Содержание

Коллекторный и бесколлекторный двигатели


В ассортименте продукции Greenworks есть инструменты с коллекторным (щёточным) и бесколлекторным (бесщёточным) двигателями. Но везде делается акцент только на бесколлекторном электродвигателе. Почему только на нём, и для чего тогда устройства с щёточным? Расскажем в данной статье преимущества и недостатки каждого электродвигателя и ответим на эти два вопроса.

Коллекторный двигатель


Начнём с того, что двигатель — это устройство, которое преобразует какой-либо вид энергии в механический и наоборот. Эффективность данного процесса зависит от внутренней конструкции двигателя, которая в свою очередь зависит от источника тока (постоянного или переменного).

Устройство коллекторного двигателя


Якорь. Стержнем всей конструкции является якорь, он же металлический вал. Вал является движущимся элементом, от которого зависит крутящий момент. На нём также располагается ротор.


Ротор. Связан с ведущим валом. Его внешняя конструкция напоминает барабан, который вращается внутри статора. Задача ротора получать или отдавать напряжение рабочему телу.


Подшипники. Они расположены на противоположных концах якоря для его сбалансированного вращения.


Щётки. Выполнены обычно из графита. Их задача предавать напряжение через коллектор в обмотки.


Коллектор (коммутатор). Он выполнен в виде соединенных между собой медных контактов. Во время процесса вращения он принимает на себя энергию с щёток и направляет её в обмотки.


Обмотки. Расположены на роторе и статоре разных полярностей. Их функция в генерировании собственного магнитного поля под воздействием разных полярностей, за счёт чего якорь приходит в действие.


Сердечник статора. Выполнен из металлических пластин. Может иметь катушку возбуждения с полярным напряжением обмотки ротора. Или — постоянные магниты. Данная конструкция зависит от источника напряжения. Является статичным элементом всего механизма.


Плюсы:

  • Стоимость меньше, чем у бесколлекторных двигателей (БД).

  • Конструкция относительно проще конструкции БД.

  • В виду этого, техническое обслуживание проще.


Минусы:


На высоких оборотах увеличивается трение щёток. Отсюда вытекает:

  • Быстрый износ щёток.

  • Снижение мощности инструмента.

  • Появление искр.

  • Задымление инструмента.

  • Выход из строя инструмента раньше его «жизненного цикла».


Если рассматривать бытовую сферу применения, то коллекторный двигатель является традиционным и бюджетным вариантом эксплуатации (и самым часто используемым).

Инструменты на данном типе двигателя преданно и верно справятся с любой повседневной задачей в пределах своих возможностей. Так как такие инструменты по стоимости значительно дешевле инструментов на бесколлекторном двигателе, их рассматривает категория потребителей, которая придерживается мнения: «ничто не вечно». Зачем переплачивать, если любой агрегат может выйти из строя? Мы же считаем, что при надлежащих условиях эксплуатации любой инструмент может прослужить верой и правдой довольно долгий срок. Но выбор за Вами.

Бесколлекторный двигатель


Если в коллекторном двигателе всё приходит в действие за счёт механики, то в бесщёточном — чистая электроника. Также позиции некоторых элементов в конструкции меняются местами. В коллекторном двигателе обмотки находились на роторе, а постоянные магниты — на статоре. У бесколлеторного — постоянные магниты переносятся на ротор, а катушки с обмоткой располагаются на статоре. Также ротор и статор могут менять свои позиции: есть модели двигателей с внешним ротором. Здесь отсутствуют щётки и коллектор, вместо них добавлен микропроцессор (контроллер) и кулер для охлаждения системы. Микропроцессор контролирует положение ротора, скорость вращения, равномерное распределение напряжения по катушкам обмотки.


Основные типы бесщёточного двигателя :

  • Асинхронный — это двигатель, который преобразовывает электроэнергию переменного тока в механическую. Название происходит от разной скорости вращения магнитного поля и ротора. Частота вращения ротора меньше, чем у магнитного поля, создаваемого обмотками статора (Например, двигатель DigiPro, который используется в продукции Greenworks).
  • Синхронный — это двигатель переменного тока, у которого частота вращений ротора равна частоте вращений магнитного поля.

Тип двигателя с внешним ротором

Расположение ротора и статора в бесщёточном двигателе DigiPro


Плюсы:


  • Из-за отсутствия щёток меньше трения.

  • Меньше подвержены износу.

  • Отсутствие искр и возможного возгорания.

  • Упрощенная регулировка крутящего момента в больших пределах.

  • Экономия расходуемой энергии.

  • У инструментов с реверсом одинаковая мощность в обоих направлениях вращения.

  • Быстрый запуск с больших скоростей.

  • Могут разгоняться до предельных показателей.

  • Некоторые модели при сильной нагрузке оснащены системой защиты двигателя.


Минусы:


  • Значительно дороже в цене, чем коллекторные двигатели.

  • Техническое обслуживание более узкоспециализированное.


Несомненно бесколлекторные двигатели ориентированы на профессиональные работы с приличной нагрузкой. Несмотря на высокие показатели усовершенствованного типа двигателя, его единственный недостаток бьёт по кошельку. И перед тем, как приобретать инструмент на том или ином двигателе, прежде всего надо поставить перед собой вопрос: для каких целей он нужен. Уже исходя из ответа делать свой выбор.


Сколько людей — столько и мнений. Компания Greenworks старается делать качественную продукцию на разных типах двигателя, чтобы каждый мог подобрать себе инструмент по предпочтениям, функционалу и необходимой мощности под конкретные задачи, которые у каждого клиента свои. Именно поэтому, например, в разделе «Ручной инструмент» Вы можете наблюдать один тип агрегата на коллекторном и бесколлекторном двигателях. Какой лучше? Выбор за Вами!

Вернуться к списку

Коллекторный двигатель: устройство, управление, регулирование

Мы часто встречаемся с электродвигателями. Они обеспечивают работу бытовой и строительной техники, являются составной частью производственного оборудования. Немалая часть устройств имеет в составе коллекторный двигатель. Это один из простых и недорогих движков, который имеет хорошие характеристики. Именно этим, да ещё невысокой ценой, обусловлена его популярность. 

Содержание статьи

  • 1 Что такое коллекторный двигатель и его особенности
  • 2 Общее устройство коллекторных двигателей
  • 3 Ротор коллекторного двигателя
    • 3. 1 Роторная обмотка
    • 3.2 Как устроен коллекторный узел и как он работает
  • 4 Принцип работы
  • 5 Достоинства и недостатки
  • 6 Коллекторный двигатель постоянного тока с магнитами
  • 7 С обмотками возбуждения
  • 8 Универсальные коллекторные двигатели
    • 8.1 Достоинства и недостатки

Что такое коллекторный двигатель и его особенности

Коллектором называют часть двигателя, контактирующую со щётками. Этот узел обеспечивает передачу электроэнергии в рабочую часть агрегата. Коллекторным называется двигатель, у которого хотя бы одна обмотка ротора соединена со щётками и коллектором. Коллекторные электродвигатели бывают:

  • постоянного тока;
  • переменного тока;
  • универсальные.

Коллекторный двигатель может быть постоянного и переменного тока. Есть универсальные модели, которые могут работать от источника напряжения любого типа

Последние универсальные, работают как от постоянного, так и от переменного тока. Они сохраняют популярность, даже несмотря на то, что наличие щёток отрицательный момент, так как щётки стираются и искрят. За этим узлом требуется постоянное наблюдение, техническое обслуживание. К плюсам коллекторных двигателей относят возможность плавной регулировки скорости в широких пределах, невысокую стоимость.

Как и другие электромоторы, коллекторный состоит из статора и ротора (часто называют «якорь»). Его отличительной чертой является наличие на валу коллекторного узла, через который на машину передаётся электропитание. Устройство коллекторных моторов постоянного и переменного тока похожи, но имеют определённые отличия, потому рассмотрим подробнее их по отдельности.

Общее устройство коллекторных двигателей

Как и любой электродвигатель, коллекторный преобразует электрическую энергию в механическую. Он состоит из неподвижной части – статора и подвижной – ротора. В статоре располагаются обмотки возбуждения, ротор отвечает за передачу возникающей механической энергии. Одна из составляющих частей ротора – вал. С одной стороны, на валу размещён коллекторный узел, с помощью которого на обмотки ротора передаётся электрическая энергия.

Коллекторный двигатель: устройство

Статор состоит из корпуса, который защищает компоненты мотора от повреждений. Сверху и снизу корпуса крепятся магнитные полюса. Они необходимы для поддержания магнитного потока между статором и ротором.

Ротор коллекторного двигателя

Ротор коллекторного двигателя состоит из вала, на который насаживается сборный магнитопровод. С одной стороны, на вал крепится коллекторный узел, с другой, лопасти вентилятора. Для обеспечения лёгкого вращения и для фиксации в корпусе на вал с двух сторон надеваются подшипники. Для нормальной работы электродвигателя, необходимо чтобы ротор был отлично сбалансирован. Потому к изготовлению этой части подходят особенно скрупулёзно.

Подвижная (вращающаяся) часть

Роторная обмотка

Сердечник ротора собирается из металлических пластин, отштампованных из магнитного металла. Толщина пластин 0,35-0,5 мм, каждая из них залита слоем диэлектрического лака, для избавления от паразитных токов. Пластины по внешнему краю имеют пазы, в которые затем укладываются витки медной проволоки. Эти пластины насаживаются на вал и закрепляются на нём, собирается пакет требуемого размера. Эта система является магнитопроводом.

Так выглядит ротор коллекторного двигателя

В пазы магнитопровода укладывается витки медного обмоточного провода. Выходы обмоток выводятся на коллекторный узел, где и происходит их переключение.

Как устроен коллекторный узел и как он работает

Коллекторный узел стоит рассмотреть подробнее. Иначе понять, как вращается ротор, сложно. Коллектор имеет цилиндрическую форму и набран из медных пластин (иногда называют ламелями), которые изолированы друг от друга слюдяными или текстолитовыми прокладками. Нет электрического контакта и с осью вала, к которому  он крепится.

Коллектор имеет вид цилиндра, который набран из медных пластин. Пластины сделаны в виде секторов, разделены диэлектрическими прокладками

Получается, коллектор собран из медных секторов и без обмотки электрически друг с другом не связанных. К каждой пластине коллектора крепится вывод одной рамки обмотки ротора. К плоскости двух противоположных рамок коллектора прижимается две щетки. Они плотно прилегают к поверхности медной пластины коллектора, что даёт хороший контакт. На эти щётки подаётся потенциал, который и передаётся в тот виток обмотки ротора, который подключён к этим пластинам.

К парным пластинам коллектора прижимаются графитовые щетки

Так как ротор с некоторой скоростью вращается, одна пара пластин сменяется другой. Таким образом, напряжение передаётся на все обмотки ротора. При этом возникающие друг за другом поля поддерживают вращение ротора, «проталкивая» его в нужном направлении.

Принцип работы

Вот теперь, после того как рассмотрели устройство ротора, можно поговорить о том, как работает коллекторный двигатель. Собственно, принцип действия не отличается от других моторов, ротор начинает вращаться в магнитном поле благодаря наведенным на нём токам. Но как именно и почему эти тока наводятся? Для понимания надо вспомнить, как возникает электродвижущая сила в постоянном магнитном поле. Если в поле постоянного магнита ввести прямоугольную рамку, под действием возникающего в ней тока она начинает вращение. Направление вращения определяется по правилу буравчика. Для постоянного поля оно гласит так, если ввести правую руку в поле так, чтобы магнитные линии входили в ладонь, вытянутые пальцы укажут направление движения.

Иллюстрация к пояснению принципа работы коллекторного двигателя постоянного тока

Если посмотреть на устройство ротора, то видим, что каждая обмотка представляет собой такую рамку. Только состоит она не из одного провода, а из нескольких, но сути это не меняет. При помощи коллекторного узла, в какой-то момент времени, обмотка подключается к питанию, по ней протекает ток и вокруг проводника возникает магнитное поле. Оно взаимодействует с полем статора. В зависимости от типа, стоят там постоянные магниты или тоже протекает постоянный ток в обмотках, генерируя на полюсах собственное магнитное поле. Поля ротора и статора рассчитаны так, что при взаимодействии они «проталкивают» ротор в нужном направлении. Вот, коротко и без особых подробностей описание работы коллекторного двигателя постоянного тока.

Обмотки на роторе подключаются к пластинам коллектора. Когда с пластинами контактируют щетки, получаем замкнутый контур, по которому течет ток

Если немного вдуматься, можно понять, почему коллекторный двигатель позволяет легко и плавно регулировать скорость. Чем больше напряжение подается на обмотки ротора, тем более мощное поле генерирует статор, тем сильнее их взаимодействие и быстрее крутится ротор, так как его толкают с большей силой. Если напряжение уменьшить, взаимодействие меньше, результирующая скорость вращения тоже. Так что все что нужно регулировать напряжение, а это может даже простой потенциометр (переменное сопротивление).

Достоинства и недостатки

Как водится, начнём с перечисления плюсов. Достоинства коллекторных электромоторов такие:

  • Простое устройство.
  • Высокая скорость до 10 000 об/мин.
  • Хороший крутящий момент даже на малых оборотах.
  • Невысокая стоимость.
  • Возможность регулировать скорость в широких пределах.
  • Невысокие пусковые токи и нагрузки.

Схема коллекторного двигателя

Неплохие качества, но есть и недостатки, причём они не менее серьёзные. Минусы коллекторных электродвигателей такие:

  • Высокий уровень шумов при работе. Особенно на высоких скоростях. Щетки трутся о коллектор, дополнительно создавая шумы.
  • Искрение щёток, их износ.
  • Необходимость частого обслуживания коллекторного узла.
  • Нестабильность показателей при изменении нагрузки.
  • Высокая частота отказов из-за наличия коллектора и щёток, малый срок службы этого узла.

В целом, коллекторный двигатель неплохой выбор, иначе его не ставили бы на бытовой технике. Справедливости ради стоит сказать, что при нормальном качестве исполнения, работают такие двигатели годами. Могут и 10-15 лет проработать без проблем.

Коллекторный двигатель постоянного тока с магнитами

В коллекторных двигателях постоянного тока постоянное магнитное поле обеспечивают:

  • постоянные магниты;
  • обмотки возбуждения.

Магниты и обмотки располагаются на корпусе статора, и чаще всего, вверху и внизу. Если говорить о маломощных моторах, то более популярны коллекторные двигатели с постоянными магнитами. Они проще в производстве, дешевле, быстро реагируют на изменение напряжения, что позволяет плавно регулировать скорость. Недостаток моторов с постоянными магнитами является их невысокая мощность, а еще то, что со временем или при перегреве магниты теряют свои свойства и это приводит к ухудшению характеристик двигателя.

Устройство коллекторного двигателя постоянного тока

 

Такие моторы имеют небольшую мощность, от единиц до сотен Ватт. Они используются в технике, для которой важна плавная регулировка скоростей. Это обычно детские игрушки, некоторые виды бытовой техники (в основном вентиляторы). Недостатком коллекторного мотора с магнитами является постепенная потеря мощности, магниты со временем становятся слабее, и без того небольшая мощность падает. Но в последнее время появились новые магнитные сплавы с большой магнитной силой, позволяющие создавать двигатели с большой мощностью.

С обмотками возбуждения

Коллекторные двигатели постоянного тока с обмотками возбуждения нашли более широкое применение. От двигателей этого типа работает аккумуляторный электроинструмент: болгарки, дрели, шуруповерты т.д. Обмотки возбуждения делают из изолированного медного провода (в лаковой оболочке). В качестве основы используются канавки в полюсных наконечниках. На них как на основу наматываются обмотки.

Коллекторный двигатель с системой обмоточного возбуждения

Если посмотреть на устройство коллекторного двигателя, мы видим два несвязанных между собой устройства, ротор и обмотки возбуждения. От способа их подключения зависят характеристики и свойства двигателя. Различают четыре способа соединения ротора и обмоток возбуждения. Эти способы называют способами возбуждения. Вот они:

  • Независимое. Возможно только если напряжения на обмотке возбуждения и на якоре неравны (бывает очень редко). Если они равны, используется схема параллельного возбуждения.
  • Параллельное. Хорошо регулируется скорость, стабильная работа на низких оборотах, постоянные характеристики, независимы от времени. К недостаткам подключения этого типа относится нестабильность двигателя при падении тока индуктора ниже нуля.
  • Последовательное. При таком подключении нельзя включать двигатель с нагрузкой на валу ниже 25% от номинальной. При отсутствии нагрузки скорость вращения сильно возрастает, что может разрушить двигатель. Потому с ременной передачей такой тип подключения не используют, при обрыве ремня мотор разрушается. Схема последовательного возбуждения имеет высокий момент на низких оборотах, но не слишком хорошо работает на высоких, управлять скоростью сложно.
  • Смешанное. Считается одним из лучших. Хорошо управляется, имеет высокий крутящий момент на низких оборотах, редко выходит из-под контроля. Из недостатков самая высокая цена по сравнению с другими типами.

Способы подключения обмоток возбуждения

Коллекторные двигатели постоянного тока могут иметь КПД от 8-10% до 85-88%. Зависит от типа подключения. Но высокопродуктивные отличаются высокими оборотами (тысячи оборотов в минуту, реже сотни) и низким моментом, так что они идеальны для вентиляторов. Для любой другой техники используют низкооборотистые модели с малым КПД, либо к продуктивным моделям добавляют редуктор, другого решения пока не нашли.

Универсальные коллекторные двигатели

Несмотря на то, что коллекторный узел можно назвать самым слабым местом электродвигателя, подобные модели нашли широкое применение. Все благодаря невысокой цене и легкости управления скоростью. Коллекторные двигатели переменного тока стоят практически в любой бытовой технике, как крупной, так и мелкой. Миксеры, блендеры, кофемолки, строительные фены, даже стиральные машины (привод барабана).

