Содержание

Коэффициент мощности (cos φ, косинус фи ), Полная (кажущаяся), активная и реактивная мощность электродвигателя=электромотора и не только его. Коэффициент мощности для трехфазного электродвигателя.

ГОСТы, СНиПы

Карта сайта TehTab.ru

Поиск по сайту TehTab.ru

Навигация по справочнику TehTab.ru:  главная страница / / Техническая информация/ / Физический справочник/ / Электрические и магнитные величины/ / Понятия и формулы для электричества и магнетизма. / / Коэффициент мощности (cos φ, косинус фи ), Полная (кажущаяся), активная и реактивная мощность электродвигателя=электромотора и не только его. Коэффициент мощности для трехфазного электродвигателя.

Коэффициент мощности (cos φ, косинус фи ), Полная (кажущаяся), активная и реактивная мощность электродвигателя=электромотора и не только его. Коэффициент мощности для трехфазного электродвигателя.

На шильдиках многих электромоторов (электродвигателей и др. устройств) указывают активную мощность в Вт и cosφ / или λ /или PF. Что тут к чему см. ниже.

Подразумеваем,что переменное напряжение в сети синусоидальное — обычное, хотя все рассуждения ниже верны и для всех гармоник по отдельности других периодических напряжений.

Полная, или кажущаяся мощность S (apparent power) измеряется в вольт-амперах (ВА или VA) и определяется произведением переменных напряжения и тока системы. Удобно считать, что полная мощность в цепи переменного тока выражается комплексным числом таким, что активная мощность является его действительной частью, реактивная мощность — мнимой.


  • угол φ -это угол между фазой напряжения и фазой тока, называемый еще сдвигом фаз, при этом, если ток отстаёт от напряжения, сдвиг фаз считается положительным, если опережает его, то отрицательным
  • величина sin φ для значений φ от 0 до плюс 90° является положительной величиной. Величина sin φ для значений φ от 0 до -90° является отрицательной величиной
  • если sin φ>0, то нагрузка имеет активно-индуктивный характер (электромоторы, трансформаторы, катушки…) — ток отстает от напряжения
  • если sin φ<0, нагрузка имеет активно-ёмкостный характер — (конденсаторы…) — ток опережает напряжение
  • Все соотношения между P, S и Q определяются теоремой Пифагора и элементарными тригонометрическими тождествами для прямоугольного треугольника

Активная мощность P (active power = real power =true power) измеряется в ваттах (Вт, W) и это та мощность, которая потребляется электрическим сопротивлением системы на тепло и полезную работу. Для сетей переменного тока:

  • P=U*I*cosφ, где U и I — действующие=эффективные=среднеквадратичные значения напряжения и тока, а φ- сдвиг фаз между ними

Реактивная мощность Q (reactive power) измеряется в вольт-амперах реактивных (вар, var) и это электромагнитная мощность, которая запасается и отдается обратно в сеть колебательным контуром системы. Реактивная мощность в идеале не выполняет работы, т.е. название вводит в заблуждение. Легко догадаться глядя на рисунок, что:

  • P=U*I*sinφ, где U и I — действующие=эффективные=среднеквадратичные значения напряжения и тока, а φ- сдвиг фаз между ними

Сама концепция активной и реактивной мощности актуальна для устройств (приемников) переменного тока. Она малоактуальна=никогда не упоминатеся для приемников постоянного тока в силу малости (мизерности) соответствующих эффектов, связанных только с переходными процессами при включении/выключении.

Любая система, как известно, имеет емкость и индуктивность = является неким колебательным контуром. Переменный ток в одной фазе накачивает электромагнитное поле этого контура энергией а в противоположной фазе эта энергия уходит обратно в генератор ( в сеть). Это вызывает в РФ 3 проблемы (для поставщика энергии!)

    • Хотя теоретически, при нулевых сопротивлениях передачи, на выработку реактивной мощности не тратится мощность генератора, но практически для передачи реактивной мощности по сети требуется дополнительная, активная мощность генератора (потери передачи).
    • Сеть должна пропускать и активные и реактивные токи, т.е иметь запас по пропускным характеристикам.
    • Генератор мог бы, выдавая те же ток и напряжение, поставлять потребителю электроэнергии больше активной мощности.

