Как работает бензиновый двигатель

Бензиновые двигатели используют в автомобилях, маленьких летательных аппаратах, мопедах, мотоциклах, скутерах, катерах и лодках. Такое широкое распространение объясняется их дешевизной, простотой обслуживания, надёжностью и доступностью. 

Мощность бензинового двигателя составляет от 1 лошадиной силы для газонокосилок до 1 500 лошадиных сил для спортивных самолётов. Дальнейшее увеличение максимального числа нецелесообразно: возрастают изнашивание двигателя, его детонационные свойства и расход бензина. Особо мощные двигатели на бензине существуют, однако они имеют очень сложную в изготовлении и использовании структуру из цилиндров со звёздообразной компоновкой.

Рассмотрим работу четырехтактного бензинового двигателя. Каждый цилиндр оснащён впускным и выпускным клапанами, а внутри него с небольшим зазором движется поршень. Для перекрытия зазора в верхней части поршня устанавливаются компрессионные кольца, прижатые к поверхности цилиндра за счёт своей упругости.

 

Такт 1. Впуск

Первый такт работы двигателя называется впуск. Впускной клапан открывается, поршень движется вниз и создаёт в цилиндре пониженное давление, которое впускает воздух. Специальный инжектор впрыскивает расчётное количество топлива: это количество регулирует водитель через положение педали акселератора. Чем больше в цилиндр подаётся топлива, тем быстрее движется автомобиль: газы сгорания с повышенными скоростью и мощностью толкают поршень, возрастает мощность двигателя и скорость вращения коленчатого вала (обороты). После того, как поршень достигает нижней точки вращения, начинается второй такт – сжатие.

 

Такт 2. Сжатие

При сжатии выпускной клапан закрывается, и поршень сжимает топливно-воздушную смесь, двигаясь вверх. От сжатия смесь нагревается и бензин испаряется. Когда поршень достигает верхней точки движения (верхней метровой точки), в камере сгорания, между электродами свечи зажигания, создаётся высокое напряжение и мощная искра. Топливно-воздушная смесь воспламеняется, начиная третий такт работы бензинового двигателя – рабочий ход.

 

Такт 3. Рабочий ход

При такте рабочего хода нарастающая температура увеличивает давление над поршнем, двигая его вниз и передавая крутящий момент через шатун на коленчатый вал двигателя. Когда поршень достигает нижней метровой точки, начинается заключительный такт – выпуск.

 

Такт 4. Выпуск

В такте выпуска открывается выпускной клапан, поршень движется вверх, выдавливая отработавшие газы сгорания в выпускной коллектор. Достигая верхней точки вращения, поршень возвращается к первому такту работы двигателя – впуску – и цикл повторяется.

Бензиновые двигатели – классический вид тепловых двигателей. Их КПД определяется зависимостью давления от объёма (цикла Карно). Желание увеличить КПД ведёт к увеличению степени сжатия топливно-воздушной смеси, что приводит к ужесточению требований к детонационной стойкости бензинов.

Для увеличения КПД двигателей изобретены четырёхклапанные системы впуска и выпуска газов, маловязкие энергосберегающие масла, поршни из композитных материалов с малым коэффицентом теплового расширения. Главные достижения – это компьютеризированные системы управления впрыском топлива в цилиндры. Именно развитие таких систем и рост качества бензинов позволяет ужесточать требования к экологическим характеристикам бензиновых двигателей.

 






Популярные разделы

Популярные статьи

Поставщики бензинов и дизельного топлива

Классификация ДТ в соответствии с техническим регламентом

Все для АЗС и нефтебаз

Какие контрольно-измерительные приборы используются на АЗС?

Новости

В чем разница между стандартами ГОСТ, ТУ и СТО для топлив?

Реклама на портале

Таблица температурных поправок

Подписаться на рассылку

Чтобы не пропускать свежие новости из мира нефтегазовой отрасли, подпишитесь на рассылку от информационного портала «НефтьРегион»

Подписаться на рассылку

Как работает двигатель внутреннего сгорания

Вы когда-нибудь открывали капот вашего автомобиля? Для непосвященного человека двигатель выглядит как нагромождение металла, труб и проводов.

В этой статье мы обсудим основную идею двигателя, а затем рассмотрим подробнее, как все его части работают вместе и что в нем может пойти не так.