Универсальный коллекторный двигатель работает от постоянного и переменного напряжения

По строению универсальные коллекторные двигатели не отличаются от моделей постоянного тока с обмотками возбуждения. Разница, безусловно есть, но она не в устройстве, а в деталях:

  • Схема возбуждения всегда последовательная.
  • Магнитные системы ротора и статора для компенсации магнитных потерь делают шихтованного типа (единая система без сплошных разрезов).
  • Обмотка возбуждения состоит из нескольких секций. Это необходимо, чтобы режимы работы на постоянном и переменном напряжении были схожи.

Работа коллекторных электродвигателей универсального типа основана на том, что если одновременно (или почти одновременно) поменять полярность питания на обмотках статора и ротора, направление результирующего момента останется тем же. При последовательной схеме возбуждения полярность меняется с очень небольшой задержкой. Так что направление вращения ротора остается тем же.

Достоинства и недостатки

Хотя универсальные коллекторные двигатели активно используются, они имеют серьёзные недостатки:

  • Более низкий КПД при работе на переменном токе (если сравнивать с работой на постоянном такого же напряжения).
  • Сильное искрение коллекторного узла на переменном токе.
  • Создают радиопомехи.
  • Повышенный уровень шума при работе.

Во многих моделях строительной техники

Но все эти недостатки нивелируются тем, что при частоте питающего напряжения в 50 Гц они могут вращаться со скоростью 9000-10000 об/мин. По сравнению с синхронными и асинхронными двигателями это очень много, максимальная их скорость — 3000 об/мин. Именно это обусловило использование этого типа моторов в бытовой технике. Но постепенно они заменяются современными бесщеточными двигателями. С развитием полупроводников их производство и управление становится всё более дешёвым и простым.

Коллекторный двигатель

1.

Применение коллекторных двигателей в стиральных машинах


Коллекторные двигатели получили широкое применение не только в электроинструменте (дрели, шуруповёрты, болгарки и т.д), мелких бытовых приборах (миксеры, блендеры, соковыжималки и т.п), но и в стиральных машинах в качестве двигателя привода барабана. Коллекторными двигателями оснащено большинство (примерно 85%) всех бытовых стиральных машин. Эти двигатели применялись уже во многих стиральных машинах ещё с середины 90-х годов и со временем полностью вытеснили однофазные конденсаторные асинхронные двигатели.

Коллекторные моторы более компактные, мощные и простые в управлении. Этим и объясняется их столь массовое применение. В стиральных машинах применяются коллекторные двигатели таких марок производителей как: INDESCO, WELLING, C.E.S.E.T., SELNI, SOLE, FHP, ACC. Внешне они немного отличаются друг от друга, могут иметь разную мощность, тип крепления, но принцип работы их совершенно одинаковый.

2. Устройство коллекторного двигателя для стиральной машины



1. Статор

2. Коллектор ротора

3. Щётка (применяются всегда две щётки,

вторую на рисунке не видно)

4. Магнитный ротор тахогенератора

5. Катушка (обмотка) тахогенератора

6. Стопорная крышка тахогенератора

7. Клеммная колодка двигателя

8. Шкив

9. Алюминиевый корпус

Рис.2 Конструкция коллекторного двигателя стиральной машины

Коллекторный двигатель — это однофазный двигатель с последовательным возбуждением обмоток, предназначенный для работы от сети переменного или постоянного тока. Поэтому его называют ещё универсальный коллекторный двигатель (УКД).

Большинство коллекторных двигателей применяемых в стиральных машинах имеют конструкцию и внешний вид представленный на (рис.2)

Данный двигатель имеет ряд таких основных частей как: статор (с обмоткой возбуждения), ротор, щетка (скользящий контакт, всегда применяются две щётки), тахогенератор (магнитный ротор которого крепится к торцевой части вала ротора, а катушка тахогенератора фиксируется стопорной крышкой или кольцом). Все составные части скрепляются в единую конструкцию двумя алюминиевыми крышками, которые образуют корпус двигателя . На клеммную колодку выводятся контакты обмоток статора, щёток, тахогенератора необходимые для подключения к электрической схеме. На вал ротора запрессован шкив, через который посредством ременной передачи приводится в движение барабан стиральной машины.

Чтобы в дальнейшем лучше понять как работает коллекторный двигатель, давайте рассмотрим устройство каждого из его основных узлов.

3. Ротор (якорь)

Ротор (якорь) — вращающаяся (подвижная) часть двигателя. На стальной вал устанавливается сердечник, который для уменьшения вихревых токов изготавливают из наборных пластин электротехнической стали. В пазы сердечника укладываются одинаковые ветви обмотки, выводы которых прикреплены к контактным медным пластинам (ламелям), образующие коллектор ротора. На коллекторе ротора в среднем может быть 36 ламелей располагающихся на изоляторе и разделённые между собой зазором.

Для обеспечения скольжения ротора, на его вал запрессовываются подшипники, опорами которых служат крышки корпуса двигателя. Так же, на вал ротора запрессован шкив с проточенными канавками для ремня, а на противоположной торцевой стороне вала есть отверстие с резьбой в которое прикручивается магнитный ротор

4. Статор

Статор — неподвижная часть двигателя. Для уменьшения вихревых токов, сердечник статора выполнен из наборных пластин электротехнической стали образующих каркас, на котором уложены две равные секции обмотки соединённые последовательно. У статора почти всегда есть только два вывода обеих секций обмотки. Но в некоторых двигателях применяется так называемое секционирование обмотки статора и дополнительно имеется третий вывод между секциями. Обычно это делается из-за того, что при работе двигателя на постоянном токе, индуктивное сопротивление обмоток оказывает меньшее сопротивление постоянному току и ток в обмотках выше, поэтому задействуются обе секции обмотки, а при работе на переменном токе включается лишь одна секция, так как переменному току индуктивное сопротивление обмотки оказывает большее сопротивление и ток в обмотке меньше. В универсальных коллекторных двигателях стиральных машин применяется тот же принцип, только секционирование обмотки статора необходимо для увеличения количества оборотов вращения ротора двигателя. При достижении определённой скорости вращения ротора, электрическая схема двигателя коммутируется таким образом, чтобы включалась одна секция обмотки статора. В результате индуктивное сопротивление снижается и двигатель набирает ещё большие обороты. Это необходимо на стадии режима отжима (центрифугирования) в стиральной машине. Средний вывод секций обмотки статора применяется не во всех коллекторных двигателях.

Для защиты двигателя от перегрева и токовых перегрузок, последовательно через обмотку статора включают тепловую защиту с самовосстанавливающимися биметаллическими контактами (на рисунке тепловая защита не показана). Иногда контакты тепловой защиты выводят на клеммную колодку двигателя.

5. Щётка

Щётка — это скользящий контакт, является звеном электрической цепи обеспечивающим электрическое соединение цепи ротора с цепью статора. Щётка крепится на корпусе двигателя и под определённым углом примыкает к ламелям коллектора. Применяется всегда как минимум пара щёток, которая образует так называемый щёточно-коллекторный узел.

Рабочая часть щётки — графитовый брусок с низким удельным электрическим сопротивлением и низким коэффициентом трения. Графитовый брусок имеет гибкий медный или стальной жгутик с припаянной контактной клеммой. Для прижима бруска к коллектору применяется пружинка. Вся конструкция заключена в изолятор и крепится к корпусу двигателя. В процессе работы двигателя, щётки из-за трения о коллектор стачиваются, поэтому они считаются расходным материалом.

6.Тахогенератор

Тахогенератор (от др.-греч. τάχος — быстрота, скорость и генератор) — измерительный генератор постоянного или переменного тока, предназначенный для преобразования мгновенного значения частоты (угловой скорости) вращения вала в пропорциональный электрический сигнал. Тахогенератор предназначен для контроля скорости вращения ротора коллекторного двигателя. Ротор тахогенератора крепится напрямую к ротору двигателя и при вращении в обмотке катушки тахогенератора по закону взаимоиндукции наводится пропорциональная электродвижущая сила (ЭДС). Значение переменного напряжения, считывается с выводов катушки и обрабатывается электронной схемой, а последняя в конечном итоге задаёт и контролирует необходимую, постоянную скорость вращения ротора двигателя.

Такой же принцип работы и конструкцию имеют тахогенераторы применяемые в однофазных и трёхфазных асинхронных двигателях стиральных машин.

В коллекторных двигателях некоторых моделей стиральных машин марки Bosch (Бош) и Siemens (Сименс) вместо тахогенератора применяется датчик Холла. Это очень компактный и недорогой полупроводниковый прибор, который устанавливается на неподвижной части двигателя и взаимодействует с магнитным полем кругового магнита установленным на валу ротора непосредственно рядом с коллектором. У датчика Холла три вывода, сигналы с которого так же считываются и обрабатываются электронной схемой (подробно принцип работы датчика Холла в данной статье мы рассматривать не будем).

7. Схема подключения коллекторного двигателя

Как и в любом электродвигателе, принцип работы коллекторного двигателя основан на взаимодействии магнитных полей статора и ротора, через которые проходит электрический ток. Коллекторный двигатель стиральной машины имеет последовательную схему подключения обмоток. В этом легко убедится рассмотрев его развёрнутую схему подключения к электрической сети (Рис.7).

У коллекторных двигателей стиральных машин, на контактной колодке может быть от 6 до 10 задействованных контактов. На рисунке представлены все максимальные 10 контактов и всевозможные варианты подключения узлов двигателя.

Зная устройство, принцип работы и стандартную схему подключения коллекторного двигателя, без труда можно запустить любой двигатель напрямую от электросети без применения электронной схемы управления и для этого не надо запоминать особенности расположения выводов обмоток на клеммной колодке каждой марки двигателя. Для этого, достаточно всего лишь определить выводы обмоток статора и щёток и подключить их согласно схеме на приведённом ниже рисунке.

Порядок расположения контактов клеммной колодки коллекторного двигателя стиральной машины выбран произвольно.

На схеме, оранжевыми стрелочками условно показано направление тока по проводникам и обмоткам двигателя. От фазы (L) ток идёт через одну из щёток на коллектор, проходит по виткам обмотки ротора и выходит через другую щётку и через перемычку ток последовательно проходит по обмоткам обеих секций статора доходя до нейтрали (N).

Такой тип двигателя независимо от полярности подаваемого напряжения вращается в одну сторону, так как за счёт последовательного соединения обмоток статора и ротора смена полюсов их магнитных полей происходит одновременно и результирующий момент остаётся направленным в одну сторону.

Для того, чтобы двигатель начал вращаться в другую сторону, необходимо лишь изменить последовательность коммутации обмоток.

Пунктирной линией обозначены элементы и выводы, которые задействованы не во всех двигателях. Например датчик Холла, выводы термозащиты и вывод половины обмотки статора. При запуске коллекторного двигателя напрямую, подключаются только обмотки статора и ротора (через щётки).

Внимание! Представленная схема подключения коллекторного двигателя напрямую, не имеет средств электрической защиты от короткого замыкания и устройств ограничивающих ток. При таком подключении от бытовой сети, двигатель развивает полную мощность, поэтому не следует допускать длительного прямого включения.

8. Управление коллекторным двигателем в стиральной машине

Для управления коллекторным двигателем, в стиральной машине применяется электронная схема ,силовым регулирующим элементом является симистор (Рис.8), который подает (пропускает) необходимое напряжение на двигатель. Симистор можно представит как быстродействующий выключатель (ключ),с силовыми электродами А1 и А2,а на управляющий затвор G поступают управляющие импульсы открывая его в нужный момент. В электрической схеме, симистор последовательно подключён с коллекторным двигателем.



Принцип действия электронных схем, в которых используется симистор, основан на двухполупериодном фазовом управлении. На графике (рис.9) показано как изменяется величина питающего мотор напряжения в зависимости от поступающих на управляющий электрод симистора импульсов с микроконтроллера.

Таким образом можно отметить,что частота вращения ротора двигателя напрямую зависит от напряжения прикладываемого к обмоткам двигателя.

Ниже представлены фрагменты условной электрической схемы подключения коллекторного двигателя с тахогенератором к электронному блоку управления (EC).

Общий принцип схемы управления коллекторного двигателя таков. Управляющий сигнал с электронной схемы поступает на затвор симистора (TY),тем самым открывая его и по обмоткам двигателя начинает протекать ток,что приводит к вращению ротора (M) двигателя. Вместе с тем, тахогенератор (P) передаёт мгновенное значение частоты вращения вала ротора в пропорциональный электрический сигнал. По сигналам с тахогенератора создаётся обратная связь с сигналами управляющих импульсов поступаемых на затвор симистора. Таким образом обеспечивается равномерная работа и частота вращения ротора двигателя при любых режимах нагрузки, вследствие чего барабан в стиральных машинах вращается равномерно. Для осуществления реверсивного вращения двигателя применяются специальные реле R1 и R2 , коммутирующие обмотки двигателя.



Изменение направления вращения двигателя

Т-тахогенератор
М-ротор (коллекторно-щёточный узел)
S-статор
P-тепловая защита
TY-симистор
R1 и R2— коммутирующие реле

В некоторых стиральных машинах, коллекторный двигатель работает на постоянном токе. Для этого, в схеме управления, после симистора, устанавливают выпрямитель переменного тока построенный на диодах («диодный мост»). Работа коллекторного двигателя на постоянном токе увеличивает его КПД и максимальный крутящий момент.

9. Достоинства и недостатки универсальных коллекторных двигателей

К достоинствам можно отнести: компактные размеры, большой пусковой момент, быстроходность и отсутствие привязки к частоте сети, возможность плавного регулирования оборотов (момента) в очень широком диапазоне— от ноля до номинального значения— изменением питающего напряжения, возможность применения работы как на постоянном,так и на переменном токе.

Недостатки — наличие коллекторно-щёточного узла и в связи с этим: относительно малая надёжность (срок службы), искрение возникающее между щётками и коллектором из-за коммутации, высокий уровень шума, большое число деталей коллектора.

10. Неисправности коллекторных двигателей

Самая уязвимая часть двигателя — коллекторно-щёточный узел. Даже в исправном двигателе, между щётками и коллектором происходит искрение, которое довольно сильно нагревает его ламели. При износе щёток до предела и вследствие их плохого прижима к коллектору, искрение порой достигает кульминационного момента представляющего электрическую дугу. В этом случае ламели коллектора сильно перегреваются и иногда отслаиваются от изолятора, образуя неровность,после чего,даже заменив изношенные щётки, двигатель будет работать с сильным искрением,что приведёт его к выходу из строя.

Иногда происходит межвитковое замыкание обмотки ротора или статора (значительно реже), что так же проявляется в сильном искрении коллекторно-щёточного узла (из-за повышенного тока) или ослаблении магнитного поля двигателя, при котором ротор двигателя не развивает полноценный крутящий момент.

Как мы и говорили выше, щётки в коллекторных двигателях при трении о коллектор со временем стачиваются. Поэтому большая часть всех работ по ремонту двигателей сводится к замене щёток.

Стоит отметить,что надёжность коллекторного двигателя во многом зависит от того, насколько качественно и грамотно производители подходят к технологическому процессу его изготовления и сборки.

Статья подготовлена интернет-магазином A-qualux.ru

В чём разница между коллекторными и бесколлекторными двигателями

Большое количество людей увлекаются созданием электромоделей, где одним из основных элементов выступает электродвигатель. При этом сборка и эксплуатация таких устройств часто вызывает споры относительно того, какие именно моторы лучше использовать.

Ведь на выбор предлагаются коллекторные и бесколлекторные двигатели, у каждого из которых есть свои поклонники и противники. Чтобы попытаться определить лучший вариант, нужно изучить особенности, принцип работы, их сильные и слабые стороны. Это во многом поможет принять окончательное решение.

Электромоторчики входят в состав разного автомобильного оборудования, включая стеклоомыватели, стеклоподъёмники, вентиляторы охлаждения и отопления, дворники и пр. Но также широко применяются в других сферах и отраслях.

Двигатель коллекторного типа

Под понятие коллекторных двигателей попадают различные электромашины, где переключатель тока и роторный датчик по сути являются одним устройством. С его помощью обеспечивается качественное соединение цепей в неподвижном отсеке двигателя с рабочим ротором.

Внешний вид коллекторного двигателя

Конструкция включает в себя мощные щётки и непосредственно сам коллектор. Интересно и то, что коллекторный тип мотора обладает преимуществом в виде простоты ухода и эксплуатации, легко ремонтируется и долго служит. Но есть и недостаток, проявляющийся в малом весе при большом КПД. Изначально это может показаться преимуществом. Быстроходность вместе с малым весом вынуждают использовать дополнительно хороший редуктор, иначе нормально эксплуатировать моторчик не получится.

Если же машины подстроить под меньшие значения скорости, то моментально упадёт коэффициент полезного действия. Это, в свою очередь, негативно отразится на эффективности охлаждения.

Многих интересует, что же значит коллекторный двигатель. Фактически это электромашина переменного тока, способная с лёгкостью преобразовывать постоянный ток в механическую полезную энергию. При этом минимум одна обмотка соединяется с основным коллектором.

В зависимости от комплектации и входящих в состав моторчика компонентов, коллекторные двигатели (КД) могут применяться в игрушках, радиоуправляемых моделях и в автомобильных, выступая в качестве составляющего элемента системы охлаждения, вентиляции, стеклоочистителей, насосов омывателя ветрового стекла и пр.

Ведущим производителям удалось создать универсальные моторы коллекторного типа, которые способны функционировать на всех видах тока, то есть на переменном и постоянном. Они нашли широкое применение при создании электрических инструментов, бытовой техники, на ЖД транспорте. Их преимущество в небольшом весе и компактных размерах при достаточно адекватной цене.

