Обмотки ротора асинхронного двигателя

Подробности
Категория: Электрические машины
  • электродвигатель
  • обмотки

Вращающаяся часть асинхронного двигателя — ротор, так же как и статор, имеет обмотку. Она помещена в пазах 1 стального цилиндра, набранного, как и сердечник статора, из листов электротехнической стали толщиной 0,5 мм. После штамповки листы собирают в пакет, плотно сжимают, насаживают на вал двигателя и закрепляют. В пазах ротора помещается или короткозамкнутая, или фазная обмотка. Изоляцией между листами ротора обычно служит пленка окисла. Активная сталь ротора является частью магнитной цепи двигателя.

Фазный ротор асинхронного двигателя 1 — сердечник ротора; 2 — обмотка ротора; 3 — контактное кольцо

Стальной лист ротора

Продольный разрез асинхронного двигателя с фазным ротором 1 — вал; 2 — активная сталь ротора; 3 — обмотка статора; 4 — станина; 5 —   сталь статора; 6 — подшипниковый щит; 7 — контактные кольца; 8 — щетки; 9 — выводы

Беличье колесо               Трехфазный асинхронный короткозамкнутый двигатель

а                                  б                                  в

Роторы короткозамкнутые а — с обычной клеткой; б — с двойной клеткой; в — с глубокой клеткой

Трехфазный асинхронный двигатель с фазным ротором

Короткозамкнутый ротор двигателя с алюминиевой литой обмоткой

Обмотка может быть фазной, построенной по тому же принципу, что и обмотка статора. Делается это в том случае, когда в фазы обмотки  включается добавочное сопротивление (реостат), необходимый при пуске или регулирования скорости двигателя. Фазный ротор показан на рис. Обмотка ротора 2 соединяется в звезду, а выводы подключаются к трем контактным кольцам 3, насаженным на вал ротора и изолированным от вала и друг от друга. Контактные кольца изготавливаются из меди, бронзы, редко из стали.

Продольный разрез двигателя с фазным ротором показан на рис.
Чаще изготовляются двигатели с короткозамкнутой обмоткой ротора. Если в пазы ротора уложены голые медные или алюминиевые стержни, концы которых замкнуты накоротко кольцами, то такая обмотка называется короткозамкнутой. Обмотка образует клетку, называемую беличьей; показана отдельно на рис. Короткозамкнутую обмотку ротора делают в трех модификациях: с нормальной клеткой, с двойной клеткой и с глубоким пазом. Для двигателей до 100 кВт чаще всего клетку получают путем отливки из алюминия, при этом одновременно отливаются торцевые кольца и лопасти вентилятора для охлаждения двигателя. Роторные обмотки также выполняют из меди и ее сплавов. В пазы прямоугольной или трапецеидальной формы забивают стержни, к стержням с обеих сторон припаивают твердым припоем замыкающие кольца.

Вид двигателя с фазным ротором и с короткозамкнутым, имеющим внешний обдув для охлаждения, показан на рис.

  • Назад
  • Вперёд
  • Вы здесь:  
  • Главная
  • Оборудование
  • Эл. машины
  • Устройство и ремонт электрических машин

Еще по теме:

  • Нахождение повреждений в обмотках электрических машин
  • Испытание электрической прочности изоляции обмоток машин
  • Обозначение выводов обмоток однофазных электрических машин
  • Дефекты обмоток якоря электрических машин постоянного тока
  • Обозначение выводов обмоток роторов асинхронных машин

Асинхронный двигатель с фазным ротором

Фазный ротор

Асинхронный двигатель с фазным ротором – это двигатель, который можно регулировать с помощью добавления в цепь ротора добавочных сопротивлений. Обычно такие двигатели применяются при пуске с нагрузкой на валу, так как увеличение сопротивления в цепи ротора, позволяет повысить пусковой момент и уменьшить пусковые токи. Этим асинхронный двигатель с фазным ротором выгодно отличается от АД с короткозамкнутым ротором.