Цель бензинового автомобильного двигателя заключается в преобразовании бензина в движение, чтобы ваш автомобиль смог двигаться. В настоящее время самый простой способ создания движения из бензина это сжигать бензин внутри двигателя. Таким образом, такой автомобильный двигатель называется двигатель внутреннего сгорания – в нем сгорание происходит внутри.

Обратим внимание на два аспекта:

1. Существуют различные виды двигателей внутреннего сгорания. Дизельные двигатели — это одна из их форм, а газотурбинные двигатели — это другая. Существуют также HEMI двигатели, роторные двигатели, четырехтактные и двухтактные двигатели. Каждый тип имеет свои достоинства и недостатки.

2. Так же существуют двигатели внешнего  сгорания. Паровой двигатель в старинных поездах и пароходах, — это лучший пример двигатель внешнего сгорания. Топливо (уголь, древесина, нефть, все, что угодно), паровой двигатель сжигает за пределами двигателя для создания пара, а пар создает движение внутри двигателя. Двигатель внутреннего сгорания является гораздо более эффективным (потребляет меньше топлива на километр пробега), чем внешнего сгорания, плюс двигатель внутреннего сгорания значительно меньше, чем эквивалентный по мощности двигатель внешнего сгорания. Это объясняет, почему мы не видим никаких современных автомобилей, передвигающихся с помощью паровых двигателей.

Давайте рассмотрим процесс внутреннего сгорания более подробно.

 

Внутреннее сгорание

Принцип, лежащий в основе любого поршневого двигателя внутреннего сгорания: Если вы поместите небольшое количество высокоэнергетического топлива (например, бензин) в маленьком, замкнутом пространстве и воспламените его, невероятное количество энергии выделится в виде расширяющегося газа. Вы можете использовать эту энергию, чтобы продвинуть поршень вперед внутри цилиндра. В этом случае энергия взрыва бензина преобразуется в движение поршня. Вы также можете создать цикл, который позволит вам осуществлять такие взрывы сотни раз в минуту. И если вы сможете использовать эту энергию полезным образом, то у вас получится ядро двигателя автомобиля!

Почти все автомобили в настоящее время используют четырехтактный цикл сгорания для преобразования бензина в движение. Четырехтактный цикл также известен как Цикл Отто, в честь Николауса Отто.

1. Такт впуска

2. Такт сжатия

3. Такт рабочего хода

4. Такт выхлопа

Одним из основных устройств такого двигателя является поршень.  Поршень соединен с коленчатым валом с помощью шатуна. Когда  коленчатый вал вращается, он выполняет очередной такт работы двигателя. Вот что происходит, когда двигатель проходит свой цикл:

1. Поршень находится вверху, впускной клапан открывается, и поршень движется вниз, давая двигателю принять в цилиндр смесь из воздуха и бензина. Это такт впуска. Только мельчайшие капли бензина должны быть в смеси с воздухом. Иначе поджечь эту смесь не удастся или горение будет неэффективным.

2. Затем поршень перемещается обратно вверх, чтобы сжать смесь топлива и воздуха. Сжатие смеси позволит сделать более мощный взрыв.

3. Когда поршень достигает вершины своего хода, свеча зажигания дает искру, чтобы зажечь смесь. Смесь в цилиндре взрывается, двигая поршень вниз.

4. После того, как поршень достигнет нижней части цилиндра, открывается выпускной клапан и поршень снова поднимается вверх, очищая цилиндр от выхлопных газов, которые затем выходят из выхлопной трубы.

И теперь двигатель снова готов для следующего цикла потребления заряда из воздуха и бензина.

Обратите внимание, что двигатель внутреннего сгорания создает движение вращательное, в то время как движение, произведенное поршнем — линейное. В двигателе линейное движение поршня преобразуется во вращательное движение коленчатого вала. Вращательное движение двигателя — это как раз то, что нам и нужно, потому что мы планируем с его помощью вращать колеса автомобиля.

Как работает бензиновый двигатель? Фазы и ключевые компоненты

Каждый день мы берем машину, чтобы ездить на работу, выполнять поручения или просто наслаждаться вождением, но мы можем не знать как работает бензиновый двигатель и что обеспечивает его движение, независимо от вашего тип.