попробуем догадаться, что делает поставщик электроэнергии? Правильно, пытается навязать Вам различные тарифы для разлиных значений cos φ. Что можно сделать: можно заказать компенсацию реактивной мощности ( т.е. установку неких блоков конденсаторов или катушек), которые заставят реактивную нагрузку колебаться внутри Вашего предприятия/устройства. Стоит ли это делать? Зависит от стоимости установки, наценок за коэффициент мощности и очень даже часто не имеет экономического смысла. В некоторых странах качество питающего напряжения тоже может пострадать от избытка реактивной мощности, но в РФ проблема неактуальна в силу изначально очень низкго качества в питающей сети.

Естественно, хотелось бы ввести величину, которая характеризовала бы степень линейности нагрузки. И такая величина вводится под названием коэффициент мощности («косинус фи», power factor, PF), как отношение активной мощности к полной, естественно сразу в 2-х видах, в РФ это:

  • λ=P/S*100% — то есть, если в %, то это лямбда, P в (Вт), S в (ВА)
  • cosφ=P/S — более распространенная величина , P в (Вт), S в (ВА)

 

Коэффициент мощности для трехфазного асинхронного (обычного) электродвигателя.

cosφ = P / (√3*U*I)

где

cosφ = косинус фи

√3 = квадратный корень из трех

P = активная мощность (Вт)

U = Напряжение (В)

I = Ток (А)

Дополнительная информация от TehTab.ru:

Нашли ошибку? Есть дополнения? Напишите нам об этом, указав ссылку на страницу.

TehTab.ru

Реклама, сотрудничество: [email protected]

Обращаем ваше внимание на то, что данный интернет-сайт носит исключительно информационный характер. Информация, представленная на сайте, не является официальной и предоставлена только в целях ознакомления. Все риски за использование информаци с сайта посетители берут на себя. Проект TehTab.ru является некоммерческим, не поддерживается никакими политическими партиями и иностранными организациями.

Расчет мощности двигателя при схеме соединения звезда-треугольник

В этой статье я хотел бы рассказать как изменяется мощность двигателя при схеме соединения обмоток звезда – треугольник и наоборот.

В связи со спецификой своей работы я сталкиваюсь с ремонтов различных асинхронных двигателей и в большинстве случаев выход из строя двигателя происходит при неправильном переключении обмоток двигателя, так как люди не понимают, как изменяется мощность двигателя при переключении с треугольника на звезду и обратно, и как это может отразится на работоспособности самого двигателя.

Определение мощности при схеме соединения звезда

Известно [Л1. с. 34], что при соединении в звезду линейные токи Iл и фазные токи Iф равны между собой, при этом между фазным Uф и линейным напряжением Uл существует соотношение, где Uл = √3*Uф , в результате Uф = Uл/√3.

Исходя из этого, полная мощность определяется через линейные величины:

Определение мощности при схеме соединения треугольник

При схеме соединения в треугольник, фазные и линейные напряжения равны между собой Uл = Uф, при этом между токами существует соотношение: Iл = √3*Iф, в результате Iф = Iл/√3.

Исходя из этого, полная мощность определяется, как:

Для определения активной и реактивной мощности используются формулы:

Из-за того что формулы для схемы соединения звезды и треугольника имеют одинаковый вид, у мало опытных инженеров происходят недоразумения, будто вид соединения безразличен и ни на что не влияет.

Рассмотрим на примере, на сколько ошибочные данные утверждения. В данном примере будем рассматривать электродвигатель типа АИР90L2, который имеет две схемы подключения ∆/Y, технические характеристики двигателя:

  • коэффициент мощности cosφ = 0,84;
  • коэффициент полезного действия, η = 78,5%;

Определяем ток двигателя при напряжении 380 В и схеме соединения треугольник, мощность при таком соединении составляет 3 кВт:

Теперь соединим обмотки двигателя в звезду. В результате на фазную обмотку пришлось на 1,73 раза более низкое напряжение Uф = Uл/√3, соответственно и ток уменьшился в 1,73 раза, но так как при соединении в треугольник Uл = Uф, а линейный ток был в 1,73 раза больше фазного Iл = √3*Iф, то получается, что при соединении в звезду, мощность уменьшится в √3*√3 = 3 раза, соответственно и ток уменьшиться в 3 раза.