Статор (3) выполнен, так же как и в обычном асинхронном двигателе, он представляет из себя полый цилиндр, набранный из листов электротехнической стали, в который уложена трехфазная обмотка.


Ротор (4) по сравнению с короткозамкнутым, представляет из себя более сложную конструкцию. Он состоит из сердечника в который уложена трехфазная обмотка, аналогично обмотке статора. Отсюда название двигателя. Если двигатель двухполюсный, то обмотки ротора смещены геометрически друг относительно друга на 120. Эти обмотки соединяются с тремя контактными кольцами (2), расположенными на валу (5) ротора. Контактные кольца выполнены из латуни или стали, причем друг от друга они изолированы. С помощью нескольких металлографитовых щеток (обычно двух), которые расположены на щеткодержателе (1) и прижимаются пружинами к кольцам, в цепь вводятся добавочные сопротивления. Выводы обмоток соединяются по схеме «звезда».

Добавочное сопротивление вводится только при пуске двигателя. Причем им обычно служит ступенчатый реостат, сопротивление которого уменьшают с увеличением оборотов двигателя. Таким образом пуск двигателя осуществляется тоже ступенчато. После того, как разгон закончился и двигатель вышел на естественную механическую характеристику, обмотку ротора закорачивают. Для того, чтобы сохранить щетки и снизить потери на них, в двигателях с фазным ротором существует специальное устройство, которое поднимает щетки и замыкает кольца. Таким образом, удается повысить еще и КПД двигателя.

Добавочное сопротивление позволяет главным образом осуществить пуск двигателя под нагрузкой, работать с ним длительное время двигатель не может, так как механические характеристики слишком мягкие и работа двигателя на них нестабильна.

Для того чтобы автоматизировать пуск двигателя, в обмотку ротора включают индуктивность. В момент пуска, частота тока в роторе наибольшая, а значит и индуктивное сопротивление максимально. Затем, при разгоне двигателя, частота, как и сопротивление уменьшаются, и двигатель постепенно начинает работать в обычном режиме.

За счет усложнения своей конструкции, асинхронный двигатель с фазным ротором, обладает хорошими пусковыми и регулировочными характеристиками. Но по той же причине, его стоимость возрастает приблизительно в 1.5 по сравнению с обычным АД, кроме того увеличивается масса, размеры и как правило, уменьшается надежность двигателя.

  • Просмотров: 45450
  • Motors Basic — Основные принципы — Асинхронные двигатели переменного тока — Часть 2

    Понимание основ электродвигателей жизненно важно для выбора правильного двигателя для правильного применения. В этой статье мы рассмотрим принципы работы постоянного и переменного тока и простой работы двигателя.

     

    Асинхронные двигатели переменного тока

    В вентиляторах Woods Air Movements чаще всего используются асинхронные двигатели переменного тока. Они могут работать непосредственно от электросети, они надежны, требуют минимального обслуживания и относительно недороги.

     

    В трехфазном асинхронном двигателе переменного тока катушки изолированного провода находятся в пазах статора, расположенных в корпусе. Эти катушки сконфигурированы так, чтобы обеспечить набор электромагнитных полюсов для каждой из трех электрических фаз (U, V и W) при подаче питания.

     

    На рис. 1 показан двигатель, обмотки которого расположены так, чтобы обеспечить пару полюсов для каждой фазы (обозначены U1 и U2, V1 и V2, W1 и W2). Поскольку на каждую фазу приходится два полюса, это описывается как двухполюсная конфигурация; если бы для каждой фазы было две пары полюсов, это была бы 4-полюсная конфигурация — и так далее.

     

    Когда катушки в статоре подключены к источнику переменного тока, будет протекать электрический ток и создавать магнитное поле — катушки намотаны так, что полюса в каждой паре имеют противоположную полярность.