Независимо от того, какая полярность у двигателя, этот электромотор будет всегда осуществлять вращения только в одном направлении, то есть в одну неизменную сторону. Это объясняется последовательным соединением роторным и статорных обмоток, что провоцирует одновременную смену полюсов. Потому момент всегда направлен в одну и ту же сторону.

Базовыми составляющими компонентами КД являются:

  • Двухполюсный статор, имеющий в своей основе постоянные магниты. В конструкции используются изогнутые магниты соответствующей формы;
  • Ротор трёхполюсного типа. Здесь также применяются специфические подшипники, обладающие эффектом скольжения;
  • Пластины из меди. Они применяются в роли щёток для двигателя коллекторного типа.

Набор действительно минимальный, потому встречается в основном в наиболее бюджетных и простых версиях коллекторных электромоторов. В их числе моторчики детских игрушек, которые не нуждаются в повышенной мощности.

Если вы хотите получить более качественный КД, тогда в его состав добавляют:

  • многополюсные роторы с подшипниками качения;
  • графитовые щётки;
  • четырёхполюсный статор на основе постоянных магнитов.

Чтобы добиться высокой эффективности, в состав КД включили несколько основных компонентов. А именно:

  • Коллектор. Фактически основообразующий элемент двигателя, вступающий в контакт с рабочими щётками. В итоге эти два компонента начинают распределять электроток по катушкам якорной обмотки;
  • Статор. Выступает в качестве неподвижной составляющей двигателя;
  • Якорь. Обязательный элемент коллекторных электромоторов. Внутри него индуцирует электродвижущая сила и проходит ток. Важно добавить, что якорем может выступать ротор и статор;
  • Индуктор. Особая система возбуждения, входящая в состав электромотора коллекторного типа. Служит для создания магнитного потока для того, чтобы вовремя создавать крутящий момент. На индукторе обязательно присутствует возбуждающая обмотка или постоянные машины;
  • Щёточки. Щётки входят в состав цепи, по которой следует электрическая энергия от поставщика к якорю. Щётки изготавливаются из высокопрочного графита. В зависимости от конкретного КД, моторчик оснащается 1 парой щёточек и более.

Вне зависимости от компоновки и входящих в состав элементов на основе тех или иных материалов, принцип работы у всех коллекторных типов двигателей остаётся одинаковым.

Принцип работы

Вам будет не сложно представить 2 магнита, у которых есть разные плюса. Попробуйте приставить их друг к другу одноимённым полюсом и посмотрите, что из этого получится. Вам не удастся соединить их, как бы ни старались. Но стоит соединить магниты разными полюсами, как создастся высокопрочное соединение. Именно этот эффект входит в основу работы и устройства коллекторных двигателей.

Схема электродвигателя коллекторного типа

Вы узнали про устройство КД. Теперь в процессе эксплуатации наверняка захочется узнать, как можно самостоятельно проверить коллекторный двигатель. Для этого следует разобраться в принципе его работы. Функционирует электромотор такого типа следующим образом:

  • электрический ток поступает на якорные обмотки;
  • в зависимости от того, сколько обмоток используется на моторе, ток поочерёдно поступает на каждую из них;
  • тем самым создаётся электромагнитное поле;
  • с одной стороны южный полюс, а с другой — северный;
  • магнитное поле, появляющееся в обмотках, вступает во взаимодействие с полюсами магнитов статора моторчика;
  • это позволяет привести в движение, то есть заставить вращаться якорь;
  • ток, проходя через коллектор и щёточки, приходит на следующую обмотку;
  • так происходит последовательно, в зависимости от числа якорных обмоток;
  • переходя с обмотки на обмотку, вал мотора вместе с якорем начинают вращаться;
  • вращение происходит до тех пор, пока есть источник напряжения.

В стандартных моторах коллекторного типа предусматривается использование трёхполюсного якоря. То есть он имеет 3 обмотки. Это позволяет двигателю не залипать в одном из положений.

Преимущества и недостатки

Нельзя отрицать тот факт, что коллекторные движки или же коллекторные электрические двигатели активно применяются в различных сферах и отраслях. В том числе они часто используются в автомобильном производстве.

Но для объективности нужно добавить, что КД используется не всегда и не везде, поскольку в конкретных ситуациях более эффективным и рациональным решением станет бесколлекторный электромотор.

Большой опыт в использовании КД позволяет выделить ряд сильных и слабых качеств эксплуатации такого типа электродвигателя.

Внутреннее строение коллекторного асинхронного двигателя

К основным достоинствам можно отнести следующие моменты:

  • Сравнительно небольшой показатель параметров пускового тока. Это заметно проявляется в ситуациях, когда коллекторные моторы устанавливаются в различную бытовую технику;
  • Такие электромоторы можно подключать напрямую к энергоносителю, то есть к сети. При этом исключается необходимость в использовании разного рода дополнительных и вспомогательных приспособлений;
  • Высокие показатели быстроходности;
  • Независимости от параметров сетевой частоты;
  • При наличии схемы управления устройство становится проще.

Но не стоит делать поспешные выводы. Сначала нужно взглянуть на имеющиеся минусы коллекторного двигателя. А именно:

  • Общие показатели коэффициента полезного действия снижены. Это обусловлено наличием индуктивности, а также потерь, необходимых для перемагничивания статора;
  • Максимальные показатели крутящего момента далеки от совершенства;
  • Сравнительно низкий уровень надёжности;
  • Относительно небольшой срок службы.

Специалисты выделяют один ключевой недостаток, характеризующий коллекторные типы электромоторов. Никто не спорит, что в коллекторниках очень удобно регулировать обороты. Но если они высокие, сразу же проявляют себя щётки. Причём не с самой лучшей стороны. Щётки всё время находятся в состоянии плотного прилегания к самому коллектору электромотора. При высокой скорости работы начинает их быстрый износ. С течением времени происходит засорение, результатом чего становится появление искр.

Постепенный износ щёток двигателя и всего узла коллектора с щётками способствует снижению общих показателей эффективности работы КД. То есть коллекторно-щёточный узел смело можно считать главным недостатком конструкции. Потому производители всё чаще отказываются от коллекторников, выбирая вместо них бесщёточные аналоги.

Главным конкурентом коллекторного типа электродвигателя выступает бесколлекторный аналог. Он имеет отличный от КД принцип работы, а также характеризуется своими сильными и слабыми сторонами.

Бесколлекторный мотор

Теперь можно поговорить о том, чем же коллекторный двигатель в действительности отличается от рассматриваемого бесколлекторного аналога.

Внешний вид двигателя бесколлекторного типа

Очевидная разница просматривается при изучении принципа работы бесколлекторного двигателя (БКД). Хотя часто бесколлекторный и коллекторный двигатель сопоставляют друг с другом, воспринимая их как конкурентов, по сути это два разных мотора. Потому и отличия между ними обязательно присутствуют.

Фактически БКД работает наоборот.

  • В конструкции не предусмотрено наличие щёток и самого коллектора, что становится очевидным уже исходя из самого названия;
  • Если говорить о магнитах, то в случае с бесколлекторником они размещаются обязательно вокруг вала. При этом магниты выполняют роль или функции ротора;
  • Обмотки с несколькими магнитными полюсами располагаются вокруг установленного ротора;
  • На роторе присутствует датчик. Он же сенсор. Его задача заключается в контроле положения ротора и передаче полученной информации на процессор;
  • Этот процессор работает параллельно с регулятором скорости, который отвечает за скорости вращения. Суммарно за 1 секунду обмен информацией происходит около 100 раз минимум.

Подобное устройство и принцип работы позволяет получить более плавный режим работы двигателя при его максимальной отдаче.

В случае с бесколлекторными электродвигателями они могут оснащаться датчиками или сенсорами, а также эксплуатироваться без них. Если датчика нет, это в определённой, но незначительной степени снизит эффективность работы всего электродвигателя.

Распознать БКД с сенсором и без него достаточно просто. Если у обычного двигателя присутствует 3 провода питания, то в моделях с датчиком дополнительно имеется шлейф, состоящий из тонких проводов. Он идёт от самого моторчика к регулятору скорости.

Преимущества и недостатки

Главный и неоспоримый плюс бесщёточных электромоторов заключается в практически полном отсутствии деталей, способных изнашиваться. Говорить о полном их отсутствии нельзя, поскольку роторный вал устанавливается на подшипники. Именно они всё же могут с течением времени износиться. Хотя даже у подшипников ресурс огромный. Плюс всегда можно быстро и без особого труда заменить подшипник в случае его износа.

Бесколлекторный бесщеточный электродвигатель в разборке

Такие особенности конструкции породили преимущества в виде надёжности, высокой эффективности и длительного срока службы. За счёт наличия датчика положения ротора улучшается его производительность и точность в процессе работы.

Вспомните недостаток коллекторных аналогов, где щётки искрятся и быстро изнашиваются, параллельно провоцируя помехи в процессе работы узла, механизма или машины, в которой установлен КД. В случае с бесколлекторными или бесщёточными моторами от такой проблемы удалось избавиться. Никаких искрений здесь не наблюдается.

Бесколлекторники не трутся, не перегреваются, что также справедливо относится к весомым достоинствам механизма. Дополнительное обслуживание в процессе даже очень активной эксплуатации тут не требуется.

Если же говорить про недостатки, то из существенного и всё равно условного можно выделить только один минус. Это более высокая стоимость. Минус условный по причине того, что при своей цене исключается необходимость в замене пружин, якоря, коллектора или щёток. Потому стоимость целиком и полностью себя оправдывает.

Далее уже можно сделать собственные субъективные выводы, отталкиваясь от приведённой выше информации.

характеристика, конструкция электродвигателя переменного тока, ремонт

Практически все виды электрооборудования оснащены мощными элементами с механической коммутацией. Их слаженная работа зависит от универсального коллекторного двигателя, который прекрасно справляется с различными нагрузками. Но чтобы такой агрегат исправно служил, нужно тщательно изучить не только его конструктивные особенности, но и принцип действия.

  • Краткая характеристика устройства
  • Разновидности модельного ряда
  • Составляющие элементы конструкции
  • Функциональные возможности мотора
  • Плюсы и минусы эксплуатации
  • Ремонт двигателя в домашних условиях

Краткая характеристика устройства

Специалисты привыкли называть коллекторным двигателем те электрические машины, где переключатель тока и датчик ротора — это один и тот же элемент. Именно он обеспечивает надёжное соединение разных цепей в неподвижном отсеке агрегата с ротором.

Его конструкция состоит из мощных щёточек (это специфические контакты скользящего типа, которые расположены возле вращающейся части мотора) и коллектора (эта деталь установлена производителем на движимом узле механизма).

К основным преимуществам такого элемента можно смело отнести то, что высококачественный двигатель прост в уходе и эксплуатации, поддаётся ремонту и имеет большой рабочий ресурс. Среди недостатков сами производители выделяют то, что агрегат имеет небольшой вес и большой процент КПД. Конечно, чаще всего два этих показателя являются положительными, но не в этой ситуации.

Сочетание быстроходности (может достигать нескольких тысяч оборотов в минуту) и низкой массы чревато тем, что для нормальной эксплуатации потребителю нужно дополнительно приобретать хороший редуктор. Если же машина будет перестроена на меньшую скорость, то уровень КПД может серьёзно упасть, из-за чего возникают проблемы с качественным охлаждением.

Разновидности модельного ряда

Коллекторный мотор — это вращающаяся электрическая машина переменного тока, которая легко преобразует постоянный ток в механическую энергию. Минимум одна обмотка, которая участвует в этом процессе соединена с главным коллектором.

Практически каждая модель состоит из таких элементов:

  1. Качественный статор двухполюсного типа на постоянных магнитах.
  2. Профессиональный трёхполюсной ротор на специфических подшипниках с эффектом скольжения.
  3. Медные пластины, которые используются в качестве щёток для коллекторного мотора.

Стоит отметить, что этот набор является минимальным, из-за чего часто встречается в бюджетных моделях. Это касается и детских игрушек, где не нужна большая рабочая мощность.

В комплектацию более качественных изделий обычно добавляют ещё несколько элементов:

  • Многополюсной ротор на специальных подшипниках качения.
  • Четыре щётки из графита, которые представлены в виде коллекторного агрегата.
  • Статор с четырьмя полюсами, который состоит из постоянных магнитов.

Такие агрегаты принято использовать в современных автомобилях для обустройства высококачественного привода для вентилятора системы охлаждения и вентиляции, дворников и насосов омывателей лобового стекла. Конечно, в продаже можно встретить и более сложные агрегаты, которые отличаются не только эксплуатационными характеристиками и сферой применения, но и ценой.

Если мощность электродвигателя находится в пределах нескольких сотен ватт, то в его комплектацию обязательно входит четырехполюсной статор, который изготовлен из специальных магнитов. А вот качественное подключение обмотки может быть выполнено по одному из следующих способов:

  • Параллельно. В условиях колеблющейся нагрузки все обороты остаются стабильными, но вот максимальный момент немного снижен.
  • Последовательно с ротором. Этот вариант отличается тем, что максимальный момент приобретает довольно внушительные показатели, но присутствует большой риск поломки мотора, так как агрегат эксплуатируется пользователем на больших оборотах.
  • Независимое возбуждение от отдельного источника питания. Для этой ситуации используются те же самые характеристики, которые свойственны параллельному типу подключения. Стоит отметить, что этот вариант применяется специалистами крайне редко.
  • Смешанный тип возбуждения, когда определённая часть имеющейся обмотки подключается последовательно, а вторая часть — параллельно. В этой конфигурации удачно совмещены все преимущества предыдущих вариантов. Такой тип подключения идеально подходит для автомобильных стартеров.

Но известные производители предусмотрели наличие универсальных коллекторных двигателей. Ключевая их особенность состоит в том, что они отлично работают как на постоянном, так и на переменном токе. Их активно эксплуатируют в бытовой технике, электроинструментах, а также в составах железнодорожного транспорта.

Такая популярность обусловлена тем, что они имеют достаточно небольшой вес и размер. Помимо этого, их цена более чем доступна и каждый пользователь может самостоятельно установить необходимое для работы количество оборотов. За счёт этого коллектор электродвигателя относится к категории устройств переменного тока, он показывает отличные результаты и с нестабильными источниками энергии.

Составляющие элементы конструкции

Чтобы максимально правильно разобраться с особенностями устройства коллекторного электродвигателя, нужно изучить все комплектующие детали этого агрегата. Ведь само устройство представлено в виде прибора постоянного тока, где присутствуют последовательно включённые обмотки возбуждения. Они предназначены для работы на переменном токе бытовой электросети.

В независимости от полярности двигатель всегда вращается только в одну сторону. Такая особенность связана с тем, что последовательное соединение обмоток ротора и статора приводит к одновременной смене магнитных полюсов. В результате этого результирующий момент направляется исключительно в одну и ту же сторону.

Высокая эффективность использования коллекторного электродвигателя обусловлена наличием следующих элементов:

  • Статор — это неподвижная часть установки.
  • Якорь — неотъемлемая деталь коллекторного агрегата, в котором происходит индуктирование электродвижущей силы и протекает ток нагрузки. Стоит отметить, что в качестве якоря может выступать как статор, так и ротор.
  • Индуктор — специализированная система возбуждения. Эта деталь создаёт магнитный поток для своевременного образования крутящегося момента. Индуктор обязательно оснащается обмоткой возбуждения или же постоянными магнитами. Сама деталь может выступать в качестве неотъемлемой части статора или ротора.
  • Ротор — вращающийся элемент машины.
  • Коллектор — базовая часть мотора, которая контактирует со щётками (две эти детали распределяют электрический ток по катушкам обмотки якоря).
  • Щётки — это составляющая часть цепи, по которой передаётся электроэнергия от источника питания к якорю. Эти элементы выпускаются из прочного графита. Двигатель постоянного тока может содержать от одной пары щёток и более.

Функциональные возможности мотора

Схема устройства коллекторного двигателя прекрасно демонстрирует, как этот агрегат преобразует электричество в механическую энергию и в обратном порядке. Это говорит о том, что такое устройство может использоваться даже в качестве генератора. Когда ток проходит сквозь проводник, который расположен в магнитном поле, то на него воздействуют определённые силы. При этом активно работает правило правой руки, оказывающее непосредственное влияние на итоговую мощность двигателя. Коллекторный агрегат функционирует именно по такому принципу.

В стандартной схеме чётко показано, что в магнитное поле помещена одна пара проводников, ток которых направлен в разные стороны так же, как и силы. Образуемая ими сумма даёт необходимый для оборудования крутящийся момент. В коллекторном двигателе производители добавили ещё и целый комплекс дополнительных узлов, которые гарантируют идентичное направление тока над полюсами.

За счёт того, что на якоре расположено ещё несколько катушек, полностью устранилась неравномерность хода. Помимо этого, у мастеров больше нет необходимости задействовать постоянный ток, так как обычные магниты были заменены на более мощные катушки. На финальном этапе производства крутящийся момент принял единое направление.

Плюсы и минусы эксплуатации

Для сравнения квалифицированные специалисты использовали следующие параметры: оба агрегата подключили к домашней электросети с частотой 50 Гц и напряжением 220 В. Мощность мотора устройств полностью идентична. Итоговая разность в механических параметрах может выступать как огромный плюс, так и как минус (всё зависит только от того, какие требования предъявляет пользователь к приводу).