Из всего выше изложенного можно сделать, следующие выводы:

1. При переключении двигателя со звезды на треугольник, мощность двигателя увеличивается в 3 раза и наоборот. Использовать данные переключения, можно если схемы подключения двигателя позволяет выполнять переключения ∆/Y, в противном случае, двигатель может сгореть, когда Вы будете выполнять переключение со звезды на треугольник.

2. Как Вы уже поняли, используя схему переключения обмоток двигателя со звезды на треугольник, мы уменьшаем пусковые токи при пуске двигателя на пониженном напряжении, а затем его повышаем до номинального.
Когда обмотки двигателя соединены в звезду, к каждой из них подводиться напряжение меньше номинального в 1,73 раза. В процессе пуска, двигатель увеличивает скорость вращения и ток снижается. В это время происходит переключение на треугольник.

Обращаю Ваше внимание, что двигатели, которые недогружены, работают с очень низким cosφ. Поэтому рекомендуется заменить недогруженный двигатель, на двигатель меньшей мощности. Если же у недогруженного двигателя, запас мощности велик, то cosφ можно поднять путем переключения обмоток с треугольника на звезду без риска перегреть двигатель.

Как мы видим ничего сложного нету в определении мощности при схеме звезда и треугольник.

Литература:

1. Звезда и треугольник. Е.А. Каминский, 1961 г.

Всего наилучшего! До новых встреч на сайте Raschet. info.

звезда-треугольник, мощность двигателя при звезде, соединение обмоток двигателя, схема соединения обмоток звезда-треугольник, треугольник звезда

Поделиться в социальных сетях

Трехфазный ток – расчет

Трехфазная мощность и ток

Мощность, потребляемая цепью (однофазной или трехфазной), измеряется в ваттах Вт (или кВт). Произведение напряжения и тока представляет собой полную мощность и измеряется в ВА (или кВА). Соотношение между кВА и кВт представляет собой коэффициент мощности (Pf):

кВт = кВА x pf

, который также может быть выражен как:

кВА = кВт/pf

Однофазная система  

с этим проще всего справиться. Учитывая кВт и коэффициент мощности, можно легко вычислить кВА. Ток — это просто кВА, деленное на напряжение. В качестве примера рассмотрим нагрузку, потребляющую 23 кВт мощности при напряжении 230 В и коэффициенте мощности 0,86:

кВА = кВт / коэффициент мощности = 23/0,86 = 26,7 кВА (26700 ВА)

Ток = ВА / напряжение = 26700 / 230 = 116 А

Примечание: вы можете выполнить эти уравнения либо в ВА, В и А, либо в кВА, кВ и КА, в зависимости от параметров, с которыми вы имеете дело. Чтобы преобразовать ВА в кВА, просто разделите на 1000.

Трехфазная система

Основное различие между трехфазной и однофазной системами заключается в напряжении. В трехфазной системе у нас есть линейное напряжение (V LL ) и фазное напряжение (V LN ), связанные соотношением:

V LL  = √3 x V LN

или, как вариант:

V LN = V LL / √3

Самый простой способ решить трехфазные задачи — преобразовать их в однофазную задачу. Возьмем трехфазный двигатель (с тремя одинаковыми обмотками), потребляющий заданную мощность кВт. Сумма кВт на обмотку (однофазная) должна быть разделена на 3. Точно так же трансформатор (с тремя обмотками, каждая из которых идентична), выдающий заданное количество кВА, будет иметь каждую обмотку, обеспечивающую треть общей мощности. Чтобы преобразовать трехфазную задачу в однофазную, возьмите общее количество кВт (или кВА) и разделите его на три.

В качестве примера рассмотрим сбалансированную трехфазную нагрузку, потребляющую 36 кВт при коэффициенте мощности 0,86 и напряжении между фазами 400 В (V LL ):

примечание: напряжение между фазами и нейтралью В LN  = 400/ √3  = 230 В
трехфазная мощность составляет 36 кВт, однофазная мощность = 36/3 = 12 кВт
теперь просто следуйте описанному выше однофазному методу / 0,86 = 13,9 кВА (13900 ВА)

Ток = ВА / напряжение = 13900 / 230 = 60 А

Достаточно просто. Чтобы найти мощность при заданном токе, умножьте ее на напряжение, а затем на коэффициент мощности для преобразования в Вт. Для трехфазной системы умножьте на три, чтобы получить общую мощность.

Несимметричные трехфазные системы

Вышеупомянутое относится к сбалансированным трехфазным системам. То есть ток в каждой фазе одинаков, и каждая фаза отдает или потребляет одинаковое количество энергии. Это типично для систем передачи энергии, электродвигателей и подобного оборудования.