    Рисунок 1. Циклическое вращающееся магнитное поле в трехфазном асинхронном двигателе переменного тока

     

    Циклический характер формы волны переменного тока приводит к тому, что магнитное поле вращается вокруг центральной оси статора с двумя северными и двумя южными полюсами. в любое время. Скорость этого вращения определяется количеством пар полюсов и частотой электропитания (либо 50 Гц, либо 60 Гц — см. «Основы двигателей, часть первая»).

     

    При наличии одной пары полюсов магнитное поле совершает один оборот за электрический цикл; где есть две пары, магнитное поле совершает один оборот за два цикла, а там, где есть три пары, оно вращается один раз за три цикла.

    Основное уравнение для установления синхронной скорости заключается в следующем:

    Синхронная скорость (Rev/Min) = 2 x Частота питания x 60

    Количество полюсов для каждой фазы

    Таким образом, если двигатель на рисунке 1 работал на подаче 50 Гц, синхронная скорость будет:

    2 x 50 x 60 = 3000 Rev/Min

    2

    Таким образом, видно, что чем больше число полюсов, тем медленнее будет синхронная скорость, поэтому двигатель с 12 полюсами на фазу будет иметь синхронную скорость всего 500 об/мин.

     

    Ротор

    Наряду со статором наиболее важной частью асинхронного двигателя переменного тока является ротор. Он состоит из стержней ротора, обычно изготовленных из алюминия или меди, которые на своих концах соединены с кольцами из того же материала. Иногда его называют ротором с «беличьей клеткой» (см. рис. 2).

     

    Поскольку ротор расположен во вращающемся магнитном поле статора, возникающие линии магнитного потока будут разрезать стержни ротора и индуцировать напряжение в роторе. Это, в свою очередь, приведет к протеканию электрического тока по стержням ротора (обозначенному на рис. 2 красными стрелками), который создаст собственное магнитное поле вокруг стержней ротора. Это магнитное поле взаимодействует с магнитным полем статора, создавая силу на стержнях ротора, заставляя ротор вращаться вокруг своей оси.

    Рисунок 2. Ротор с «беличьей клеткой»

     

    Поскольку напряжение в стержнях ротора создается магнитным полем в статоре, прорезающим стержни ротора, если ротор вращается с синхронной скоростью, не будет относительное движение между стержнями ротора и магнитным полем статора, в результате чего в стержнях ротора не индуцируется напряжение.

     

    Если к ротору приложить нагрузку, он начнет замедляться и, следовательно, начнет взаимодействовать с магнитным полем статора, и будет создаваться крутящий момент, как показано на рис. 2. нагрузка, приложенная к ротору.

     

    Синхронная скорость зависит от частоты электропитания и конфигурации обмотки статора (количества полюсов). Разница между синхронной скоростью и скоростью ротора известна как скольжение; это выражается в процентах от синхронной скорости и может быть рассчитано по уравнению:

     

    Скольжение = Синхронная скорость – скорость ротора

                             Синхронная скорость0004

    На рис. 3 показана конструкция типичного ротора. Стержни ротора обычно помещаются в пазы стального сердечника для усиления магнитного поля ротора. Стержни ротора обычно наклонены так, что они не совпадают с обмотками статора, что снижает электромагнитный шум и обеспечивает более плавную передачу крутящего момента.

    Рисунок 3: Типовая конструкция ротора

     

    Сердечник состоит из стальных пластин, сложенных вместе, в то время как стержни ротора и торцевые кольца обычно изготавливаются путем заливки расплавленного алюминия в матрицу или форму, окружающую пакет пластин ротора. Этот расплавленный алюминий протекает через прорези в блоке ротора, образуя стержни ротора. Между стержнями ротора и стальным сердечником нет изоляции, поскольку индуцированное напряжение низкое.