Коллекторный двигатель обладает следующими преимуществами над агрегатом постоянного тока:

  1. Меньший показатель пускового тока, что особенно важно для той техники, которая используется потребителями в быту.
  2. Агрегат можно включать напрямую в сеть, полностью отсутствует необходимость в установке вспомогательных приспособлений. А вот агрегат с постоянным током нуждается в непрерывном выпрямлении.
  3. Быстроходность и полное отсутствие зависимости от сетевой частоты.
  4. Если есть управляющая схема, то устройство коллектора получается более простым — тиристор и реостат. Когда электронная деталь выходит из строя, то сам агрегат остаётся в рабочем состоянии (но будет эксплуатироваться на полную мощность).

Не стоит забывать о недостатках, которые должны быть тщательно изучены каждым потребителем ещё до покупки агрегата. Только в этом случае можно быть уверенным в соответствии устройства всем предъявленным требованиям.

Коллекторный электродвигатель обладает следующими минусами:

  1. Общий процент КПД существенно снижен, так как присутствует индуктивность и потери на перемагничивание статора.
  2. Существенно уменьшен максимальный крутящийся момент.
  3. Относительно небольшая надёжность и непродолжительный эксплуатационный срок.

Любые изменения в настройках возможны только в том случае, если в агрегате предусмотрено наличие регулятора оборотов. Разное количество подаваемой электроэнергии может менять этот показатель всего на 10%. В то время как качественный регулятор оборотов позволяет уменьшить их количество в несколько раз. Сделать такое приспособление можно самостоятельно или купить в специализированном магазине. Но нужно проверить, сможет ли оно работать в коллекторе с определённой мощностью и количеством оборотов. Если же регулятор будет слабым, то он просто сломается.

Ремонт двигателя в домашних условиях

Как и любое другое устройство, коллектор может выйти из строя в самый неподходящий момент. Если электродвигатель не набирает заданное количество оборотов или же после старта не начинает крутиться вал, тогда нужно проверить работоспособность предохранителей. Проблема также может быть вызвана обрывом в цепи якоря и перегрузкой устройства. Довольно часто нерациональное использование агрегата приводит к потреблению силы тока повышенного значения. Устранить эту неисправность можно только после осмотра тормоза и механической части.

Если во время работы агрегат не выдаёт номинальное количество оборотов, то это может быть вызвано недостаточным сетевым напряжением, перегрузкой, а также большим возбуждающим током. Если пользователь заметил неработоспособность обратного типа, тогда необходимо проверить электрическую цепь, а также устранить все образовавшиеся дефекты. В некоторых случаях агрегат начинает функционировать только после перемотки двигателя.

Когда устройство не работает из-за ошибочного сопряжения параллелей и последовательной обмотки возбуждения, тогда пользователю необходимо восстановить правильный порядок соединений.

Не стоит забывать о регулярной проверке величины напряжения в электросети, так как обороты двигателя могут существенно возрастать.

Универсальный Коллекторный Двигатель: Устройство и Принцип действия

26.05.2020

Универсальный коллекторный двигатель (УКД) – это электродвигатель, который способен работать как с постоянным, так и переменным током, за что и получил свое название.

СОДЕРЖАНИЕ:

  1. Устройство универсального коллекторного двигателя
  2. Принцип работы с постоянным током
  3. Принцип работы с переменным током
  4. Особенности использования
  5. Достоинства и недостатки
  6. Основное применение

Устройство универсального коллекторного двигателя

Конструкция такого мотора, практически идентична обычному коллекторному (щеточному) электромотору постоянного тока. Однако здесь, вместо постоянных магнитов используются электромагниты и присутствуют дополнительные решения для работы с переменным током. Основными частями конструкции все также остаются ротор и статор.

Статор — это часть, которая не двигается (статична).

Статор содержит в себе:

  • Корпус
  • Обмотки
  • Проводку
  • Щетки

Ротор — это вращающаяся с валом часть.

Ротор состоит из следующих основных деталей:

  • Вал
  • Коллекторный узел
  • Обмотки ротора
  • Сердечник из тонких пластин

Теперь давайте рассмотрим то, что делает этот мотор таким особенным – принцип действия.

Принцип работы с постоянным током

При подключении к источнику постоянного тока, двигатель работает как обычный коллекторный двигатель постоянного тока. Катушки статора подключаются к источнику питания и последовательно соединены через щетки к коллекторному узлу ротора, через которые ток поступает на его обмотки.

Щетки подключены к разным полукольцам коллектора, благодаря чему с каждой стороны проходит однонаправленный ток. Вследствие этого возникают магнитные поля и под их воздействием ротор начинает вращение. Вращающий момент всегда направлен в одну сторону и ротор продолжает вращаться.

В этом режиме электромотор имеет самый высокий КПД, Ближайшей альтернативой в работе с источником постоянного тока является бесколлекторный двигатель, однако из-за применения в нем постоянных магнитов его максимальный момент будет гораздо меньшим.

Принцип работы с переменным током

Для работы с переменным током используют принцип последовательного возбуждения обмоток. Такая схема позволяет подсоединять обмотки статора последовательно с обмотками ротора (как описывалось выше). И по ним всегда будет двигаться ток одной и той же фазы. Возникающие магнитные силы также будут вращать ротор в одном направлении.

Благодаря этому виду подключения смена полюсов магнитных полей на обмотках выполняется практически одновременно, а значит итоговый момент будет также иметь одно направление.

Главное преимущество такой схемы — это большой максимальный момент. С другой стороны, возникают большие обороты на холостом ходу, способные повредить мотор при включении без нагрузки.

Однако если подключить к переменному источнику питания стандартный коллекторный мотор, то он не будет работать, так как будут возникать переменные магнитные поля и вызывать сильные потери в магнитопроводе из-за вихревых токов Фуко.

Чтобы избежать этих потерь, статор изготавливают из набора специальных изолированных тонких пластин, а обмотку разделяют на секции. Таким способом удается эффективно бороться с перемагничиванием. Для уменьшения искрения и воздействия электродвижущей силы двигатель оснащается щётками, которые обладают высоким сопротивлением.

Чтобы поменять направление вращение надо перемкнуть (переплюсовать) обмотки либо ротора, либо статора. При работе с переменным источником, общий КПД будет гораздо ниже.

Особенности использования

Как мы выяснили выше, основными особенностями, которые делают этот мотор уникальным, в сравнении с асинхронными и синхронными видами: это его способность работать с постоянным и переменным током, а также возможность работать на чрезвычайно большой скорости оборотов (от 8000 и даже до 20000 об/мин. ).

Обратной стороной медали будет его маломощность высокий уровень шума, радиопомех и искрения, что ограничивает его использование в некоторых сферах. Давайте рассмотрим все плюсы и минусы подробнее.

Достоинства и недостатки

Универсальный мотор, благодаря особенностям принципа действия имеет свои особенности и недостатки

Достоинства:

  1. Высокий пусковой момент. Устройство может быстро набрать большое количество оборотов как в холодном, так и горячем состоянии.
  2. Высокая удельная мощность. Универсальный мотор может работать с большей выходной мощностью чем аналоги, того же размера.
  3. Небольшая цена. Стоимость мотора чуть выше чем обычного коллекторного и меньше чем бесколлекторного.
  4. Простота конструкции. Несложное устройство обеспечивает простоту обслуживания и ремонта.
  5. Большой общий рабочий ресурс. Основные детали довольно долговечны (за исключением щеток).
  6. Портативность. Небольшие размеры электромотора позволяют использовать его в самых малых приборах (дрель).
  7. Простота управления. Мотор может регулироваться простым изменением напряжения.

Недостатки:

  1. Шум и вибрация. В основном возникает из-за работы щеток на высоких оборотах.
  2. Низкая эффективность. КПД устройств лежит в диапазоне 55-80%, при работе с переменным током он меньше чем с постоянным.
  3. Неэффективен при работе с малым напряжением. Устройство практически бесполезно при работе с напряжением до 100В.
  4. Щетки быстро изнашиваются. Из-за постоянного контакта щеток с коллектором требуется их периодическая замена или ремонт.
  5. Доп. оборудование для некоторых задач. Эффективные конструкции имеют низкий момент и быстроходность, поэтому иногда необходим дополнительный редуктор.

Основное применение

Универсальный тип электродвигателя как мы выяснили это простой, недорогой и высокоскоростной мотор. Возможность работы на высоких оборотах подключаясь к однофазной сети переменного тока, сделало их очень популярными в бытовой технике. В промышленности этот тип также часто используется, однако его эффективность подходит далеко не всем.

Основные устройства применения универсального электромотора:

  • Дрели и шуруповерты
  • Миксеры и блендеры
  • Вентиляторы
  • Пылесосы
  • Насосы
  • Швейные машины
  • Стеклоочистители

Такой мотор используется в первую очередь в оборудовании, где уровень шума некритичен и важны большие обороты вращения. На сайте eltaltd.com.ua вы сможете найти большой каталог в категории Электродвигатели. Там вы сможете найти товары таких известных брендов как Siemens, ABB, Lenze и много других

Подписывайтесь на наши обновления:

  


Коллекторные двигатели переменного тока

| AC Motors

Первой работой Чарльза Протеуса Стейнмеца после прибытия в Америку было исследование проблем, возникающих при разработке версии щеточного коллекторного двигателя переменного тока. Ситуация была настолько плохой, что двигатели не могли быть спроектированы до фактического строительства.

Успех или неудача конструкции двигателя неизвестна до тех пор, пока он не будет построен и испытан. Он сформулировал законы магнитного гистерезиса при поиске решения. Гистерезис – это отставание напряженности магнитного поля от силы намагничивания. Это приводит к потерям, которых нет в магнитах постоянного тока.

Сплавы с низким гистерезисом и разделение сплава на тонкие изолированные пластины позволили точно спроектировать коллекторные двигатели переменного тока перед их изготовлением.

Коллекторные двигатели переменного тока, как и сопоставимые двигатели постоянного тока, имеют более высокий пусковой момент и более высокую скорость, чем асинхронные двигатели переменного тока.

Серийный двигатель работает значительно выше синхронной скорости обычного двигателя переменного тока. Коллекторные двигатели переменного тока могут быть однофазными или многофазными. Версия с однофазным двигателем переменного тока испытывает пульсацию крутящего момента с двойной частотой сети, которой нет в многофазном двигателе.

Поскольку коллекторный двигатель может работать на гораздо более высокой скорости, чем асинхронный двигатель, он может выдавать большую мощность, чем асинхронный двигатель аналогичного размера. Однако коллекторные двигатели не так не требуют технического обслуживания, как асинхронные, из-за износа щеток и коллектора.

Серийный однофазный двигатель

Если серийный двигатель постоянного тока, оснащенный ламинированным полем, подключен к сети переменного тока, запаздывающее реактивное сопротивление катушки возбуждения значительно снизит ток возбуждения. Пока такой двигатель будет вращаться, работа будет маргинальной.

При пуске обмотки якоря, соединенные с сегментами коллектора, закороченными щетками, выглядят как закороченные витки трансформатора на поле. Это приводит к сильному искрению и искрению на щетках, когда якорь начинает вращаться.

Это становится менее серьезной проблемой по мере увеличения скорости, когда искрение и искрение распределяются между сегментами коммутатора Запаздывающее реактивное сопротивление и дугогасительные щетки допустимы только в очень небольших некомпенсированных двигателях переменного тока, работающих на высокой скорости. Серийные двигатели переменного тока меньше, чем ручные дрели и кухонные миксеры, могут быть некомпенсированными. (Рисунок ниже)

Некомпенсированный мотор серии AC

Компенсированный сериал мотор

Арсинг и искажение смягчаются путем размещения компенсирующего обмотки . компенсирует МДС переменного тока якоря.

Меньший воздушный зазор двигателя и меньшее количество витков возбуждения уменьшают запаздывающее реактивное сопротивление последовательно с якорем, улучшающим коэффициент мощности. Во всех коллекторных двигателях переменного тока, кроме очень маленьких, используются компенсационные обмотки. В двигателях такого же размера, как те, что используются в кухонном миксере, или больше, используются компенсированные обмотки статора.

 

Двигатель переменного тока с компенсацией

 

Универсальный двигатель

Можно разработать небольшие (до 300 Вт) универсальные двигатели постоянного тока или переменного тока . Очень маленькие универсальные двигатели могут быть некомпенсированными. В более крупных универсальных двигателях с более высокими скоростями используется компенсирующая обмотка.

Двигатель будет работать медленнее на переменном токе, чем на постоянном, из-за реактивного сопротивления переменного тока. Однако пики синусоидальных волн насыщают магнитный путь, уменьшая общий поток ниже значения постоянного тока, увеличивая скорость «последовательного» двигателя.

Таким образом, эффекты смещения приводят к почти постоянной скорости от постоянного тока до 60 Гц. В небольших линейных устройствах, таких как дрели, пылесосы и миксеры, требующих от 3000 до 10 000 об / мин, используются универсальные двигатели.

Тем не менее, разработка твердотельных выпрямителей и недорогих постоянных магнитов делает двигатель постоянного тока с постоянным магнитом жизнеспособной альтернативой.

Отталкивающий двигатель

Отталкивающий двигатель состоит из поля, непосредственно подключенного к сети переменного тока, и пары короткозамкнутых щеток, смещенных на 15 ° до 25 ° от оси поля. Поле индуцирует ток в короткозамкнутом якоре, магнитное поле которого противоположно полю катушек возбуждения.

Скорость регулируется вращением щеток относительно оси поля. Этот двигатель имеет превосходную коммутацию ниже синхронной скорости и худшую коммутацию выше синхронной скорости. Низкий пусковой ток обеспечивает высокий пусковой крутящий момент.

 

Двигатель переменного тока с отталкиванием

 

Асинхронный двигатель с отталкивающим пуском

Когда асинхронный двигатель приводит в действие жесткую пусковую нагрузку, такую ​​как компрессор, можно использовать высокий пусковой момент отталкивающего двигателя. Обмотки ротора асинхронного двигателя выведены на сегменты коллектора для запуска парой короткозамкнутых щеток.

На скорости, близкой к рабочей, центробежный переключатель закорачивает все сегменты коллектора, создавая эффект короткозамкнутого ротора. Щетки также можно поднимать, чтобы продлить срок их службы. Пусковой момент составляет от 300% до 600% значения полной скорости по сравнению с менее 200% для чисто асинхронного двигателя.

 

Резюме: Коллекторные двигатели переменного тока

  •  Однофазный двигатель серии представляет собой попытку построить двигатель, подобный коллекторному двигателю постоянного тока. Полученный двигатель практичен только в самых маленьких размерах.
  • Добавление компенсационной обмотки приводит к компенсированному двигателю серии , устраняющему чрезмерное искрение коллектора. Большинство коллекторных двигателей переменного тока относятся к этому типу. На высокой скорости этот двигатель обеспечивает большую мощность, чем асинхронный двигатель того же размера, но не требует обслуживания.
  • Возможно производство двигателей для небольших бытовых приборов с питанием от переменного или постоянного тока. Это известно как универсальный двигатель .
  • Линия переменного тока напрямую подключена к статору репульсного двигателя с закороченным щетками коллектором.
  •  Выдвижные короткозамкнутые щетки могут запустить асинхронный двигатель с фазным ротором. Это известно как асинхронный двигатель с отталкивающим пуском .

Что такое коммутация?

Свяжитесь с Valin сегодня для получения дополнительной информации по телефону (855) 737-4716 или заполните нашу онлайн-форму.

The Motion Control Show

Теперь, когда мы поговорили о том, что такое электродвигатель и что такое привод, мы собираемся перейти к более сложным темам обратной связи, различным типам двигателей и тому, как контролировать их. Но прежде чем мы это сделаем, я хочу поговорить о более неясной теме, что такое коммутация. Это довольно абстрактно, и у многих людей с этим возникнут трудности. Итак, если у вас есть вопросы, или если у вас есть какие-либо приложения, которые вы хотите обсудить, или у вас возникли проблемы, свяжитесь с нами на этом веб-сайте или свяжитесь с нами по этому адресу электронной почты. Я Кори Фостер из Valin Corporation. Посмотрим, чему мы можем научиться.

Инженерное определение состоит в том, что целью является поддержание угла 90 градусов между полем ротора и полем статора двигателя. Это обеспечивает оптимальный выходной крутящий момент. Чем дальше мы отходим от этих 90 градусов, тем больше остается неиспользованного крутящего момента. Более простое объяснение, которое я предпочитаю использовать, похоже на то, как если бы вы сели на велосипед и знали, куда приложить силу; на правой ноге или левой ноге, или их комбинации. И как вы изменяете силу в ногах при вращении педалей? Вы нажимаете вниз справа? Вы толкаете вниз слева или подтягиваете слева? Это основы коммутации. На самом деле определение представляет собой последовательность переключения напряжения привода на фазные обмотки двигателя, необходимую для обеспечения непрерывной работы двигателя. Если вы посмотрите вот на эти щетки, то здесь есть обрыв провода, когда обмотка вращается, щетки будут меняться с одной стороны на другую. Поэтому течение изменит направление и будет плавно двигаться с севера на юг. Если мы посмотрим на бесколлекторный двигатель, то здесь есть коммутационный датчик. Вы можете увидеть, где это будет здесь и здесь. Следовательно, он знает, как изменить это течение, чтобы оно соответствовало местонахождению Севера. Когда он вращается, он изменит ток, чтобы он мог притягивать правый полюс магнита.

Традиционно существует два типичных метода. Есть резольвер, который, если он используется для обратной связи, коммутация может быть выполнена через этот резольвер, потому что резольвер имеет две фазы, синусоидальную и косинусоидальную волны. Через один электрический цикл это абсолютно. Любой срез здесь уникален среди всех остальных, поэтому, когда вы включаете его, вы смотрите на эти фазы. Вы точно знаете, где в ротации вы находитесь. Другой — датчик Холла, который идет вместе с энкодером или тахометром, если они используются для обратной связи.