Часто, когда задействованы однофазные нагрузки, например, жилые и коммерческие помещения, система может быть несбалансированной, когда каждая фаза имеет разный ток и отдает или потребляет разное количество энергии.

Сбалансированные напряжения

К счастью, на практике напряжения имеют тенденцию быть фиксированными или очень небольшими величинами. В этой ситуации и с небольшим размышлением можно распространить вышеуказанный тип расчета на трехфазные системы с несимметричным током. Ключом к этому является то, что сумма мощностей в каждой фазе равна общей мощности системы.

Например, возьмем трехфазную систему 400 В (V LL ) со следующими нагрузками: фаза 1 = 80 А, фаза 2 = 70 А, фаза 3 = 82 А

напряжение линии к нейтрали (фазе) V LN  = 400/√3 = 230 V
Полная мощность фазы 1 = 80 x 230 = 18 400 ВА = 18,4 кВА     
Полная мощность фазы 2 = 70 x 230 = 16 100 ВА = 16,1 кВА = 2 x Полная мощность 8 фазы 3
230 = 18 860 ВА = 18,86 кВА
Суммарная трехфазная мощность = 18,4 + 16,1 + 18,86 = 53,36 кВА

Точно так же, зная мощность в каждой фазе, можно легко найти фазные токи. Если вы также знаете коэффициент мощности, вы можете преобразовать кВА в кВт, как показано ранее.

Несимметричные напряжения

Если напряжения становятся несимметричными или есть другие причины (например, несбалансированный фазовый сдвиг), необходимо вернуться к более традиционному анализу сети. Системные напряжения и токи можно найти, подробно нарисовав схему и используя законы Кирхгофа и другие сетевые теоремы.

Как узнать, какой генератор вам подходит

Если вы уже рассчитали общую фактическую нагрузку (Общую трехфазную мощность), теперь вы можете использовать следующие формулы, чтобы выбрать правильный генератор для вас.

во-первых, есть два термина мощности дизель-генераторов, один — резервная мощность, а второй — основная мощность

основная мощность генераторной установки

основная мощность генераторной установки составляет 100% мощность генератора, и именно здесь применяется переменная нагрузка и неограниченное количество часов использования со средним коэффициентом нагрузки 80% от основного рейтинга в течение каждого 24-часового периода. Отметив, что перегрузка 10% допускается в течение 1 часа при каждой 12-часовой работе.

Резервная мощность генераторной установки

Резервная мощность генераторной установки составляет 110 % мощности генератора, и именно здесь переменная нагрузка ограничена годовым использованием до 500 часов. применяется, из которых 300 часов может быть непрерывной работы. Обратите внимание, что перегрузки не допускаются.

Вывод:

поэтому, если вы выбираете правильный генератор для расчетной общей нагрузки, вам следует умножить общую нагрузку на 1,25, чтобы получить базовую мощность. сделав это, вы теперь работаете на 80% от основной мощности.

примечание: рекомендуется добавлять дополнительную виртуальную нагрузку к общей нагрузке, например 10% для будущего дополнительного оборудования. и вы вообще не должны опускаться ниже 40% от основной мощности.

Генераторы Kubota. Генераторы John Deere. Если вам не нравится считать кВт и Ампер вручную — у нас есть решение! Наш онлайн-калькулятор мощности переменного тока может помочь вам преобразовать электрическую мощность в ток и наоборот для однофазной и трехфазной электроэнергии.

Ниже мы научим вас пользоваться нашим калькулятором мощности и расскажем о формулах для этих измерений. Давайте погрузимся!

Как пользоваться калькулятором мощности?

Хотите перевести ампер в кВт (или наоборот) без математических расчетов? Без проблем!

Наш калькулятор однофазной и трехфазной мощности прост в использовании. Просто заполните поля необходимыми данными, включая тип тока, напряжение и коэффициент мощности. Калькулятор все сделает автоматически.

Калькулятор мощности переменного тока — кВт в амперах

  • Тип тока
    • Переменный ток — расчет однофазной мощности
    • Переменный ток — расчет трехфазной мощности
    • DC
  • Ток в амперах
  • Тип напряжения
    • Линейный
    • Линия-нейтраль
  • Напряжение (в вольтах)
  • Введите коэффициент мощности
    • Рассчитать; Перезагрузить; Менять;
  • Мощность (милливатты)
  • Результаты мощности (Вт)
  • Результаты мощности (киловатт)

Ампер (А или ампер) и киловатт (кВт) — это два разных параметра электричества. Что они имеют в виду?