    Рисунок 4. Компоненты асинхронного двигателя переменного тока общего назначения

     

    Однофазные асинхронные двигатели переменного тока потому что его магнитное поле будет просто переключаться между полярностями. В результате требуется дополнительная обмотка для обеспечения прогрессивно вращающегося магнитного поля. Эта вспомогательная обмотка подключена к однофазному источнику питания через конденсатор, так что форма волны ее напряжения может быть не в фазе с формой волны первичной обмотки.

    Рисунок 5. Непрерывно вращающееся магнитное поле в однофазном асинхронном двигателе переменного тока, создаваемое вспомогательной обмоткой, подключенной к конденсатору

     

    На рисунке 5 показано, как это создает непрерывно вращающееся магнитное поле, позволяющее индуцировать вращение.

    НАЖМИТЕ ЗДЕСЬ, ЧТОБЫ ПРОЧИТАТЬ ЧАСТЬ 3

    Ответы на семь общих вопросов о работе генераторов и двигателей

    Вращающееся оборудование настолько распространено, но настолько неправильно понимается, что даже очень опытные электрики и инженеры часто сталкиваются с вопросами об их работе. В этой статье мы ответим на семь наиболее часто задаваемых вопросов. Объяснения краткие и практичные из-за ограниченного места; тем не менее, они позволят вам лучше понять это оборудование.

    Вопрос №1: Якорь, поле, ротор, статор: что есть что?

    По определению, статор включает в себя все невращающиеся электрические части генератора или двигателя. Также по определению ротор включает в себя все вращающиеся электрические части.

    Поле машины — это часть, которая создает прямое магнитное поле. Ток в поле не переменный. Обмотка якоря — это та, которая генерирует или имеет приложенное к ней переменное напряжение.

    Обычно термины «якорь» и «поле» применяются только к генераторам переменного тока, синхронным двигателям, двигателям постоянного тока и генераторам постоянного тока.

    Генераторы переменного тока . Поле синхронного генератора представляет собой обмотку, на которую подается постоянный ток возбуждения. Якорь – это обмотка, к которой подключена нагрузка. В малых генераторах обмотки возбуждения часто находятся на статоре, а обмотки якоря — на роторе. Однако большинство больших машин имеют вращающееся поле и неподвижный якорь.

    Синхронный двигатель практически идентичен синхронному генератору. Таким образом, якорь — это статор, а поле — это ротор.

    Машины постоянного тока . В машинах постоянного тока, как двигателях, так и генераторах, ротором является якорь, а статором — поле. Поскольку якорь всегда является ротором в машинах постоянного тока, многие электрики и инженеры ошибочно полагают, что ротором всех двигателей и генераторов является якорь.

    Вопрос № 2: Я ослабил натяжение пружины на щетках, но они по-прежнему изнашиваются слишком быстро. Почему?

    Износ щеток происходит по двум основным причинам: механическое трение и электрический износ. Механическое трение вызывается трением щеток о коллектор или контактное кольцо. Электрический износ вызван искрением и искрением щетки, когда она движется по коллектору. Механическое трение увеличивается с давлением щетки; Электрический износ уменьшается с давлением щетки.

    Для любой установки щетки существует оптимальное давление щетки. Если давление снижается ниже этой величины, общий износ увеличивается, поскольку увеличивается электрический износ. Если давление увеличивается выше оптимального значения, общий износ снова увеличивается из-за увеличения механического трения.

    Всегда следите за тем, чтобы давление щетки было установлено на уровне, рекомендованном производителем. Если износ по-прежнему чрезмерный, следует изучить тип и размер используемой щетки. Помните, что плотность тока (ампер на квадратный дюйм щетки) должна соответствовать применению. Надлежащая плотность тока необходима для того, чтобы на коллекторе или контактном кольце образовалась смазочная проводящая пленка. Эта пленка состоит из влаги, меди и углерода. Недостаточная плотность тока препятствует образованию этой пленки и может привести к чрезмерному износу щеток.