Что такое эффект Холла? Дело в том, что если вы пропускаете ток через тонкую металлическую полоску и подвергаете ее воздействию магнитного поля, возникает напряжение. Итак, если вы поместите датчик у магнита ротора, вы узнаете, северный это или южный полюс и насколько они близки. Вот некоторые графики, которые показывают это. Однако в наши дни энкодеры используют сигналы на эффекте Холла, но на самом деле они не являются датчиками на эффекте Холла. Что они делают, так это встраивают в них сигналы эффекта Холла, а затем выравнивают энкодер с задней частью двигателя, поэтому сигналы эффекта Холла вырабатываются при правильном вращении двигателя. Вот почему вы не можете снять инкрементный энкодер и снова включить его, если в нем есть эффекты Холла, потому что, если вы снимите его, повернете и снова включите, эти сигналы эффекта Холла больше не будут правильно выровнены. . Опять же, на самом деле это не датчики Холла, но они создают одни и те же сигналы для одной и той же цели.

В наши дни цифровые приводы могут коммутировать синусоидально. Они используют сигналы эффекта Холла при запуске, чтобы получить правильное плавное движение, а затем привод знает, где он находится, и поэтому теперь он будет проходить фазы на основе обратной связи, потому что разрешение энкодера в этот момент достаточно высокое. . И, конечно же, абсолютные энкодеры имеют уникальные позиции, так что их можно использовать. И даже если это всего лишь однооборотный абсолютный энкодер, он знает, где в вращении двигателя он находится. Итак, опять же, они могли просто включиться и знать, в какую фазу подавать ток, А, В или С, и двигаться вперед должным образом. Но если вы снимете этот абсолютный энкодер и поместите его в другое место, вам придется заново обнулить его. Это все должно быть правильно согласовано.

Можно коммутировать двигатель без обратной связи или эффекта Холла. Он называется Wake ‘n’ Wiggle, и у него есть другие названия от разных производителей, но идея одна и та же. Если вы сядете на велосипед и нажмете на педаль вперед и назад, вы сможете понять, на каком этапе вращения этих педалей или ротора вы основываетесь на этом движении. Итак, представьте, что вы садитесь на велосипед и немного двигаете педаль вперед-назад. Теперь я знаю, где это, так что теперь я собираюсь двигаться вперед оттуда. Вы должны быть в порядке с небольшим движением и не торопиться, чтобы сделать это. Но это работает нормально. Есть некоторые проблемы с этим, например, слишком большая нагрузка и все такое, но во многих приложениях он может работать очень хорошо.

Итак, это поднимает очевидный вопрос, если вы знакомы с степперами, которые обычно не имеют обратной связи и определенно не имеют эффекта Холла: коммутируют ли степперы? Ну нет у них датчика. Итак, что делает привод, так это блокирует двигатель в одной фазе. Он включает фазу А или фазу В и фиксирует ее на месте. Поскольку шаговый двигатель имеет пятьдесят полюсов, в отличие от двух, четырех или даже восьми полюсов серводвигателей, ему не нужно перемещаться очень далеко, чтобы зафиксироваться. Это может быть всего лишь градус или около того. Он фиксируется на месте, а затем привод знает, где он находится, и движется вперед. Он движется вперед в основном по таблице последовательности, как будто вы делаете шаг вперед левой ногой, вы знаете, что следующее, что вам нужно сделать, это сделать шаг вперед правой ногой. Левая нога, правая нога. Если вы делаете шаг вперед правой ногой, вы знаете, что вам нужно сделать шаг левой ногой. Вот что я имею в виду под таблицей последовательности, и так же работает степпер. Если он подает ток на фазу А, теперь он знает, что ему нужно перейти на фазу Б. Это заданная последовательность.

Надеюсь, это поможет. Если у вас есть вопросы или вы хотите связаться с нами. Вот сайт. Вот адрес электронной почты. Я Кори Фостер из Valin Corporation. Надеюсь, это поможет.

Если у вас есть какие-либо вопросы или вам просто нужна помощь, мы будем рады обсудить с вами вашу заявку. Свяжитесь с нами по телефону (855) 737-4716 или заполните нашу онлайн-форму.

РЕГУЛИРОВАНИЕ СКОРОСТИ КОММУТАТОРНЫХ ДВИГАТЕЛЕЙ

J. L. Watts, A.M.I.E.E.

Воспроизведено трамвайное оборудование Lloyd London Electrical Engineering (том 37, № 19 — 11 сентября 1965 г. ) с любезного разрешения автора и издателей

В этой последней из трех статей описываются методы управления скоростью переменного тока. , двигатели, г-н Уоттс имеет дело с двигателями, в которых используются контактные кольца или коллекторы.

Двигатели с контактными кольцами и коллекторные двигатели являются наиболее распространенными типами двигателей переменного тока с регулируемой скоростью. двигателей, причем такие машины бывают с различными выходными характеристиками и различными способами управления.

Ток статора асинхронного двигателя создает магнитный поток, который вращается вокруг статора с синхронной скоростью Ns об/сек, равной f/p, где f — частота питания, а p — число пар полюсов, на которые рассчитан двигатель . Поток индуцирует ток в проводниках ротора, создавая крутящий момент, который поворачивает ротор в направлении вращающегося потока. При условии, что нагрузка на двигатель находится в пределах его возможностей, машина автоматически установит скорость, при которой она развивает крутящий момент, точно равный моменту сопротивления присоединенной нагрузки, хотя можно ожидать перегрева, если двигатель нагружен выше номинального значения. Скорость холостого хода асинхронного двигателя практически равна его синхронной скорости Ns.

Под нагрузкой скорость двигателя падает до меньшего значения N об/сек, поэтому вращающийся поток срезает проводники ротора с повышенной скоростью, генерируя в проводниках ротора ток Ir более высокого значения с частотой s x f, где s – фракционное скольжение, равное Ns -N/Ns При этом пониженная скорость снижает коэффициент мощности Fr, цепи ротора, который равен

, где R — сопротивление цепи ротора, а X — реактивное сопротивление ротора цепь в состоянии покоя.

При работе асинхронного двигателя при заданном напряжении и часто ЭДС индуктивного ротора E практически пропорциональна s, а Ir равна 

 Таким образом, его крутящий момент практически пропорционален 

от его конструкции и имеет фиксированное значение для данного ротора. Сопротивление R короткозамкнутого ротора или двигателя с контактными кольцами, работающего на полной скорости с короткозамкнутыми контактными кольцами, также постоянно; в диапазоне нормальной нагрузки частичное скольжение s в этом случае довольно мало, частичное скольжение при полной нагрузке составляет от 3 до 7 % от синхронной скорости. Поскольку в диапазоне нормальной нагрузки sX довольно мало по сравнению с сопротивлением самого ротора, крутящий момент двигателя практически пропорционален скольжению, как показано кривой А на рис. 1. 

Использование внешнего сопротивления цепи ротора немного увеличить Fr. Уменьшенный крутящий момент двигателя вызывает падение скорости, результирующее увеличение тока ротора будет вызывать увеличение крутящего момента двигателя до тех пор, пока скорость не упадет до нового стабильного значения, при котором крутящий момент двигателя снова сравняется с моментом нагрузки при новой скорости.

Во избежание перегрева обмоток ротора ток ротора не должен превышать нормального номинального значения. Это означает, что двигатель может нормально развивать свой номинальный крутящий момент при полной нагрузке, когда его скорость снижается из-за сопротивления внешней цепи ротора, и в этом случае мощность при полной нагрузке будет уменьшаться пропорционально скорости. Однако допустимая мощность в лошадиных силах может быть снижена в несколько большей степени, если скорость снижается примерно до 40% от нормальной, особенно если вентиляция заметно снижается при более низкой скорости. В грубом приближении ток ротора I’1, необходимый для привода двигателя с контактными кольцами против момента нагрузки T’ при повышенных относительных проскальзываниях, можно принять равным T’ x Ir / T, где T — крутящий момент, а II’ — ротор. ток, необходимый для привода нагрузки на полной скорости, т. е. при коротком замыкании контактных колец. Приблизительное сопротивление на фазу резисторов цепи ротора, соединенных звездой, для запуска двигателя при скольжении s’ можно принять равным 0,58 x s’ x E / I’r, т. е. 0,58 x s’ x E x T / T’. x Ir Ом, где E — напряжение холостого хода между контактными кольцами.

Внешние резисторы должны быть достаточно большими, чтобы выдерживать ток ротора без перегрева в течение требуемого периода работы на пониженной скорости, при этом количество скоростей, доступных при заданном моменте нагрузки, равно количеству ступеней сопротивления цепи ротора. Кривые от B до F на рис. 1 показывают влияние различных значений сопротивления цепи ротора. Следует отметить, что этот метод снижения скорости увеличивает изменение скорости при переменной нагрузке, при этом скорость возрастает почти до синхронного значения на холостом ходу независимо от значения сопротивления; таким образом, этот метод может быть непригоден для переменных нагрузок, которые требуют работы с постоянной скоростью, значительно меньшей синхронной скорости.

Потери в резисторах управления скоростью

Этот метод снижения скорости работает за счет рассеивания во внешних резисторах части электродвижущей силы (ЭДС) и мощности, которые генерируются в проводниках ротора вращающимся магнитным потоком. и, таким образом, довольно неэффективен. Однако этот метод может быть пригоден для запуска двигателя примерно до 40 % синхронной скорости в течение коротких периодов времени или для приводов, где требуемый крутящий момент значительно снижается при пониженной скорости; потери во внешних резисторах примерно пропорциональны произведению снижения скорости на момент. В случае центробежной нагрузки, такой как вентилятор, требуемый крутящий момент значительно снижается при уменьшении нагрузки, и в таком приводе простота метода управления может компенсировать снижение общего КПД при снижении скорости. Например, если двигатель полностью нагружен при работе с нагрузкой на полной скорости, а использование внешнего сопротивления цепи ротора 

Крутящий момент, развиваемый двигателем с контактными кольцами при заданной скорости, можно, однако, уменьшить, подключив внешнее сопротивление в цепи ротора, что немедленно приведет к уменьшению I» и незначительному увеличению Fr. Уменьшенный крутящий момент двигателя вызывает скорость падает, результирующее увеличение тока ротора будет вызывать увеличение крутящего момента двигателя до тех пор, пока скорость не упадет до нового стабильного значения, при котором крутящий момент двигателя снова сравняется с моментом нагрузки при новой скорости. 

Во избежание перегрева ротора обмотки ротора ток ротора не должен превышать нормального номинального значения.Это означает, что двигатель может нормально развивать свой номинальный момент полной нагрузки, когда его скорость снижается из-за сопротивления внешней цепи ротора, и в этом случае мощность полной нагрузки будет уменьшается пропорционально скорости, однако допустимая мощность может быть снижена в несколько большей степени, если скорость снижается ниже примерно 40 % от нормальной, особенно при хорошей вентиляции. заметно снижается на более низкой скорости. В грубом приближении ток ротора I’1, необходимый для привода двигателя с контактными кольцами против момента нагрузки T’ при повышенных относительных проскальзываниях, можно принять равным T’ x Ir / T, где T — крутящий момент, а II’ — ротор. ток, необходимый для привода нагрузки на полной скорости, т. е. при коротком замыкании контактных колец. Приблизительное сопротивление на фазу резисторов цепи ротора, соединенных звездой, для запуска двигателя при скольжении s’ можно принять равным 0,58 x s’ x E / I’r, т. е. 0,58 x s’ x E x T / T’. x Ir Ом, где E — напряжение холостого хода между контактными кольцами.

Внешние резисторы должны быть достаточно большими, чтобы выдерживать ток ротора без перегрева в течение требуемого периода работы на пониженной скорости, при этом количество скоростей, доступных при заданном моменте нагрузки, равно количеству ступеней сопротивления цепи ротора. Кривые от B до F на рис. 1 показывают влияние различных значений сопротивления цепи ротора. Следует отметить, что этот метод снижения скорости увеличивает изменение скорости при переменной нагрузке, при этом скорость возрастает почти до синхронного значения на холостом ходу независимо от значения сопротивления; таким образом, этот метод может быть непригоден для переменных нагрузок, которые требуют работы с постоянной скоростью, значительно меньшей синхронной скорости.

Потери в резисторах управления скоростью

Этот метод снижения скорости работает за счет рассеивания во внешних резисторах части электродвижущей силы (ЭДС) и мощности, которые генерируются в проводниках ротора вращающимся магнитным потоком. и, таким образом, довольно неэффективен. Однако этот метод может быть пригоден для запуска двигателя примерно до 40 % синхронной скорости в течение коротких периодов времени или для приводов, где требуемый крутящий момент значительно снижается при пониженной скорости; потери во внешних резисторах примерно пропорциональны произведению снижения скорости на момент. В случае центробежной нагрузки, такой как вентилятор, требуемый крутящий момент значительно снижается при уменьшении нагрузки, и в таком приводе простота метода управления может компенсировать снижение общего КПД при снижении скорости. Например, если двигатель полностью нагружен при движении нагрузки на полной скорости, и нагрузка требует 30 % этого крутящего момента при 40 % скорости, эта скорость может быть получена путем рассеяния на внешнем сопротивлении 15–16 % крутящего момента. входная мощность двигателя при полной нагрузке на полной скорости.

Регулятор сопротивления скольжению 

Эту систему управления скоростью также можно с пользой использовать для сведения к минимуму колебаний тока, потребляемого двигателем, который подвержен широким и быстрым колебаниям нагрузки, как на приводе прокатного стана. На низкоинерционном приводе пиковые нагрузки вызовут некоторое снижение скорости двигателя с небольшим скольжением при полной нагрузке со значительным увеличением тока двигателя. Однако, включив в привод тяжелый маховик, его можно использовать в качестве резервуара энергии, при этом маховик отдает энергию, пропорциональную (N 12-N22) приводу, если скорость падает с N2 при малой нагрузке до N , при пиковой нагрузке. Этого можно достичь, используя двигатель с контактными кольцами, как показано на рис. 2, при этом последовательный трансформатор в питании двигателя подключен к вспомогательному моментному двигателю, крутящий момент которого зависит от нагрузки на основной двигатель. Пиковые нагрузки на двигатель с контактными кольцами приводят к тому, что моментный двигатель подключает сопротивление жидкости в цепи ротора, чтобы уменьшить крутящий момент и скорость двигателя с контактными кольцами. Когда пиковая нагрузка превышает крутящий момент, двигатель отключает часть сопротивления, чтобы увеличить скорость основного двигателя и кинетическую энергию маховика. В качестве альтернативы жидкостному резистору контактор может быть использован для управления секциями металлического сопротивления в зависимости от тока нагрузки основного двигателя.

Стабилизация скорости двигателя с контактными кольцами 

Управление с обратной связью может использоваться для ограничения изменения скорости большого двигателя с контактными кольцами, используемого на шахтной подъемной машине. Рычаг управления определяет направление вращения и задает требуемую скорость, регулируя опорное напряжение. Последнее сравнивается с напряжением, генерируемым в тахометрическом генераторе, приводимом в действие двигателем с контактными кольцами; любая разность напряжений усиливается для управления положением электродов в контроллере сопротивления. Капитальный ремонт вызывает торможение двигателя за счет подачи постоянного тока в обмотки статора.

В некоторых системах, которые подходят для лебедок, тяговых двигателей, шахтных подъемных машин и т. д., стабильная низкая скорость достигается за счет использования части электроэнергии, генерируемой в цепи ротора, в подпружиненном тормозе с электрическим растормаживанием. По ощущениям. механизм растормаживания от цепи ротора, при соответствующем электрическом управлении, пониженное напряжение, генерируемое в цепи ротора при увеличении скорости выше требуемого значения, уменьшает усилие растормаживания, тем самым увеличивая тормозное давление для стабилизации скорости.

Каскадные соединения асинхронных двигателей

Если большой асинхронный двигатель с контактными кольцами должен работать в течение значительных периодов времени со скоростью, намного меньшей, чем его номинальная скорость, желательно, чтобы часть напряжения и мощности, генерируемых его ротором, использовалась с пользой. , а не рассеиваться на резисторах. Каскадный метод подключения асинхронных двигателей является одним из способов сделать это, токосъемные кольца одного двигателя используются для питания другого двигателя, два двигателя соединяются вместе, так что выходное напряжение первого двигателя создает механическую мощность.

На рис. 3а показано одно расположение двигателя с контактными кольцами А и двигателя с короткозамкнутым ротором или двигателя с контактными кольцами В. Если двигатель с контактными кольцами имеет вид В, резисторы могут быть подключены между контактными кольцами при пуске для уменьшения пускового тока двигателя. A. На рис. 3b показана другая конструкция, в которой используются два двигателя с контактными кольцами, с пусковым сопротивлением, включенным в цепь статора машины B. На практике можно обойтись без контактных колец в схеме, показанной на рис. 3b, две обмотки ротора свести воедино. При каскадных соединениях падение скорости от холостого хода до полной нагрузки составляет несколько процентов от синхронной скорости комбинации. Две машины могут быть соединены в кумулятивный каскад для создания крутящих моментов в одном направлении или в дифференциальный каскад для создания противоположных крутящих моментов. Таблица 1 показывает, что при использовании двух двигателей с разным числом полюсов Pa и Pb можно получить четыре разные скорости; путем подключения сопротивления во вторичной цепи второго двигателя или отдельных двигателей также можно получить промежуточные скорости.