Четырехтактный бензиновый двигатель, как следует из его названия, имеет четыре фазы работы . Это: впуск, сжатие, мощность и выпуск. Каждый из них соответствует ходу поршня или, что то же самое, половине оборота коленчатого вала и осуществляется внутри блока цилиндров. 9

  • 1.2 Фаза сжатия: воздух и топливо сжимаются камера сгорания
  • 2 Дополнительные вопросы, чтобы узнать, как работает бензиновый двигатель
    • 2.1 коленчатый вал
    • 2.2 Распределение двигателя
  • Рабочие фазы

    Фаза впуска: подача воздуха и топлива


    В начале фазы впуска поршень находится в верхней части цилиндра, называемой ВМТ (Верхней мертвой точкой). В это время впускные клапаны открыты и поршень опускается в нижнюю часть цилиндра, НМТ (нижняя мертвая точка). При опускании поршня внутри цилиндра создается разрежение, которое всасывает топливовоздушную смесь . То есть «всасывает воздух» как из шприца.

    При PMI впускные клапаны закрываются и топливно-воздушная смесь остается внутри цилиндра. Между прочим, это смесь этих двух компонентов, потому что топливо не сгорело бы, если бы в нем не было кислорода в воздухе . В научных терминах это называется топливом, бензином и окислителем, кислородом, который входит с ним.

    Фаза сжатия: воздух и топливо сжимаются

    Подписывайтесь на наш Youtube канал

    Вторая фаза, сжатие поршень снова поднимается в ВМТ, сжимая всю смесь внутри цилиндра, что также вызывает его нагрев. Давление внутри цилиндра может достигать около 15 бар при температуре близкой к 450º C, что позволяет добиться более однородной смеси. На этом этапе коленчатый вал повернулся еще на пол-оборота.

    Интересен тот факт, что чем больше смесь удастся сжать, тем больше будет использован взрыв, который произойдет сразу. это называется степень сжатия двигателя , которая обычно измеряется в пропорциях как 10 к 1 , 11 к 1 , 12 к 1 , 14 к 1 …. Что означает не что иное, как объем, который микс занимает до сжатия, и объем, который он занимает в конце фазы сжатия. Мы рекомендуем статью степень сжатия двигателя, чтобы лучше понять этот фактор.

    Однако с следует соблюдать осторожность, чтобы не вызвать неконтролируемое самовозгорание , потому что это может повредить двигатель. Что происходит при слишком сильном сжатии смеси, при слишком высокой температуре в камерах сгорания или при сочетании обоих обстоятельств. Если хотите понять последнее, посмотрите пост о самовозгорании, детонации и стуке шатуна.

    Фаза взрыва: начинаем работать…


    В этой фазе поршень находится в ВМТ, вся смесь сжата. Именно здесь выскакивает искра из свечи зажигания (бензиновые двигатели), воспламеняющая смесь воздуха и топлива. В результате происходит взрыв. быстро расширяет сгоревшие газы и выталкивает поршень до упора. Это рабочая фаза двигателя, так как поршень при взрыве получает большой импульс, чтобы передать его коленчатому валу. Во время этой фазы коленчатый вал поворачивается еще на пол-оборота.

    Следует отметить очень важную проблему в двигателях внутреннего сгорания. Это описание фаз упрощено , чтобы понять, как работает бензиновый двигатель, но в фазе взрыва мы на мгновение пропустим это упрощение. Как мы уже говорили вам, взрыв быстро расширяется, толкая поршень.

    Однако эта скорость не столько для скорости, с которой иногда движется двигатель. Следовательно, существует опережение зажигания , которое означает начало взрыва, пока смесь все еще сжимается. Таким образом, он сгорает раньше, и наиболее выгодная часть взрыва совпадает с опусканием поршня. Другими словами, фаза взрыва и фаза сжатия «на мгновение сосуществуют» в пользу использования топлива. Если вы хотите получить более подробное объяснение этого процесса, мы рекомендуем статью Что такое опережение зажигания?

    Фаза выхлопа: газы покидают камеру сгорания

    Наконец мы подходим к этапу Побег . В этом случае поршень находится в положении PMI, а выпускные клапаны открыты, из которых выхлопных газов быстро удаляются . Это происходит потому, что поршень возвращается в ВМТ, выталкивая их из внутренней части цилиндра. Когда поршень находится в ВМТ, клапаны закрываются. Во время фазы выпуска коленчатый вал поворачивается еще на пол-оборота, завершая 4 фазы работы бензинового двигателя.