    Кроме того, среда с очень низкой влажностью не обеспечивает достаточного количества влаги для образования смазочной пленки. Если в такой среде возникает проблема чрезмерного износа щеток, возможно, вам придется увлажнить место, где работает машина.

    Вопрос № 3: Что такое сервис-фактор?

    Эксплуатационный коэффициент — это нагрузка, которую можно приложить к двигателю без превышения допустимых значений. Например, если двигатель мощностью 10 л.с. имеет эксплуатационный фактор 1,25, он будет успешно развивать мощность 12,5 л.с. (10 x 1,25) без превышения заданного повышения температуры. Обратите внимание, что при таком приводе выше номинальной нагрузки двигатель должен питаться с номинальным напряжением и частотой.

    Однако имейте в виду, что двигатель мощностью 10 л.с. с коэффициентом эксплуатации 1,25 не является двигателем мощностью 12,5 л.с. Если двигатель мощностью 10 л.с. будет постоянно работать при мощности 12,5 л.с., срок службы его изоляции может сократиться на две трети от нормального. Если вам нужен двигатель мощностью 12,5 л.с., купите его; эксплуатационный коэффициент следует использовать только для кратковременных условий перегрузки.

    Вопрос № 4: Что такое вращающееся магнитное поле и почему оно вращается?

    Вращающееся магнитное поле — это поле, северный и южный полюса которого движутся внутри статора, как если бы внутри машины вращался стержневой магнит или магниты.

    Посмотрите на статор трехфазного двигателя, показанный на прилагаемой схеме. Это двухполюсный статор с тремя фазами, расположенными с интервалом 120 [градусов]. Ток от каждой фазы входит в катушку на одной стороне статора и выходит через катушку на противоположной стороне. Таким образом, если одна из катушек создает магнитный северный полюс, другая катушка (для той же фазы) создаст магнитный южный полюс на противоположной стороне статора.

    В Позиции 1 фаза B создает сильный северный полюс вверху слева и сильный южный полюс внизу справа. А-фаза создает более слабый северный полюс внизу слева и более слабый южный полюс внизу. C-фаза создает общее магнитное поле с северным полюсом в левом верхнем углу и южным полюсом в правом нижнем углу.

    В Позиции 2 фаза А создает сильный северный полюс внизу слева и сильный южный полюс вверху справа; таким образом, сильные полюса повернулись на 60 [градусов] против часовой стрелки. (Обратите внимание, что это магнитное вращение на 60 [градусов] точно соответствует электрическому изменению фазных токов на 60 [градусов]. ) Слабые полюса также повернулись на 60 [градусов] против часовой стрелки. Фактически это означает, что общее магнитное поле повернулось на 60 [градусов] от положения 1. фаз изменяется более чем на 60 электрических градусов. Анализ позиций 3, 4, 5 и 6 показывает, что магнитное поле продолжает вращаться.

    Скорость, с которой вращается магнитное поле, называется синхронной скоростью и описывается следующим уравнением:

    S = (f x P) / 120, где S = скорость вращения в оборотах в минуту f = частота подаваемого напряжения (Гц ) P = количество магнитных полюсов во вращающемся магнитном поле

    Если бы в этот статор был помещен постоянный магнит с валом, который позволял бы ему вращаться, его толкали бы (или тянули) вперед с синхронной скоростью. Точно так же работает синхронный двигатель, за исключением того, что магнитное поле ротора (поля) создается электромагнетизмом, а не постоянным магнитом.

    Ротор асинхронного двигателя состоит из короткозамкнутых обмоток, и при прохождении через них вращающегося магнитного поля в обмотках ротора индуцируется ток. Этот ток создает поле, противодействующее вращающемуся полю. В результате ротор толкается (или притягивается) вращающимся полем. Обратите внимание, что ротор асинхронного двигателя не может вращаться с синхронной скоростью, поскольку вращающееся поле должно прорезать обмотки ротора, чтобы создать крутящий момент. Разница между синхронной скоростью и фактической скоростью вращения ротора называется процентным скольжением; она выражается в процентах.