Смена полюсов и изменение частоты 

Скорость асинхронного двигателя с контактными кольцами с соответствующей обмоткой можно изменить путем смены полюсов или изменения входной частоты, как описано в статье об изменении скорости асинхронного двигателя с короткозамкнутым ротором. моторы. Переключение полюсов также можно использовать в сочетании с двигателями, соединенными каскадом, чтобы увеличить число скоростей, которые можно получить экономически выгодным образом. Однако смена полюсов должна применяться к обмоткам ротора двигателя с контактными кольцами, а также к обмоткам статора, что усложняет двигатель и механизм управления. Переменная частота может быть получена от генератора переменного тока, приводимого в движение двигателем с регулируемой скоростью, хотя эта система редко оправдана.

Система Kramer 

В системе Kramer для обеспечения постоянной мощности при полной нагрузке мощность с частотой скольжения от токосъемных колец преобразуется в механическую мощность, возвращаемую на вал двигателя. В одном применении этого принципа выходная частота скольжения двигателя с контактными кольцами, работающего на пониженной скорости, выпрямляется для питания постоянного тока. двигатель, соединенный с основным двигателем. Небольшой переменный резистор регулирует ток возбуждения постоянного тока. двигатель, чтобы управлять его противо-ЭДС на любой скорости, тем самым контролируя долю генерируемой ЭДС двигателя с контактными кольцами, которая поглощается постоянным током. машина.

Управление скоростью с помощью подачи напряжения

Скоростью асинхронного двигателя с контактными кольцами можно управлять любым методом, который позволяет управлять его вторичным током независимо от нагрузки на двигатель. Экономичный метод заключается в подаче напряжения во вторичную цепь, чтобы противодействовать или усиливать ЭДС, создаваемую во вторичных обмотках первичным магнитным потоком. Если подаваемое напряжение противодействует генерируемому напряжению, немедленным эффектом является уменьшение вторичного тока и крутящего момента, так что скорость падает. При этом скорость, с которой вторичные проводники перерезаются первичным потоком, увеличивается с увеличением генерируемой вторичной ЭДС, вторичного тока и крутящего момента двигателя, падение скорости прекращается, когда крутящий момент двигателя снова равен моменту сопротивления нагрузки. на стабильно низкой скорости.

С другой стороны, если подаваемое напряжение способствует генерируемой ЭДС, непосредственным эффектом является увеличение вторичного тока и крутящего момента двигателя, что заставляет двигатель разгоняться с падением вторичного тока и крутящего момента до стабильно более высокой скорости. Таким образом, этот метод можно использовать для запуска двигателя со скоростью, превышающей его синхронную скорость, если это необходимо. При синхронной скорости во вторичных обмотках не создается ЭДС, поскольку первичный поток и вторичные обмотки имеют одинаковую скорость. Таким образом, при синхронной скорости крутящий момент создается за счет приложенного напряжения и тока. Когда двигатель ускоряется выше синхронной скорости, ЭДС, генерируемая во вторичных обмотках, увеличивается в обратном направлении и противодействует подаваемому напряжению, вторичному току и крутящему моменту двигателя, которые падают по мере того, как двигатель разгоняется до стабильно более высокой скорости. Однако любое напряжение, подаваемое на вторичные обмотки, должно иметь ту же частоту (скольжения), что и ЭДС, генерируемая в этих обмотках, поэтому частота подаваемого напряжения должна автоматически изменяться в зависимости от скорости двигателя. Если подаваемое напряжение не зависит от нагрузки на двигатель, скорость двигателя при каждой настройке скорости будет очень незначительно изменяться от холостого хода до полной нагрузки. Однако характеристики скорости и момента управляемого двигателя можно изменить, если при необходимости подаваемое напряжение будет зависеть от нагрузки двигателя.

Питание от статора переменного тока Коллекторные двигатели с шунтирующими характеристиками  

Многофазный двигатель может быть оснащен преобразователем постоянного тока. обмотка ротора, соединенная с коммутатором. Один такой двигатель имеет обмотку статора, аналогичную асинхронному двигателю, при этом обмотки статора подключены к источнику питания, чтобы действовать как первичные обмотки. Обмотки статора также выполняют функцию автотрансформатора напряжения питающей частоты, снимаемого с ответвлений на обмотках статора и подаваемого на щетки коммутатора. Коллектор и щетки выполняют роль преобразователя частоты, изменяя частоту питающего напряжения, подаваемого на щетки, на частоту скольжения в обмотках ротора (вторичных). Такие двигатели доступны в размерах примерно до 10 л.с., десятиступенчатый переключатель отводов, подключенный к обмоткам статора, позволяет получить десять скоростей в диапазоне примерно от 3,5 до 1, скорость снижается на несколько процентов под нагрузкой.

В более распространенной конструкции коллекторного двигателя с питанием от статора напряжение для инжекции во вторичные обмотки ротора получают от асинхронного регулятора, который действует как трансформатор с переменным коэффициентом, как показано на рис. 4. Регулятор можно поворачивать с помощью средства маховика или пилотного двигателя для изменения соотношения фаз между его входной и выходной обмотками для изменения выходного напряжения. В указанной машине вспомогательные компенсационные обмотки включены во вторичную цепь для повышения коэффициента мощности. На регуляторе может быть установлен блокировочный выключатель, чтобы гарантировать, что двигатель запускается на низкой скорости, т. Е. Регулятор настроен на подачу максимального напряжения в противовес ЭДС, генерируемой в обмотках ротора (вторичных) двигателя. Затем двигатель работает со скоростью ниже своей синхронной, возвращая питание в сеть через индукционный регулятор. Когда регулятор установлен в среднее положение, его выходное напряжение равно нулю; затем двигатель работает как асинхронный двигатель, вторичные обмотки которого замыкаются накоротко через выходные обмотки регулятора.

Когда регулятор повернут в направлении, противоположном его среднему положению, для подачи во вторичные обмотки двигателя напряжения, которое способствует генерируемой ЭДС в роторе, двигатель может работать со скоростью, превышающей его синхронную скорость, питание от сеть питания подается непосредственно на первичную обмотку и через регулятор на вторичную обмотку. Регулятор обеспечивает бесступенчатое регулирование скорости во всем диапазоне скоростей; обычное отношение максимальной скорости к минимальной составляет примерно три к одному, хотя машины могут быть построены для других соотношений скоростей. Оборудование может быть рассчитано на приблизительно постоянный крутящий момент при полной нагрузке с мощностью при полной нагрузке, пропорциональной скорости, или на другие коэффициенты мощности. Падение скорости от холостого хода до полной нагрузки при данной настройке скорости весьма незначительно и может иметь максимальное значение около 14% от максимальной скорости в случае машины с соотношением скоростей 3:1. Эти двигатели с питанием от статора могут быть рассчитаны на входное напряжение до 11 кВ и выходную мощность от 1 до 10 000 л.с.

Schrage Motors 

Многофазный коллекторный двигатель типа Schrage. 5, первичные обмотки вставлены в пазы ротора и питаются от питающей сети для создания магнитного потока, который всегда вращается вокруг сердечника ротора с синхронной скоростью, индуцируя ЭДС частоты скольжения во вторичных обмотках, которые устанавливаются в пазы статора. Ротор также имеет отдельный источник постоянного тока. тип регулирующей обмотки, соединенной с коллектором, на котором вращаются щетки, соединенные со вторичными обмотками. Щетки коллектора установлены на двух стойках, каждая из которых имеет по два шпинделя на пару полюсов. Стойки сконструированы таким образом, что два набора щеток можно разъединить в любом направлении, как показано на рис. 6, с помощью маховика или вспомогательного двигателя.

Таким образом, ротор частично функционирует как вращающийся трансформатор, при этом между сегментами коммутатора индуцируются напряжения частоты сети, которые преобразуются в частоту скольжения на щетках. При соединении щеток с одной парой полюсов, установленных в линию, как на рис. 6б, вторичные обмотки статора замыкаются накоротко через щетки и сегменты коллектора; затем двигатель работает как инвертированный асинхронный двигатель со скоростью немного меньшей, чем его синхронная скорость. Когда щетки разъединены в одном направлении, как на рис. 6а, двигатель работает со скоростью ниже синхронной в направлении, противоположном направлению вращающегося магнитного потока, создаваемого первичными обмотками ротора. Скорость зависит от величины отрыва щеток, которая определяет величину напряжения, подаваемого в обмотки статора.

Когда щетки разъединены в другом направлении, как на рис. 6d, чтобы подать напряжение в том же направлении, что и генерируемая ЭДС в обмотках статора, двигатель при необходимости может работать со скоростью, превышающей его синхронную скорость. Выше синхронной скорости вращение основного магнитного потока в пространстве меняется на противоположное. Щетки можно настроить, как на рис. 6в, для запуска двигателя на синхронной скорости, при которой магнитный поток стационарен в пространстве, так как создается и переносится ротором в направлении, противоположном его собственному вращению. При синхронной скорости выход щеток коммутатора представляет собой постоянный ток, при этом крутящий момент создается реакцией между стационарным магнитным потоком и током, подаваемым в обмотках статора.

Двигатели Schrage производятся мощностью от одной до нескольких сотен лошадиных сил для питания до 600 вольт с бесступенчатой ​​регулировкой скорости в диапазоне от 15 до 1; обычная конструкция дает приблизительно постоянный крутящий момент при полной нагрузке, при этом мощность при полной нагрузке примерно пропорциональна скорости. Как показано на рис. 7, падение скорости от холостого хода до полной нагрузки при каждой настройке скорости щеток довольно мало. Коэффициент мощности двигателя Шраге, как правило, несколько выше, чем у коллекторного двигателя с питанием от статора. Многофазные коллекторные двигатели подходят для приводов, требующих переменной скорости с равномерным ускорением, например, для хлебопекарных и бумагоделательных заводов, печатных станков, прядильных машин, вязальных машин и т. д. 

Двигатели с последовательными скоростными характеристиками

Для некоторых приводов, таких как группа двигателей, приводящих в действие печатный станок, могут потребоваться последовательные характеристики скорости/момента, показанные на рис. 8. Их можно получить, питая щетки коллектора коллекторного двигателя со статорным питанием от вторичных обмоток трансформатора, первичные обмотки которого включены последовательно со статорными (первичными) обмотками двигателя, как показано на рис. 9. вводимое напряжение затем зависит от нагрузки на двигатель. В этой машине скорость при любом крутящем моменте нагрузки можно изменять, перемещая щетки вокруг коммутатора, чтобы изменить соотношение фаз подаваемого напряжения к фазе генерируемого напряжения. Углы, отмеченные на рис. 8, относятся к смещению (в электрических градусах) щеток от сильноточного нейтрального положения.

Оборудование Scherbius

В некоторых случаях, главным образом для больших двигателей с регулируемой скоростью, коллектор устанавливается на отдельном механизме от главного двигателя. Коллекторная машина может работать на частоте скольжения, чтобы возвращать мощность на вал главного двигателя, чтобы обеспечить постоянную мощность при полной нагрузке на различных скоростях; или он может возвращать мощность скольжения в сеть питания ниже синхронной скорости и получать мощность скольжения из сети выше синхронной скорости, чтобы обеспечить постоянный крутящий момент при полной нагрузке.

В таких системах обычно используется машина Шербиуса, представляющая собой многофазную машину переменного тока. генератор, в котором выходное напряжение формируется в роторной обмотке коллекторного типа. На рис. 10 показаны соединения одного такого блока, в котором главный двигатель механически соединен с машиной Шербиуса и преобразователем частоты. Вспомогательные обмотки машины Шербиуса способствуют улучшению коэффициента мощности, а скорость регулируется переключением щеток, как в двигателе Шраге, чтобы обеспечить почти постоянный крутящий момент при полной нагрузке выше или ниже синхронной скорости во всем диапазоне скоростей. Возможны многие другие схемы, например, в однодиапазонном оборудовании Шербиуса, в котором машина Шербиуса может приводиться в действие отдельным генератором переменного тока. двигатель, однодиапазонное оборудование подходит для работы ниже синхронных скоростей. Машина Шербиуса с отдельным приводом может быть подключена к контактным кольцам главного двигателя и к коллекторным щеткам преобразователя частоты коммутатора, соединенного с главным двигателем, в двухдиапазонном оборудовании Шербиуса, обеспечивающем постоянный момент полной нагрузки выше или ниже синхронного. скорость.

13.12: Коллекторные двигатели переменного тока — Workforce LibreTexts

  1. Последнее обновление
  2. Сохранить как PDF
  • Идентификатор страницы
    1477
    • Tony R. Kuphaldt
    • Schweitzer Engineering Laboratories via All About Circuits

    Первой работой Чарльза Протеуса Стейнмеца после прибытия в Америку было исследование проблем, возникающих при разработке версии щеточного коллекторного двигателя переменного тока. Ситуация была настолько плохой, что двигатели не могли быть спроектированы до фактического строительства. Успех или неудача конструкции двигателя не были известны до тех пор, пока он не был построен с большими затратами и не испытан. Он сформулировал законы магнитного гистерезиса при поиске решения. Гистерезис – это отставание напряженности магнитного поля от силы намагничивания. Это приводит к потерям, которых нет в магнитах постоянного тока. Сплавы с низким гистерезисом и разделение сплава на тонкие изолированные 9Пластины 0316 позволили точно спроектировать коллекторные двигатели переменного тока перед их изготовлением.

    Коллекторные двигатели переменного тока

    , как и сопоставимые двигатели постоянного тока, имеют более высокий пусковой момент и более высокую скорость, чем асинхронные двигатели переменного тока. Серийный двигатель работает значительно выше синхронной скорости обычного двигателя переменного тока. Коллекторные двигатели переменного тока могут быть однофазными или многофазными. Версия с однофазным двигателем переменного тока испытывает пульсацию крутящего момента с двойной частотой сети, которой нет в многофазном двигателе. Поскольку коллекторный двигатель может работать на гораздо более высокой скорости, чем асинхронный двигатель, он может выдавать большую мощность, чем асинхронный двигатель аналогичного размера. Однако коллекторные двигатели не так не требуют технического обслуживания, как асинхронные двигатели, из-за износа щеток и коллектора.

    Однофазный серийный двигатель

    Если серийный двигатель постоянного тока, оснащенный ламинированным полем, подключен к сети переменного тока, запаздывающее реактивное сопротивление катушки возбуждения значительно снизит ток возбуждения. Пока такой мотор будет вращаться, работа будет маргинальной. При пуске обмотки якоря, соединенные с закороченными щетками сегментами коммутатора, выглядят как закороченные витки трансформатора на поле. Это приводит к сильному искрению и искрению на щетках, когда якорь начинает вращаться. Это становится менее серьезной проблемой по мере увеличения скорости, когда искрение и искрение распределяются между сегментами коммутатора. Запаздывающее реактивное сопротивление и дугогасительные щетки допустимы только в очень небольших некомпенсированных двигателях переменного тока, работающих на высокой скорости. Серийные двигатели переменного тока меньше, чем ручные дрели и кухонные миксеры, могут быть некомпенсированными. (Рисунок ниже)

    Серийный двигатель переменного тока без компенсации.

    Серийный двигатель с компенсацией

    Возникновение дуги и искрение уменьшается за счет последовательного включения компенсирующей обмотки статора с якорем, расположенным так, что его магнитодвижущая сила (ммс) уравновешивает силу переменного тока якоря ммс. (Рисунок ниже) Меньший воздушный зазор двигателя и меньшее количество витков возбуждения уменьшают запаздывающее реактивное сопротивление последовательно с якорем, улучшающим коэффициент мощности. Во всех коллекторных двигателях переменного тока, кроме очень маленьких, используются компенсационные обмотки. В двигателях такого же размера, как те, что используются в кухонном миксере, или больше, используются компенсированные обмотки статора.

    Двигатель переменного тока с компенсацией.

    Универсальный двигатель

    Можно спроектировать небольшие (до 300 Вт) универсальные двигатели , которые работают от постоянного или переменного тока. Очень маленькие универсальные двигатели могут быть некомпенсированными. В более крупных универсальных двигателях с более высокими скоростями используется компенсирующая обмотка. Двигатель будет работать медленнее на переменном токе, чем на постоянном, из-за реактивного сопротивления переменного тока. Однако пики синусоидальных волн насыщают магнитный путь, уменьшая общий поток ниже значения постоянного тока, увеличивая скорость «последовательного» двигателя. Таким образом, эффекты смещения приводят к почти постоянной скорости от постоянного тока до 60 Гц. В небольших бытовых приборах, таких как дрели, пылесосы и миксеры, требующих от 3000 до 10 000 об/мин, используются универсальные двигатели. Тем не менее, разработка твердотельных выпрямителей и недорогих постоянных магнитов делает двигатель постоянного тока с постоянными магнитами жизнеспособной альтернативой.

    Отталкивающий двигатель

    Отталкивающий двигатель (рисунок ниже) состоит из поля, непосредственно подключенного к сети переменного тока, и пары короткозамкнутых щеток, смещенных на 15 o до 25 o от оси поля. Поле индуцирует ток в короткозамкнутом якоре, магнитное поле которого противоположно полю катушек возбуждения. Скоростью можно управлять, вращая щетки относительно оси поля. Этот двигатель имеет превосходную коммутацию ниже синхронной скорости и худшую коммутацию выше синхронной скорости. Низкий пусковой ток обеспечивает высокий пусковой момент.

    Отталкивающий двигатель переменного тока.

    Асинхронный двигатель с репульсным пуском

    Когда асинхронный двигатель приводит в действие жесткую пусковую нагрузку, такую ​​как компрессор, можно использовать высокий пусковой момент репульсионного двигателя. Обмотки ротора асинхронного двигателя выведены на сегменты коллектора для запуска парой короткозамкнутых щеток. На скорости, близкой к рабочей, центробежный переключатель закорачивает все сегменты коммутатора, создавая эффект короткозамкнутого ротора. Щетки также можно поднимать, чтобы продлить срок службы куста. Пусковой момент составляет от 300% до 600% значения полной скорости по сравнению с менее 200% для чисто асинхронного двигателя.