    Как видите, поршень снова в ВМТ, готов снова начать фазу впуска . Таким образом, что двигатель будет повторять весь этот процесс до тех пор, пока мы держим его включенным.

    Дополнительные вопросы, чтобы узнать, как работает бензиновый двигатель

    коленчатый вал

    Он уже несколько раз упоминался в фазах четырехтактного двигателя, и вы могли увидеть его в действии на видео в начале . Его функция аналогична функции преобразования линейного движения поршня в круг , который мы будем использовать для движения автомобиля. Лучшей аналогией является велосипедист, который крутит педали, чтобы двигаться вместе с велосипедом. Если внимательно посмотреть на движение двигателя, то вот что делает каждый из поршней при повороте коленчатого вала: « педаль ».

    Если вы хотите углубиться в эту часть двигателя, рекомендуем статьи коленвал эксплуатация y Поршень: что это такое, из каких частей состоит, цена… Вы увидите, что работа двигателя проще, чем кажется.0007

    Статья по теме:

    Преимущества и недостатки двухтактного двигателя

    Распределение двигателя

    Как вы уже могли заметить, в двигателе элементов, требующих идеального согласования . Например: чтобы клапаны открывались, чтобы впустить смесь, когда поршень опускается (фаза впуска), или чтобы они закрывались, когда поршень поднимается (фаза сжатия). За эту координацию отвечает распределительная система двигателя, представляющая собой ряд элементов, соединяющих каждый компонент через колеса, ремни, распределительные валы и другие.

    В частности, основной частью системы распределения в наиболее распространенных сегодня двигателях является зубчатый ремень или цепь . Она отвечает за передачу оборота коленвала Распредвалы открывающие и закрывающие клапана. Так они делают это в нужное время, а не в другое. Дефект, который был бы фатальным для двигателя.

    Если вы не знакомы с этими компонентами, вы можете увидеть, как они выглядят и как работают в статьях: распредвал y ремень ГРМ. Кроме того, если вы хотите немного больше углубиться в тему, мы также рекомендуем статью о типах распределения в текущих двигателях. Это поможет вам лучше понять, как работает бензиновый двигатель. Не все двигатели одинаковы, даже если они управляются одними и теми же основными принципами работы.

    Изображения – Марко Бернардини, Мэтт

    Прикладная физика бензиновых двигателей, часть 1

    См. также: Прикладная физика бензиновых двигателей, часть 2

    практическое упражнение под названием «лаборатория трупов двигателей».[1] В отличие от биологов, мы собираем наши трупы вместе, потому что мы препарируем двигатели газонокосилок (рис. 1)! Этот опыт неизменно доставлял массу удовольствия. В дополнение к новым открытиям в физике, большинство студентов сообщают, что, выйдя из нее, они стали больше ценить свои автомобили и глубоко восхищаться проницательными умами, которые предвидели, как все эти системы, сделанные из неодушевленной материи, могут быть организованы, чтобы дать машине жизнь. своего собственного.

    За редкими исключениями, большинство учащихся приступают к этому упражнению, не имея ни малейшего представления о том, что происходит внутри автомобильного двигателя. (Те, у кого есть опыт работы с механикой, получают роли помощников преподавателя.) Большинство взаимодействий учащихся с автомобилем состоит в том, чтобы заправить бак бензином и направить машину на дорогу. Эта небрежность предполагает, что в нашем обществе мы воспринимаем наши машины как должное, довольствуясь тем, что не понимаем, как они работают, даже несмотря на то, что мы все больше зависим от них. Я уверен, что такое отсутствие любопытства совершенно чуждо студентам-физикам.

    В этой статье мы исследуем внутреннюю работу бензинового четырехтактного двигателя внутреннего сгорания, который приводит в действие большинство автомобилей, легких грузовиков, мотоциклов, легких самолетов и газонокосилок. Базовый дизайн датируется примерно 1890 годом; его долговечность указывает на его надежность. С тех пор четырехтактные бензиновые двигатели стали намного более эффективными и мощными, становясь все более сложными по мере того, как мы предъявляем к ним все более высокие, часто противоречивые требования. Но основная конструкция двигателя Ferrari V12 имеет много общего с двухцилиндровым двигателем 189.9 Фиат. Основные идеи, лежащие в основе двигателя, можно понять, изучив простейший из двигателей, одноцилиндровый двигатель газонокосилки с воздушным охлаждением и клапанами в блоке, который имеет зажигание от магнето, пусковой механизм и систему смазки разбрызгиванием. Вариации этого двигателя десятилетиями производились такими марками, как Briggs & Stratton, Jacobsen и Tecumseh. В силу своей простоты эти машины без излишеств предлагают всем двигателям уровень понимания, аналогичный по глубине тому, который предлагает атом водорода для всех атомов.[2]