    Однофазные двигатели также имеют вращающееся магнитное поле. Вращающееся поле, необходимое для запуска двигателя, создается второй обмоткой, называемой пусковой обмоткой. После разгона двигателя пусковая обмотка отключается, и вращающееся поле создается за счет взаимодействия основной обмотки статора и ротора.

    Вопрос № 5: Как работает асинхронный генератор?

    Асинхронный генератор по конструкции идентичен асинхронному двигателю. Обмотки статора подключены к трехфазной системе питания, и три фазы создают вращающееся магнитное поле. Ротор асинхронного генератора вращается первичным двигателем, который вращается быстрее синхронной скорости. Когда обмотки ротора пересекают вращающееся поле, в них индуцируется ток. Этот индуцированный ток создает поле, которое, в свою очередь, прорезает обмотки статора, создавая выходную мощность для нагрузки.

    Таким образом, асинхронный генератор получает питание от энергосистемы, к которой он подключен. Асинхронный двигатель должен иметь синхронные генераторы, подключенные к его статору, чтобы начать генерировать. После того, как асинхронный генератор работает, конденсаторы могут использоваться для питания возбуждения.

    Вопрос № 6: Почему подшипники генератора и двигателя изолированы?

    Магнитное поле внутри двигателя или генератора не совсем однородно. Таким образом, при вращении ротора на валу в продольном направлении (непосредственно вдоль вала) возникает напряжение. Это напряжение вызовет протекание микротоков через смазочную пленку на подшипниках. Эти токи, в свою очередь, могут вызвать незначительное искрение, нагрев и, в конечном итоге, выход из строя подшипника. Чем больше машина, тем хуже становится проблема.

    Чтобы избежать этой проблемы, корпус подшипника со стороны ротора часто изолируют от стороны статора. В большинстве случаев будет изолирован по крайней мере один подшипник, обычно самый дальний от первичного двигателя для генераторов и самый дальний от нагрузки для двигателей. Иногда оба подшипника изолированы.

    Вопрос № 7: Как генераторы переменного тока регулируют переменную, напряжение и мощность?

    Хотя элементы управления генератором взаимодействуют, верны следующие общие положения.

    • Выходная мощность генератора контролируется его первичным двигателем.
    • Вклад напряжения и/или реактивной мощности генератора контролируется уровнем тока возбуждения.

    Например, предположим, что к выходу генератора подключена дополнительная нагрузка. Добавленный поток тока увеличит силу магнитного поля якоря и заставит генератор замедлиться. Чтобы поддерживать частоту, регулятор генератора увеличивает мощность, подводимую к первичному двигателю. Таким образом, дополнительная мощность, необходимая для генератора, регулируется вводом первичного двигателя.

    В нашем примере чистый магнитный поток в воздушном зазоре уменьшится, поскольку увеличение якоря противодействует потоку поля. Если не увеличить поток поля, чтобы компенсировать это изменение, выходное напряжение генератора уменьшится. Таким образом, ток возбуждения используется для управления выходным напряжением.

    Давайте посмотрим на другой пример для дальнейшего пояснения. Предположим, к нашему генератору добавлена ​​дополнительная нагрузка VAR. В этом случае выходной ток генератора снова возрастет. Однако, поскольку новая нагрузка не является «настоящей» мощностью, первичный двигатель необходимо увеличивать только настолько, чтобы компенсировать дополнительное падение IR, создаваемое дополнительным током.

    В качестве последнего примера предположим, что у нас есть два или более генераторов, работающих параллельно и питающих нагрузку. Генератор 1 (G1) несет всю нагрузку (активную и реактивную), в то время как Генератор 2 (G2) работает с нулевой мощностью и нулевой реактивной мощностью.