    Резюме: Коллекторные двигатели переменного тока

    • Однофазный серийный двигатель представляет собой попытку создать двигатель, подобный коллекторному двигателю постоянного тока. Полученный двигатель практичен только в самых маленьких размерах.
    • Добавление компенсационной обмотки дает двигатель серии с компенсацией , устраняющий чрезмерное искрение коллектора. Большинство коллекторных двигателей переменного тока относятся к этому типу. На высокой скорости этот двигатель обеспечивает большую мощность, чем асинхронный двигатель того же размера, но не требует обслуживания.
    • Возможно производство двигателей для небольших бытовых приборов с питанием от переменного или постоянного тока. Это известно как универсальный двигатель .
    • Линия переменного тока напрямую подключена к статору репульсного двигателя с закороченным щетками коллектором.
    • Выдвижные короткозамкнутые щетки могут запустить асинхронный двигатель с фазным ротором. Он известен как асинхронный двигатель с отталкивающим пуском .

    Эта страница под названием 13.12: AC Commutator Motors распространяется в соответствии с лицензией GNU Free Documentation License 1.3 и была создана, изменена и/или курирована Тони Р. Купхалдтом (Все о цепях) посредством исходного содержимого, которое было отредактировано в соответствии со стилем и стандарты платформы LibreTexts; подробная история редактирования доступна по запросу.

    1. Наверх
      • Была ли эта статья полезной?
      1. Тип изделия
        Раздел или страница
        Автор
        Тони Р. Купхалдт
        Лицензия
        ГНУ ФДЛ
        Версия лицензии
        1,3
      2. Теги
        1. источник@https://www.allaboutcircuits.com/textbook/alternating-current

      коллекторный двигатель — перевод на Португальский язык – Linguee

      7 al.

      multistay.com.pt

      multistay.com.pt

      09.2763 ex 8501 40 80 30 Electri c A C коллекторный двигатель , с в гл-фаза, с выходом […]

      более 750 Вт, входная мощность

      […]

      более 1 600 Вт, но не более 2 700 Вт, наружным диаметром более 120 мм (0,2 мм), но не более 135 мм (0,2 мм), номинальной частотой вращения более 30 000 об/мин, но не более 50 000 об/мин, оснащенные нагнетательным вентилятором, для использования в производстве пылесосов (1) 1. 1.

      eur-lex.europa.eu

      eur-lex.europa.eu

      09.2763 ex 8 50 1 40 80 30 Motor el ct rico de corrente al terna da, de colector, mo nof sico , com potncia […]

      выше 750

      […]

      Вт, верхнее всасывающее 1600 Вт, нижнее или верхнее 2700 Вт, внешнее верхнее 120 мм (0,2 мм), нижнее или верхнее 135 мм (0,2 мм), номинальная скорость выше 30 000 об/мин, выше или выше 50 000 об/мин, оснащенный общей вентиляцией воздуха, не использующей фабрику аспираторов (1) 1.1.

      eur-lex.europa.eu

      eur-lex.europa.eu

      Укрепить наше лидерство в

      […]
      productio n o f commutators f o r electr ic a l motors c o nq во время [. ..]

      мировой рынок.

      comotec.com.br

      comotec.com.br

      Консолидар носса

      […]
      liderana na f abric a o d e comutadores p ara motores el

      tricos […]

      или mercado mundial.

      comotec.com.br

      comotec.com.br

      Предложение к ма рк е т коммутаторы ф o r electr ic a l motors a n d technical […]

      решения высокой компетентности и адекватного управления

      […]

      методы, которые могут обеспечить поддержку развития, способствуя успеху нашего клиента.

      comotec.com.br

      comotec.com.br

      Офере ce rao mer cad o comutadores p ara моторы elt ri coes [. ..]

      tcnicas com alta competncia e prticas adequadas de

      […]

      gesto, que assegurem um desenvolvimento sustentvel, contribuindo para o sucesso dos nossos clientes.

      comotec.com.br

      comotec.com.br

      Традиционные лампы u se a коммутатор t o g .

      multistay.co.uk

      multistay.co.uk

      Как Импадас

      […]
      tradici on ais u sam um comutador par a g erar

      Когда

      […]
      carbons are used up, t h e motor s t op s to avoid damage to t h e commutator a n d следовательно затраты на ремонт.

      forsthoffwelding.com

      forsthoffwelding.com

      Quando as escovas de carvo

      […]
      estiverem de sg astas , o motor pr a par a impedir a da ni fica o do colector e evi tar c us tos de […]

      ремонт.

      forsthoffwelding.com

      forsthoffwelding.com

      По сравнению с генератором постоянного тока автомобильный

      […]
      генератор не ne ed a коллектор .

      chinatrucks.co.uk

      chinatrucks.co.uk

      Comparando-se com um gerador DC, um alternador

      […]
      автомобильный номер или preci sa de comutador .

      chinatrucks. com.pt

      chinatrucks.com.pt

      в области карточного бизнеса, digitalk был расширен за счет

      […]
      установка коммутатора n e w w i th доп 3 […]

      , что позволило разработать

      […]

      размещены бизнес-карты для различных международных клиентов, а также присвоение нумерации 88250 и нумерации 80080.

      oni.pt

      oni.pt

      Na rea ​​dos negcios de cartes

      […]

      fez-se a ampliao da Digitalk com a

      […]
      instalao de um n ovo comutador com mais 3 2xE1 […]

      разрешение на освобождение от ответственности

      […]

      de cartes hosted para diversos clientes internacionais, bem como a atribuio de numerao 88250 e 80080.

      oni.pt

      oni.pt

      Области применения: статическое уплотнение в г , коллектор г и 8 […]

      прокладки «XP», гайки, резьбовые стержни, прокладки, изоляционные клинья, опоры,

      […]

      панели, изоляционные блоки, изоляционные диски из матекса, втулки, помятое колесо из Celeron, магнитные клинья из TECMAG, тросы для протезирования из TECARBEX, среди прочего. Используется в следующих отраслях: электрическая, механическая, химическая, морская и сидерургия.

      aepi.com.br

      aepi.com.br

      Приложения — Анель

      […]
      estti co , rg uas de comutador e c al os em em feno378 […]

      «XP», porcas, tirantes roscados, calos, cunhas isolantes,

      [. ..]

      опоры, квадрокоптеры, изолированные блоки, изолированные дискосистемы, включая опоры Matex, квадрокоптеры, бухи, роды зубчатые, а также Celeron, cunha magntica em TECMAG, кабели для приложений, например TECARBEX, entre outros.

      aepi.com.br

      aepi.com.br

      Когда машина полностью укомплектована, выбор механизма подачи проволоки будет в

      […]
      функция t h e коммутатор p o si ция в передней части.

      gys.fr

      gys.fr

      Quando os aparelhos estiverem totalmente equipados a escolha da moto dobadoura ser feita em

      […]
      funo da p os io do comutador na face d a frente.

      gys.fr

      gys.fr

      Коллектор O ​​ n / Выкл.

      Бото ЛИГАР / ДЕСЛИГАР; Боту-де-селеко-ду-моду.

      gys.fr

      gys.fr

      T h e коллектор двигателя c a rb можно заменить несколько […]

      раза, что обеспечивает непрерывную работу устройства.

      forsthoffwelding.com

      forsthoffwelding.com

      As escovas de carv o до коллектор до двигатель p odem se r замены […]

      vrias vezes, o que allowe a utilizao contnua do aparelho.

      forsthoffwelding.com

      forsthoffwelding.com

      Как и все FORSTHOFF

      […]
      ручные сварочные горелки со встроенным вентилятором, t h e коллектор c a rb на модели Robust-L легко заменяются [. ..]

      снаружи, без открытия устройства.

      forsthoffwelding.com

      forsthoffwelding.com

      Tal como em todos os

      […]
      aparelhos de soldagem manual FORSTHOFF com soprador integrado, as escovas de c arvo do Коллектор pod em se r facilmente […]

      Замена пело

      […]

      экстерьер, sem ser necessrio abrir o aparelho.

      forsthoffwelding.com

      forsthoffwelding.com

      К таким особенностям относятся стабильные по размерам двигатель и приводная головка и, следовательно, устойчивый к деформациям монтаж fi

      […]

      Катушка возбуждения и якорь, 9 шт.0003

      […]
      the self-suppor ti n g motor d e si gn and extra wi d e commutators f o r улучшенная [. ..]

      раздача и

      […]

      Оптимизированный поток холодного воздуха для высокой производительности.

      fein.cz

      fein.cz

      Aqui contam-se, entre outras, unidade indeformvel do motor e da cabea do accionamento e, aftermentemente, o supporte

      […]

      dos plos e do induzido,

      […]
      a con st ruo do motor aut oport ante , bem co mo colectores ex tra larg os , […]

      Распределение ума мелхор

      […]

      da temperature, e uma conduo do ar de refrigerao optimizada para um dbito de ar elevado.

      fein.cz

      fein.cz

      Коллектор o f s Выбор от выходного [. ..]

      Рабочий разъем для применения с отдельным механизмом подачи проволоки тип

      gys.fr

      gys.fr

      Марко — для использования в спорах (corrente

      )
      […]
      infer io r a 2 00 A) comutador de se lec o […]

      де Сада.

      gys.fr

      gys.fr

      Внутри

      […]
      два сплошных с ta t e коммутаторы t h at позволяют […]

      включение/выключение внешних электрических устройств, таких как машины, электронные замки или сирены.

      controlo-producao.com

      controlo-producao.com

      Internamente p os sui d ois comutadores de estad или слайд […]

      que Allowem Ligar e desligar dispositivos elctricos externos tais

      [. ..]

      como mquinas, trincos elctricos ou sirenes.

      controlo-producao.com

      controlo-producao.com

      Производим магниты, подшипники, валы,

      […]
      корпуса, пластины на s , коммутаторы a n d литые детали.

      johnsonelectric.com

      johnsonelectric.com

      Ns fazemos manes, rolamentos, eixos,

      […]
      revestimentos, l amina gen s, comutadores e pe as old em 7 me.

      johnsonelectric.com

      johnsonelectric.com

      Следует отметить технический и коммерческий интерес, связанный с важностью включения следующих технологий в телекоммуникационные спутники следующего поколения: усовершенствованные бортовые системы обработки данных; электронные антенны реконфигурации покрытия с использованием подвижных лучей; динамическое назначение частоты и полосы пропускания; подсистемы TTC нового поколения, адаптированные к новым стандартам и другим диапазонам частот; а также другое оборудование, выявленное при исследовании жизнеспособности

      [. ..]

      осуществляется, например выход

      […]
      мультиплексоры, волна g ui d e коммутаторы , r 8 ec […]

      источники и с электронным управлением

      […]

      механизмы развертывания антенны, среди прочего.

      hispasat.com

      hispasat.com

      notado o interesse tcnico e de Explorao Comercial Derivado da Importncia de Incorporar nas seguintes generaes de satlites de Telecomunicaes, sistemas de processamento a bordo melhorados, antenas com reconfigurao eletrnica de coberturas, que inclua feixes orientveis, atribuio de equlargura de dinmica de banda, subsistemas de TTC de nova gerao que se adapterem aos novosstandards e para outras bandas de frequncias, alm de outros

      […]

      equipamentos como multixadores de sada,

      [. ..]
      comutadores em gu ia de on da , рецепторы, […]

      пищевые источники, механизмы десдобраменто

      […]

      de antenas controlados eletronicamente entre outros, que potencialmente se possam identificar durante o desenvolvimento do estudo de viabilidade.

      hispasat.com

      hispasat.com

      Мы производим широкий спектр компонентов, таких как магниты, подшипники, валы,

      […]
      корпуса, пластины на s , коллекторы , d 8 литые детали

      johnsonelectric.com

      johnsonelectric.com

      Fabricamos umvasto leque de componentes, tais como magnetos, rolamentos,eixos,

      […]
      caixas , lamin a es , comutadores, pe as em fundet.

      johnsonelectric.com

      johnsonelectric.com

      O u r коммутаторы a r e присутствуют в домашнем […]

      приборы, электроинструменты и автомобильные приводы

      zektor.com.br

      zektor.com.br

      N os sos coletores est o pres en tes em […]

      aparelhos eletrodomsticos, ferramentas e em linhas automotivas

      zektor.com.br

      zektor.com.br

      T h e двигатели a r e прочные и резцы из закаленной […]

      сталь, которую можно затачивать.

      bosch.pt

      bosch.pt

      O s motores s o rob us to s e as lminas 9037 so [. ..]

      ao endurecido que pode ser afiado.

      bosch.pt

      bosch.pt

      ( a ) коммутаторы f o r многоточечные трансформаторы […]

      (заголовок 8536)

      eur-lex.europa.eu

      eur-lex.europa.eu

      a ) Os comutadores par at ransf или madores […]

      de tomadas mltiplas (posio 8536)

      eur-lex.europa.eu

      eur-lex.europa.eu

      Значение алгебраического

      […]
      свойства Гейзенбера г с коммутаторы с т 8 ру […]

      вышел на прогулку за город.

      aprender-mat.info

      aprender-mat.info

      Импорт собственности

      [. ..]
      algbricas de He isenb erg s comutadores D ir ac ating 9077ndoquaid 8 […]

      estava a passeio no pas.

      aprender-mat.info

      aprender-mat.info

      Имеем в виду, что w he r e автомобилестроение a s a в целом, 80% ущерба, нанесенного автомобилю, 1 и только 1 из-за вождения утилизация транспортных средств.

      europarl.europa.eu

      europarl.europa.eu

      Pensemos, por instanceo, que, no mbito da mobilidade global, 80% da poluio do meio ambiente gerada pela utilizao de veculos automveis, 19%, pelo Fabrico dos veculos e s 1%, pelo respectivo desmantelamento.

      europarl.europa.eu

      europarl.europa.eu

      Объяснение урока: Двигатели постоянного тока

      В этом объяснении мы научимся описывать использование коммутатора для создания равномерного кругового движения на выходе источника постоянного тока.

      Двигатель постоянного тока представляет собой устройство, преобразующее электрическую энергию в кинетическую. Он делает это, используя принцип электромагнитной индукции. Мы рассмотрим конструкцию двигателя постоянного тока и посмотрим, как он работает.

      Начнем с того, как устроен двигатель постоянного тока. Базовая конструкция показана на схеме ниже.

      Устройство называется двигателем постоянного тока, поскольку оно работает от источника постоянного тока. Источник постоянного тока, такой как батарея, — это источник тока, который всегда
      посылает ток в том же направлении.

      Источник постоянного тока соединен проводами с двумя щетками. Провода и щетки показаны на схеме синим цветом. Эти щетки изогнуты, чтобы помочь поддерживать
      электрический контакт с коммутатором, который находится между двумя щетками.

      Коммутатор показан на схеме оранжевым цветом. Коммутаторы обычно выглядят как круг или сплошное кольцо, разделенное на две половины. Они сделаны из
      металла, поэтому они проводят электричество. Однако зазор между двумя половинками означает, что они электрически отделены друг от друга, т. е.
      заряды не могут течь напрямую из одной половины коммутатора в другую.

      Каждая половина коммутатора подключена к одному концу петли провода. Эта проволочная петля, показанная на схеме розовым цветом, называется катушкой. Это иногда также
      называют арматурой. Петля из проволоки нарисована так, что она ориентирована в горизонтальной плоскости. Однако он способен вращаться вместе с коммутатором,
      вокруг оси, проходящей через его центр. Эта ось показана на диаграмме пунктирной серой линией.

      Вокруг якоря есть постоянный магнит. На схеме это показано серым цветом. Этот магнит часто называют статором. Название выбрано, чтобы подчеркнуть
      тот факт, что эта часть двигателя остается неподвижной, в отличие от вращающейся катушки.

      Коллектор и щетки показаны крупным планом на схеме ниже. Проиллюстрированы две разные конструкции коммутатора: коммутатор может быть изготовлен из любого
      две половинки D-образной формы, как на левой диаграмме, или две половины разрезного кольца, как на правой диаграмме. Эти диаграммы показаны «сзади»
      коммутатора по сравнению с предыдущей схемой. Важно отметить, что каждый конец токопроводящего контура провода подключен к одной половине коммутатора. При вращении коммутатора и проволочной петли концы проволоки остаются прикрепленными к половинам коммутатора.

      Сначала мы нарисовали схему двигателя постоянного тока, на которой все его части были выделены разными цветами. Однако теперь, когда мы определили
      различные компоненты, возможно, более полезно изобразить его следующим образом.

      В этой второй версии диаграммы мы использовали серый цвет для всех частей двигателя, которые остаются неподвижными, и мы использовали оранжевый цвет для всех частей.
      двигателя, который может вращаться.

      Рассмотрим путь, по которому следует ток. Это показано на диаграмме ниже, где катушка ориентирована горизонтально.

      Вспомним, что обычный ток идет от плюса к минусу. Это означает, что у нас есть ток, идущий от положительной клеммы.

      Зазор между двумя половинками коммутатора блокирует направление тока непосредственно на отрицательную клемму. Однако, поскольку каждый конец катушки
      подключен к одной половине коммутатора, вместо этого ток проходит через катушку. Ток следует по петле, образованной катушкой, пока не достигнет другой половины
      коммутатора.

      Эта вторая половина коллектора контактирует со щеткой, соединенной с отрицательной клеммой. Это дает току путь, по которому он должен следовать, чтобы достичь отрицательного
      терминал, тем самым замыкая цепь.

      Теперь давайте подумаем, что на самом деле делает этот ток, чтобы заставить это устройство работать как двигатель.

      Основной принцип, лежащий в основе работы двигателя постоянного тока, заключается в том, что электрический заряд, движущийся в магнитном поле, испытывает силу.

