности, а также снижает количество потребляемой мощности при той же выходной мощности. Эти двигатели можно использовать для
    замените ЛЮБОЙ двигатель с экранированными полюсами, за исключением тех, где физический размер PSC не подходит …. например, двигатель часов или небольшой вентилятор охлаждения испарителя. Выходная мощность PSC
    двигатель будет находиться в диапазоне «долей л.с.», то есть от 1/20 л.с. до максимум 3/4 л.с. Односкоростные или многоскоростные двигатели могут быть спроектированы с максимальной скоростью 1625 об/мин и
    1075 об / мин — самая популярная скорость. Несколько скоростей в одном двигателе достигаются либо «отводом» обмотки, либо «дроссельной» катушкой. Пусковой момент на этом двигателе
    тип также считается НИЗКИМ.

    Затененный столб

    Эти двигатели имеют низкий пусковой момент, низкий КПД, средневысокий рабочий ток, низкую мощность, отсутствие конденсаторов, пускового выключателя и низкую стоимость. Двигатели
    этот тип используется в небольших воздуходувках печей с прямым приводом, оконных вентиляторах и других вентиляторах, используемых в жилых районах. Двигатели с экранированными полюсами НЕ ДОЛЖНЫ использоваться для
    заменяют ДРУГИЕ ТИПЫ однофазных двигателей, в основном из-за низкого крутящего момента и КПД. Двигатели этого типа также используются в небольших бытовых приборах и таких предметах, как вытяжка для ванной комнаты.
    вентиляторы, двигатели часов и вентиляторы испарителя в холодильниках и морозильных камерах.

    Несмотря на низкий КПД и низкий пусковой крутящий момент, из-за присущей НИЗКОЙ СТОИМОСТИ эти двигатели широко используются в жилых помещениях. Выходная мощность
    двигатель с экранированными полюсами будет варьироваться от «долевой доли л.с.», т.е. 1/30 л.с., до максимум 1/4 или 1/3 л.с. Скорости обычно бывают 2-полюсными (3000 об/мин), 4-полюсными (1550 об/мин) и 6-полюсными (1050 об/мин).
    об/мин).

    Универсальный двигатель

    Универсальный двигатель — это тип электродвигателя, который может работать от сети переменного или постоянного тока и использует электромагнит в качестве статора для создания магнитного поля. это
    коммутируемый двигатель с последовательным возбуждением, в котором катушки возбуждения статора соединены последовательно с обмотками ротора через коммутатор. Его часто называют серией AC.
    мотор. Универсальный двигатель очень похож на двигатель постоянного тока по конструкции, но немного изменен, чтобы двигатель мог правильно работать от сети переменного тока. Этот тип
    электродвигатель может хорошо работать на переменном токе, потому что ток как в катушках возбуждения, так и в якоре (и результирующие магнитные поля) будет чередоваться (обратная полярность)
    синхронно с подачей. Следовательно, результирующая механическая сила будет возникать в постоянном направлении вращения, независимо от направления приложенного напряжения, но
    определяется коммутатором и полярностью катушек возбуждения.

    Универсальные двигатели имеют высокий пусковой крутящий момент, могут работать на высоких скоростях, легкие и компактные. Они обычно используются в портативных электроинструментах и ​​оборудовании, а также
    много бытовой техники. Ими также относительно легко управлять, электромеханически с помощью катушек с ответвлениями или электронно. Однако у коммутатора есть щетки, которые изнашиваются, поэтому
    они гораздо реже используются для оборудования, которое находится в постоянном использовании. Кроме того, отчасти из-за коллектора, универсальные двигатели обычно очень шумные, как
    акустически и электромагнитно.

    Двигатель с отталкивающим пуском-индукцией

    Хотя этот двигатель упоминается здесь, мы считаем его скорее «особым» двигателем, и его можно найти более подробно на странице этой темы. Нажмите здесь, чтобы
    перейти на страницу Special Motor нашего сайта.

    Мы надеемся, что вы были немного осведомлены с информацией, предлагаемой для этих типичных однофазных двигателей.