    На примере мотора косилки в этой первой части серии, состоящей из двух частей, мы описываем базовую структуру четырехтактного бензинового двигателя, а также его смазку и охлаждение. Мы также определяем термодинамический верхний предел эффективности четырехтактного бензинового двигателя. Попутно отмечаем отличия одноцилиндрового двигателя косилки от более сложных четырехтактных двигателей.

    Часть 2, которая будет опубликована в следующем номере журнала, посвящена воздушной и топливной системам двигателя, а также системе зажигания с ее магнето, цепью RLC и свечей зажигания. За этими техническими примечаниями последуют наблюдения о наших отношениях с нашими автомобилями. Они включают в себя признание и уважение к этим чудесным машинам и одновременное осознание высокой цены, которую платит общество и окружающая среда, чтобы поддерживать их огромное количество. Мы закончим кратким обзором отношений между известными физиками и их моторизованными товарищами.

    Устройство двигателя и четырехтактный цикл

    Двигатель получает энергию путем передачи тепла от источника при одной или нескольких высоких температурах, преобразует часть подводимого тепла в работу и отдает оставшуюся энергию в виде тепла в окружающую среду при низких температура. [3] В бензиновом двигателе подвод тепла происходит за счет периодического взрывного горения порции испарившегося бензина. Энергия каждого взрыва толкает поршень в цилиндр (названия деталей и процессов при первом упоминании выделены курсивом). Вместо того, чтобы вылететь из цилиндра через гараж, линейное движение поршня преобразуется в угловой момент коленчатым валом. Чтобы увидеть коленчатый вал в действии, представьте, что вы едете на велосипеде; линейное движение ваших коленей вверх-вниз преобразуется во вращение педалями, которые смещены относительно оси вращения звездочки.

    Основной корпус двигателя представляет собой экзоскелет, называемый блоком, удивительно сложное литье, поддерживающее вращающиеся или скользящие детали на критических поверхностях, обработанных с точностью до тысячной доли дюйма (рис. 2). Доминантой в блоке являются одно или несколько крупных отверстий, упомянутых выше цилиндров. Мотор косилки, который мы здесь разбираем, имеет один цилиндр. Поршень соединен с коленчатым валом шатуном (рис. 3; в аналогии с велосипедом шатуном служит голень). Верхний конец штока крепится внутри поршня поршневым штифтом, от которого шток качается туда-сюда, как маятник. Нижний конец шатуна имеет съемный колпачок, который плотно прилегает к шатунной шейке, смещенной части коленчатого вала. Поскольку массы поршня, шатуна и шатунной шейки лежат вне оси вращения коленчатого вала, в коленчатый вал врезаны противовесы, чтобы сбалансировать весь узел относительно этой оси. Коленчатый вал удерживается на месте коренными подшипниками в блоке под цилиндром.

    В последующем обсуждении мы представляем себе цилиндр, ориентированный вертикально, и коленчатый вал, расположенный под цилиндром горизонтально. На многих косилках двигатель устанавливается с горизонтальным цилиндром и вертикальным коленчатым валом, чтобы лезвие вращалось горизонтально. Большинство автомобилей имеют четыре или более цилиндров с коленчатым валом, расположенным горизонтально. Цилиндры могут располагаться вертикально по прямой линии (например, Pontiac «прямой-8» 1954 года выпуска), они могут быть наклонены в два ряда, образуя букву V (например, Corvette «V8»), или они могут располагаться горизонтально или « плоский», чтобы понизить центр тяжести (например, Porsche 911 «Квартира-6»).