Ампер указывает количество тока, потребляемого нагрузкой. Киловатты – это количество энергии, потребляемой нагрузкой в ​​любой момент времени. Короче говоря, амперами измеряется сила тока, а киловаттами измеряется мощность.

Как можно преобразовать ампер в киловатты для трехфазного, однофазного переменного тока (AC) или постоянного тока (DC)?

Киловатты не могут быть преобразованы в ампер напрямую. Величина тока или мощности зависит от коэффициента мощности, типа тока и типа напряжения.

Однако вы можете получить точные измерения, преобразовав эти показатели с помощью формул. Кроме того, вы можете использовать наш трехфазный преобразователь киловатт в ампер, а также калькулятор однофазной мощности и мощности постоянного тока.

Что такое однофазная электроэнергия?

Фаза означает распределение электрической нагрузки однофазным или трехфазным источником питания.

Однофазная электроэнергия обычно используется в бытовых целях, жилых домах и небольших офисах. Другими словами, он работает для приборов, которым требуется небольшое количество энергии (холодильники, светильники, обогреватели, телевизоры и тому подобное).

Стандарт для однофазного распределения электроэнергии в США составляет 120 вольт переменного тока с частотой 60 герц. Каждый герц означает количество изменений электричества, происходящих в проводе каждую секунду. Следует отметить, что мощность переменного тока может переключать полярность, в отличие от мощности постоянного напряжения.

Как рассчитать мощность однофазной сети?

Вот формулы, которые можно использовать для расчета однофазной мощности.

Киловатты из ампер

кВт = PF × A × V / 1000

В этой формуле мощность (в кВт) равна коэффициенту мощности нагрузки (PF), умноженному на измеренный фазный ток в амперах (А), умноженное на среднеквадратичное напряжение (В), и деленное на 1000.

Ампер из киловатт

A = 1000 × кВт / (PF × В)

A обозначает фазный ток, который равен кВт (мощность), умноженный на 1000, затем разделенный на коэффициент мощности (PF), умноженный на среднеквадратичное напряжение (В).

Что такое трехфазное питание переменного тока?

Трехфазная электроэнергия является распространенным типом производства и распределения электроэнергии переменного тока, широко используемым для нагрузок более 1000 Вт. В отличие от однофазного источника питания, трехфазный источник питания требует меньше алюминия или меди, имеет более высокий КПД проводника и выдерживает большие силовые нагрузки. Это также обеспечивает большую общую плотность, оптимизируя тем самым потребление энергии.

Для более точного расчета мощности формула для трехфазных приложений должна учитывать тип конфигурации мощности. Двумя наиболее распространенными конфигурациями являются «треугольник» (используются только три провода) и «вей» (имеет четвертый нейтральный провод).

Трехфазное электропитание обычно используется в коммерческих и промышленных объектах с большими двигателями, производственным оборудованием, мощными кондиционерами и другими приложениями с большой нагрузкой.

Теперь к основной теме. Как перевести амперы в киловатты в трехфазных цепях переменного тока (и наоборот)?

Как рассчитать 3-х фазную мощность?

Вот уравнения, которые можно использовать для расчета трехфазной мощности. Имейте в виду, что формула трехфазной мощности будет отличаться для линейного и нейтрального напряжений.

Киловатты из ампер (линейное напряжение)

кВт = √3 × PF × A × V / 1000

Мощность (кВт) равна квадратному корню из трех (√3), умноженному на мощность коэффициент (PF), умноженный на ток (А), умноженный на среднеквадратичное линейное напряжение (В), деленное на 1000.

Киловатты из ампер (фазное напряжение)

кВт = 3 × PF × A × V / 1000

Вы можете рассчитать 3-фазную мощность из ампер в кВт с фазным напряжением точно так же, как вы будет с линейным напряжением. Единственное отличие состоит в том, что квадратный корень из трех (√3) заменяется числом три (3), а межфазное среднеквадратичное значение заменяется линейным среднеквадратичным значением напряжения в уравнении.