      В данном конкретном случае мы рассматриваем протекание зарядов в проводе, другими словами, электрический ток. Имеем провод определенной длины, несущий
      ток в присутствии магнитного поля. Поскольку провод содержит движущиеся заряды, мы знаем, что на него будет действовать сила.

      Уравнение: сила, действующая на провод с током в магнитном поле

      Рассмотрим провод длиной 𝐿, по которому течет ток величиной 𝐼 в присутствии магнитного поля 𝐵.

      Если направление провода перпендикулярно направлению магнитного поля, то величина силы, действующей на провод, определяется выражением
      𝐹=𝐵𝐼𝐿.

      Направление силы перпендикулярно как току в проводе, так и магнитному полю и может быть найдено с помощью правила левой руки.

      Сила на провод действует перпендикулярно направлению тока в проводе и направлению магнитного поля. Итак, давайте посмотрим на направления
      тока и магнитного поля.

      Направление магнитного поля указано на схеме выше. Мы знаем, что магнитное поле между двумя полюсами магнита идет от северного полюса
      к южному полюсу; в нашем случае это слева направо на экране.

      Также указано направление тока в обеих частях катушки, перпендикулярных магнитному полю. Мы можем вспомнить, что только ток, который
      перпендикулярно полю, возникнет сила. С левой стороны катушки этот ток направлен на экран. С правой стороны текущий
      направлен за пределы экрана к нам.

      Давайте сосредоточимся на левой стороне катушки. Здесь ток направлен в экран. Магнитное поле направлено слева направо. Мы знаем это
      сила должна быть перпендикулярна обеим этим величинам, но остается два варианта: вверх или вниз.

      Чтобы выяснить, в каком из этих направлений указывает сила, мы можем использовать правило левой руки Флеминга.

      Правило: правило левой руки Флеминга

      Правило левой руки Флеминга позволяет найти направление силы, действующей на проводник с током в магнитном поле, при условии, что поле
      и направления тока перпендикулярны.

      Правило визуально показано на диаграмме выше. Это работает следующим образом:

      • Левой рукой мы указываем первым, или указательным, пальцем по направлению магнитного поля.
      • Затем мы указываем вторым пальцем под углом 90° к первому вдоль направления тока.
      • Большой палец, под углом 90° к обоим пальцам, указывает направление силы, действующей на провод.

      Давайте применим это правило левой руки к катушке провода в нашем двигателе.

      Мы начнем с рассмотрения левой стороны нашего мотка проволоки. Здесь ток направлен от нас. Магнитное поле направлено вправо. Применяя правило левой руки, мы указываем нашим первым пальцем вдоль направления поля, а вторым пальцем — вдоль текущего направления. Это показано на диаграмме ниже.

      Мы обнаруживаем, что наш большой палец направлен вниз. Это говорит нам о том, что сила, действующая на левую сторону катушки, направлена ​​вниз.

      Мы можем применить тот же процесс к правой стороне катушки. В этом случае направление поля по-прежнему правое, но ток теперь направлен на нас. Можно легко проверить, используя правило левой руки (и полезно попробовать это сделать), что сила на этой правой стороне катушки действует вертикально вверх.

      Таким образом, силы, действующие на эти две стороны катушки, показаны на диаграмме ниже. На этой диаграмме мы показали вид сверху вниз слева, в котором текущий
      указано направление. Справа мы показали вид сбоку, на котором указаны силы. На этой диаграмме сбоку мы также указали текущий
      направление с помощью символов ⊗ (в экран) и ⊙ (вне экрана).

      Здесь стоит повторить, что на две другие стороны катушки сила не действует. Причина этого в том, что ток в этих сторонах
      течет либо параллельно, либо антипараллельно направлению магнитного поля.

      Давайте рассмотрим пример, который поможет вам познакомиться с двигателями постоянного тока и попрактиковаться в использовании правила левой руки.

      Пример 1. Определение направления тока в обмотке двигателя постоянного тока

      На схеме показан двигатель постоянного тока. Показанные розовые стрелки представляют силы, действующие на катушку. Какой из терминалов
      𝑎 или 𝑏 это плюс двигателя?

      Ответ

      Вопрос заключается в том, чтобы найти, какой из двух терминалов, помеченных 𝑎 и 𝑏, является положительным. Чтобы сделать это,
      нам нужно определить направление тока, так как мы знаем, что обычный ток направлен от положительного к отрицательному.

      Нам задано направление силы на левой и правой сторонах катушки. Мы также знаем, что магнитное поле направлено от северного полюса.
      к южному полюсу постоянного магнита; это слева направо.

      Теперь мы можем обратиться к нашему правилу левой руки. Будем рассматривать левую часть катушки. В этом случае мы знаем направление магнитного поля
      (вдоль которого мы указываем указательным или указательным пальцем) — вправо, а направление силы (вдоль которого мы указываем большим пальцем) — вверх.

      Мы обнаруживаем, что наш второй палец, указывающий текущее направление, указывает на нас. Это означает, что ток в левой части провода
      направлен к нам, за пределы экрана.

      Так как направление тока не может просто частично измениться в цепи, мы можем видеть, что ток должен следовать по этому пути в двигателе:

      Затем, поскольку ток направлен от положительного к отрицательному, мы видим, что ответ на вопрос в том, что положительная клемма 𝑏.

      В самом начале этого объяснения мы сказали, что катушка может вращаться (вместе с коммутатором). Теперь мы видели, что комбинация текущего
      в катушке, а магнитное поле от статора (магнитов вокруг катушки) приводит к возникновению сил, действующих на две стороны катушки.

      Оказывается, именно эта сила вызывает вращение катушки. Точнее, крутящий момент, возникающий от этой силы, вызывает вращение.

      Крутящий момент, возникающий в результате действия силы, определяется как произведение величины этой силы и расстояния по перпендикуляру к линии действия силы
      от оси вращения. Другими словами, всякий раз, когда у нас есть сила, действующая на объект на некотором перпендикулярном расстоянии от оси, вокруг которой
      объект может вращаться, будет крутящий момент.

      На схеме ниже мы можем видеть ось, вокруг которой катушка способна вращаться, то есть ось вращения. Мы также можем видеть, что две силы не действуют
      вдоль этой оси, а на некотором расстоянии от нее.

      Расстояние сил от оси выделено на диаграмме двумя черными пунктирными стрелками. Поскольку силы не вдоль оси, они действительно будут
      в результате возникает крутящий момент на катушке.

      В этом случае левая сила действует вниз, а правая сила действует вверх. Итак, как и следовало ожидать, крутящий момент заставляет катушку (вместе с
      коммутатор) вращаться в направлении, показанном на схеме, то есть против часовой стрелки от того направления, в котором мы на него смотрим.

      До сих пор все наши анализы проводились, когда катушка находится в горизонтальной плоскости. Однако мы только что показали, что силы, действующие на катушку в этой точке, создают
      крутящий момент, который заставляет его вращаться. Это означает, что нам также необходимо учитывать, что происходит, когда катушка поворачивается на другие углы.

      Рассмотрим случай, когда катушка повернулась на некоторую величину меньше 90∘ относительно начальной
      горизонтальное положение мы рассмотрели. Это показано на диаграмме ниже.

      Из диаграммы видно, что коммутатор вращался вместе с катушкой, но каждая из двух половин коммутатора все еще находится в электрическом состоянии.
      контакт одной и той же кистью. Для ясности мы обозначили половины коммутатора 1 и 2. Тогда мы можем сказать, что в этот момент половина коммутатора 1 все еще находится в контакте.
      с положительной клеммой, а половина коммутатора 2 все еще находится в контакте с отрицательной клеммой.

      Это означает, что электрический заряд по-прежнему движется по цепи так же, как и раньше, когда катушка была горизонтальной. ток имеет такое же направление
      в левой и правой частях катушки, как это было раньше.

      Поскольку направления тока остались прежними и направление магнитного поля также не изменилось, это означает, что силы, действующие с каждой стороны катушки
      находятся в том же направлении, что и прежде. То есть сила с левой стороны действует вниз, а сила с правой стороны действует вверх.

      Как и прежде, эти силы не действуют на линию, проходящую через центр вращения катушки. Это означает, что они действуют для создания крутящего момента. Однако мы можем видеть из
      на диаграмме выше видно, что перпендикулярное расстояние этих сил от оси вращения меньше, чем когда катушка была горизонтальной. Поскольку эти силы действуют
      ближе к оси вращения, чем они были ранее, величина создаваемого ими крутящего момента уменьшилась.

      Когда катушка отклоняется от горизонтального положения и приближается к вертикальному положению на 90∘,
      величина крутящего момента на этой катушке становится все меньше и меньше по мере уменьшения расстояния сил от оси вращения.

      Теперь рассмотрим, что происходит при вертикальном положении катушки, показанном на диаграмме ниже.

      Из схемы видно, что любые силы, действующие на стороны катушки в этом положении, будут действовать вдоль оси вращения. Следовательно, крутящий момент не будет
      производимые этими силами. Другими словами, когда катушка ориентирована вертикально, на нее не действует чистый крутящий момент. Единственное, что заставляет катушку вращаться
      в этот момент он имеет некоторую инерцию вращения; поскольку катушка уже двигалась против часовой стрелки, она будет продолжать это делать, если не будет сопротивления.

      На этой диаграмме важно отметить еще кое-что: положение коммутатора. До этого момента половина коммутатора с номером 1
      всегда находился в электрическом контакте со щеткой, подключенной к плюсовой клемме. Точно так же половина коллектора 2 всегда находилась в контакте со щеткой.
      подключен к минусовой клемме. Это вертикальное положение катушки представляет собой точку переключения. Когда катушка вращается дальше этой точки, половина коммутатора 1 будет
      соприкасается с отрицательной клеммой, а половина коммутатора 2 будет соприкасаться с положительной клеммой.

      Рассмотрим, что происходит с током в катушке после поворота вокруг вертикали. Заряды теперь текут от положительной клеммы к половине коммутатора 2. Они проходят через катушку, пока не достигают половины коммутатора 1. Затем они проходят через правую щетку к отрицательной клемме. Это показано в правой половине
      диаграммы ниже.

      В левой половине диаграммы показана катушка до того, как она повернется за вертикаль. Для наглядности мы обозначили стороны катушки 1 и 2 в соответствии с
      половина коммутатора, к которой подключен каждый.

      Мы видим, что когда катушка проходит вертикальную ориентацию, направление тока в самой катушке меняется. Прежде чем пройти через вертикаль,
      ток со стороны 1 был направлен от нас (в экран), а ток со стороны 2 был направлен к нам (за пределы экрана). Теперь, после прохождения
      по вертикали ток со стороны 1 направлен к нам, а ток со стороны 2 направлен от нас.

      Однако направление тока в схеме вне катушки остается неизменным. Ток по-прежнему направлен от плюсовой клеммы к левой щетке.
      и от правой щетки к минусовой клемме. Именно добавление коммутатора вызывает изменение направления тока в катушке.

      Мы видели, что происходит с током в катушке, когда она вращается вокруг вертикали. Теперь давайте также рассмотрим силы, действующие с каждой стороны катушки. Эти силы показаны на диаграмме ниже.

      Мы снова показали катушку в двух положениях: до и после поворота катушки за пределы вертикальной ориентации. Помимо указания направления тока
      по сторонам катушки в каждом случае мы обозначили силы, действующие с каждой стороны катушки. Направление этих сил можно проверить, применив
      правило левой руки.

      Перед прохождением вертикального положения (левая диаграмма) сила на стороне 1 была направлена ​​вниз, а сила на стороне 2 была направлена ​​вверх. Ранее,
      мы описали это как силу на левой стороне катушки, направленную вниз, и силу на правой стороне, направленную вверх.

      Глядя на правую диаграмму, мы видим, что после того, как катушка вращается вокруг вертикали, сила на левой стороне катушки по-прежнему направлена ​​вниз
      а сила с правой стороны по-прежнему направлена ​​вверх. Однако сторона 1 теперь является правой стороной, а сторона 2 теперь левой стороной. Потому что направление
      ток через катушку изменился, изменилось и направление сил с каждой стороны катушки.

      Давайте рассмотрим пример.

      Пример 2. Определение положения максимального и минимального крутящего момента в двигателе постоянного тока

      На схеме показан двигатель постоянного тока. Катушка двигателя показана одновременно под четырьмя разными углами к магнитному полю двигателя.

      1. В каком положении крутящий момент катушки двигателя максимален?
      2. В каком положении крутящий момент на обмотке двигателя минимальный?

      Ответ

      Часть 1

      На схеме представлены четыре различных угла катушки в двигателе постоянного тока. В положении I катушка расположена горизонтально. В положениях II и IV катушка находится в положении
      под углом 45∘ к этой горизонтали. В положении III катушка расположена вертикально.

      Мы можем вспомнить, что на две стороны катушки, которые перпендикулярны направлению магнитного поля, действует сила. Это стороны, которые
      направленные к нам или от нас (левая и правая стороны, когда катушка ориентирована горизонтально).

      Крутящий момент на катушке зависит от величины самой силы, а также от расстояния линии действия этой силы от оси вращения.

      Величина силы рассчитывается по формуле 𝐹=𝐵𝐼𝐿, где 𝐵 — напряженность магнитного поля, 𝐼 — сила тока,
      𝐿 — длина провода. Поскольку ни одна из этих величин не меняется при вращении катушки, величина силы не изменится. Следовательно, любые изменения крутящего момента будут результатом изменения расстояния линии действия силы от оси вращения катушки.

      Когда катушка ориентирована горизонтально, это расстояние максимально. Следовательно, крутящий момент на катушке наибольший, когда катушка ориентирована горизонтально,
      как в положении I.

      Часть 2

      Крутящий момент будет минимальным для минимального расстояния между линией действия силы и осью вращения катушки.

      Это происходит, когда катушка находится в вертикальном положении. В этом случае расстояние от оси до любой из двух сторон катушки, перпендикулярных магнитному
      направление поля равно нулю. Таким образом, когда катушка ориентирована вертикально, крутящий момент не только минимален, но фактически равен нулю.

      Таким образом, наш ответ заключается в том, что крутящий момент на катушке минимален, когда катушка ориентирована вертикально, как в положении III.

      Каждый раз, когда катушка поворачивается в вертикальном направлении, направление тока в катушке меняется. Это означает, что направление сил
      на сторонах A и B также будут меняться каждый раз.

      Результатом этого является то, что сила на стороне катушки слева от вертикали (будь то сторона 1 или 2) всегда будет направлена ​​вниз, а сила
      на правой стороне катушки всегда будет направлен вверх.

      Это означает, что крутящий момент от этих сил всегда будет вращать катушку в одном и том же направлении. Таким образом, катушка будет продолжать вращаться в том же направлении.

      Давайте рассмотрим еще один пример.

      Пример 3: Определение направления вращения катушки в двигателе постоянного тока

      Какая из диаграмм, изображающих двигатель постоянного тока, правильно представляет направление вращения двигателя? Катушка двигателя одновременно
      показан под четырьмя разными углами к магнитному полю двигателя.

      Ответ

      Этот вопрос спрашивает нас, какая из двух диаграмм показывает правильное направление вращения двигателя. Чтобы ответить на этот вопрос, давайте напомним себе
      что вызывает это вращение.

      Мы можем вспомнить, что вращение вызывается крутящим моментом на катушке и что этот крутящий момент является результатом силы, действующей на токонесущие провода этой катушки.

      Рассмотрим упрощенную схему, показывающую только один угол катушки. Мы нарисовали это ниже. Мы можем вспомнить, что из-за того, как коммутатор связывает
      щетки к катушке, если мы знаем, в каком направлении крутящий момент заставляет катушку вращаться на какой-то один угол, то мы знаем, что действие этого крутящего момента останется
      одинаково для всех углов катушки. Другими словами, катушка будет продолжать вращаться в том же направлении.

      Напомним, что направление силы можно найти по направлению тока и направлению магнитного поля по правилу левой руки.

      На схеме мы указали направление магнитного поля. Это направление вправо, так как магнитное поле между двумя полюсами магнита
      идет от северного полюса к южному полюсу.

      Поскольку обычный ток направлен от плюса к минусу, мы знаем, что ток в катушке будет направлен так, как показано на схеме.

      Рассмотрим левую сторону катушки. Мы видим, что ток направлен от нас, тогда как мы знаем, что магнитное поле направлено
      вправо.

      Используя правило левой руки, мы указываем нашим первым пальцем вдоль направления поля (вправо), а нашим вторым пальцем вдоль текущего направления
      (от нас). Это показано на диаграмме ниже.

      Как показано на диаграмме, большой палец направлен вниз. Следовательно, сила на левой стороне катушки действует вниз.

      Если мы применим то же правило левой руки к правой стороне катушки, мы обнаружим, что сила на этой стороне действует вверх, так как в этом случае ток
      направлен к нам.

      Силы показаны на диаграмме ниже.

      Поскольку силы толкают левую сторону катушки вниз, а правую сторону вверх, мы видим, что они придадут нам крутящий момент
      что заставляет катушку вращаться против часовой стрелки.

      Сравнивая диаграммы, данные нам в вопросе, мы видим, что правильное направление вращения, против часовой стрелки, показано на диаграмме B.

      Теперь мы рассмотрели все основы работы двигателя постоянного тока. Остается только одна часть: как эта вращающаяся катушка на самом деле работает как двигатель?

      Ответ состоит в том, что стержень расположен вдоль оси вращения катушки. Когда катушка вращается, этот стержень также вращается вместе с ней.

      Этот вращающийся стержень способен приводить во вращение шестерню или другой механический объект, и этот вращающийся объект может выполнять механическую работу. Таким образом, двигатель постоянного тока
      использует электрическую энергию цепи для производства механической работы.