    Движение поршня от его нижней точки в цилиндре (нижней мертвой точки, или НМТ) до его высшей точки (верхней мертвой точки, или ВМТ) или в обратном направлении от ВМТ к НМТ, составляет один такт работы двигателя . Во время каждого такта коленчатый вал поворачивается на пол-оборота. Термин «ход» также относится к расстоянию между ВМТ и НМТ. Диаметр цилиндра называется отверстием. Объем, определяемый ходом и диаметром цилиндра, объем, вытесняемый верхней поверхностью поршня за один ход, является рабочим объемом этого цилиндра. Рабочий объем всех цилиндров двигателя является одним из показателей его производительности. Если у вас «Корвет 427», рабочий объем его восьми цилиндров равен 427 кубическим дюймам. Разработчики двигателей, использующие метрические единицы измерения, описывают рабочий объем в литрах или кубических сантиметрах.

    Энергетическая плотность бензина составляет около 45 мегаджоулей на килограмм.[4] Чем больше бензина поступает в двигатель за цикл его работы, тем большую мощность он может выдать. Среди двигателей одинаковой конструкции выходная мощность зависит от рабочего объема. Автомобили с бензиновым двигателем первого поколения, построенные в 1890-х годах, производили примерно столько же энергии, сколько двигатель нашей косилки, а машины, на которых они работали, работали примерно так же, как одна из сегодняшних небольших газонокосилок. Участники первой в мире автогонки 189 г.5, из Парижа в Бордо и обратно, включал 15 автомобилей с бензиновым двигателем (специализированных гоночных автомобилей еще не существовало), один электромобиль и шесть пароходов. Гонку выиграл Эмиль Левассор на своем Panhard-Levassor с двигателем Daimler объемом 1200 куб. См (73 куб. Дюйма) мощностью 3,5 лошадиных силы (1 л.с. = 745,7 Вт). Левассор проехал 723 мили практически без остановок со средней скоростью 14,9 миль в час. Мотор газонокосилки, предназначенный для мотокос, выдает около 3,75 л.с. при рабочем объеме около 12 куб. дюйм[6] Его столетняя конструкция все еще производится сегодня, потому что для его предполагаемого использования доминирующим достоинством является простота.

    Для увеличения мощности объем двигателя первого поколения был быстро увеличен. Первый Гран-при для специализированных гоночных автомобилей состоялся в Ле-Мане, Франция, в 1906 году. Двигатель победившего Renault имел рабочий объем 12,8 л (781 куб. Дюйм), развивал 105 л.с. и разгонял автомобиль до средней скорости 62,88. миль в час, что означает, что он ехал около 100 миль в час на прямых. Но революция в эффективности была не за горами, когда мощность на рабочий объем стала бы столь же важной, как и сам рабочий объем. Peugeot, выигравший 1912 Гран-при Франции с двигателем всего 7,6 литра, конкурируя с огромными 14-литровыми Fiat и 15-литровыми Lorraine-Dietrichs. Некоторые из конструктивных изменений, которые привели к более высокому соотношению мощности к рабочему объему, будут описаны ниже, поскольку мы исследуем простую конструкцию двигателя косилки, которая перекликается с автомобильными двигателями первого поколения.

    В верхней части цилиндра находится головка (рис. 4), с прокладкой головки, расположенной между блоком и головкой для обеспечения герметичности при затягивании болтов головки (примерно до 12 футо-фунтов). Пространство между поршнем в ВМТ и выемкой головки над цилиндром образует камеру сгорания. Подача искры на летучую смесь бензина и воздуха в камере сгорания толкает поршень вниз по цилиндру, чтобы раскрутить коленчатый вал благодаря шатуну. Как топливно-воздушная смесь попадает в цилиндр, как из него удаляются продукты сгорания и как подается искра в ответственный момент?

    Двигатель нашей косилки имеет два клапана, обеспечивающих проход в цилиндр, впускной клапан и выпускной клапан. Рассмотрим двигатель, работающий на скорости (частота вращения двигателя измеряется в об/мин, угловая скорость коленчатого вала — в оборотах в минуту). Начнем с момента, когда оба клапана закрыты и поршень мгновенно находится в ВМТ. Это состояние знаменует собой начало четырехтактного цикла работы двигателя: такты впуска, сжатия, рабочего хода и такта выпуска.

    (1) Такт впуска: при вращении коленчатого вала поршень движется вниз и открывается впускной клапан. Разница давлений внутри цилиндра и наружного воздуха выталкивает воздушно-топливную смесь в цилиндр, когда поршень опускается. Когда поршень достигает НМТ, впускной клапан закрывается.