Ампер из киловатт (линейное напряжение)

A = 1000 × кВт / (√3 × PF × В)

Фазный ток (А) равен 1000 киловаттам (кВт), деленным на квадратный корень из трех, умноженный на коэффициент мощности (PF), умноженный на межфазное среднеквадратичное напряжение (В).

Ампер из киловатт (линейное напряжение)

A = 1000 × кВт / (3 × PF × В)

Для расчета трехфазного источника питания необходимо умножить 1000 на мощность ( кВт), деленное на три умножения на коэффициент мощности, умноженный на среднеквадратичное напряжение между фазой и нейтралью (В).

Что такое коэффициент мощности?

Теперь мы несколько раз упоминали коэффициент мощности (PF) в формулах. Он относится к отношению между реальной и кажущейся мощностью, рассеиваемой цепью переменного тока, к изделию с электрическим питанием.

Реальная мощность означает электрическую мощность, используемую устройствами, а кажущаяся мощность означает электроэнергию, подаваемую в цепь.

Значение коэффициента мощности изменяется от нуля до единицы в зависимости от резистивной и реальной нагрузки.

  • Коэффициент мощности равен нулю (0), когда вся мощность является реактивной.
  • Коэффициент мощности равен единице (1), когда вся мощность является реальной (без реактивной мощности).

Как рассчитать коэффициент мощности?

Существует множество уравнений коэффициента мощности, основанных на типе мощности и тока. Давайте рассмотрим каждую формулу коэффициента мощности.

Коэффициент мощности для синусоидального тока равен абсолютному значению косинуса фазы полной мощности. Фазовый угол кажущейся мощности будет отмечен как φ в приведенных ниже формулах.

Для расчета реальной мощности в ваттах:

Вт = |ВА| × ПФ = |ВА| × |cos ф|

Активная мощность равна полной мощности в вольт-амперах (ВА), умноженной на коэффициент мощности.

Резистивное сопротивление нагрузки

PF(резистивная нагрузка) = P / |S| = 1

Активная мощность резистивных импедансных нагрузок равна полной мощности (S) с коэффициентом мощности (PF), равным 1 (единице).

Вольт-ампер реактивный

Q = |ВА| × |sin φ|

Реактивная мощность (Q) в вольт-амперах реактивная равна полной мощности в вольт-амперах (ВА), умноженной на синус фазового угла.

Однофазная мощность

PF = |cos φ| = 1000 × кВт / (В × А)

Чтобы рассчитать коэффициент мощности однофазной цепи, необходимо умножить 1000 на мощность в киловаттах (кВт), разделить на среднеквадратичное напряжение (В), умноженное на фазный ток в Ампер (А).

3-фазная мощность (междуфазная)

PF = |cos φ| = 1000 × кВт / (√3 × В × A)

Расчет линейной трехфазной мощности для коэффициента мощности: 1000 умножить на мощность в киловаттах (кВт), затем разделить на квадратный корень из трех, умноженный на линейное среднеквадратичное напряжение (В), умноженное на фазный ток в амперах (А).

3-фазная мощность (линия-нейтраль)

PF = |cos φ| = 1000 × кВт / (3 × В × A)

Чтобы измерить коэффициент мощности для трехфазной мощности между фазой и нейтралью, умножьте 1000 на киловатты (кВт), а затем разделите среднеквадратичное значение напряжения между фазой и нейтралью в три раза. (V) умножить на ампер (A).

Преобразование кВт в Амперы

Вы хотите перевести киловатты в Амперы? Эти данные можно рассчитать по простой формуле (при условии, что вы знаете коэффициент мощности). Формула:

​I = P / (√3 × PF × V)​

В этом уравнении I обозначает силу тока (ампер), P обозначает относительную мощность (измеряется в ваттах), PF обозначает коэффициент мощности, а V — напряжение.

Если ваша мощность измеряется в тысячах ватт, вам будет проще преобразовать данные в ватты, умножив их на 1000. Вам также необходимо убедиться, что ваше напряжение измеряется в киловольтах (кВ).

Приведем пример, используя приведенную выше формулу. Если ваш коэффициент мощности 0,8, мощность 1,5 кВт (1500 Вт) и постоянное напряжение 220 (В), расчет будет:

I = 1500 / (√3 × 0,8 × 220) = 4,92 А

Таким же образом можно преобразовать ватты и киловатты в ампер.

Преобразование ампер в кВт

Теперь давайте сделаем обратное.