    (2) Такт сжатия: поршень движется обратно вверх при закрытых обоих клапанах, сжимая топливно-воздушную смесь. Пусть V2 — объем газа внутри цилиндра, когда поршень находится в НМТ, а V1 — объем, при котором поршень находится в ВМТ. Степень сжатия V2/V1 предлагает еще один показатель производительности двигателя. Двигатели, предназначенные для работы в течение длительного времени, такие как двигатели косилок, должны работать с низкой нагрузкой и обычно иметь степень сжатия около 4 или 5; двигатели для соревнований могут иметь степень сжатия 10 или выше. Так как такт сжатия происходит быстро, во время такта во внешний мир отводится незначительное количество тепла («адиабатический» процесс), а температура топливовоздушной смеси повышается.

    (3) Рабочий такт: когда поршень достигает ВМТ в конце такта сжатия, зажигается свеча зажигания, воспламеняющая топливовоздушную смесь. Пламя стремительно проносится через камеру сгорания, повышая температуру и совершая работу, толкая поршень вниз в рабочем такте. Хотя воспламенение топлива высвобождает огромную внутреннюю энергию в цилиндр, незначительная энергия уходит в виде теплопроводности во время быстрого рабочего такта, поэтому этот такт также является адиабатическим.

    (4) Такт выпуска: когда поршень движется вверх от НМТ, открывается выпускной клапан, и поршень выталкивает выхлопные газы из цилиндра. Они вытекают через глушитель (с перегородками для гашения шума) в атмосферу. Двигатель обменивается теплом с окружающей средой во время тактов выпуска и впуска, выбрасывая горячие выхлопные газы и втягивая относительно холодные впускные газы. В конце такта выпуска поршень возвращается в ВМТ, оба клапана закрыты, и цилиндр готов к повторению четырехтактного цикла.

    Что открывает и закрывает клапаны и обеспечивает искру в нужный момент? Параллельно коленчатому валу движется распределительный вал, который имеет выступы или кулачки (рис. 5). Через пару зацепленных зубчатых колес, по одному на конце каждого вала, вращающийся коленчатый вал вращает распределительный вал. В нашем двигателе косилки шестерня коленчатого вала имеет 20 зубьев, а шестерня распределительного вала имеет 40 зубьев, вращая распределительный вал со скоростью, равной половине угловой скорости коленчатого вала. Перпендикулярно распределительному валу и на кулачках расположены толкатели клапанов, а сами клапаны стоят над толкателями. Когда распределительный вал вращается, кулачок поднимает толкатель и клапан, открывая проход в камеру сгорания. Когда кулачок выкатывается из-под толкателя, пружины клапана снова закрывают клапан (рис. 6). На распредвале нашего одноцилиндрового мотора с двумя клапанами кулачки ориентированы 90 градусов друг от друга, потому что впускной и выпускной клапаны открываются на соседних ходах. Один ход равен половине оборота коленчатого вала и, следовательно, четверти оборота распределительного вала. На обеих зубчатых шестернях есть метки, которые необходимо совместить, чтобы клапаны открывались в нужное время в течение цикла (рис. 7).

    В четырехтактном цикле одноцилиндровый двигатель обеспечивает один рабочий такт на каждые два оборота коленчатого вала.[8] С двумя цилиндрами рабочий ход происходит каждый оборот. Четыре цилиндра производят рабочий ход каждые пол-оборота. Восемь цилиндров обеспечивают один рабочий такт за четверть оборота и так далее. Увеличение числа цилиндров делает машину более сложной, но выигрыш в том, что мощность прикладывается более равномерно. Большинство автомобилей имеют четыре, шесть или восемь цилиндров; у некоторых их 10 (например, Dodge Viper), у некоторых 12 (например, у большинства Ferrari и Lamborghini, а также у Lincoln и Auburns 19-го поколения).30), а у некоторых 16 (например, Cadillac 1932 года, Marmon 1933 года и современный Bugatti Veyron).

    Прикрепленный к внешнему концу коленчатого вала на конце, противоположном зубчатому колесу, находим маховик (рис. 8). Наиболее важной задачей маховика в любом двигателе является создание большого момента инерции для максимально плавного вращения коленчатого вала с его шатунно-поршневым узлом между рабочими тактами. В двигателях косилок маховик также играет роль в системах охлаждения и зажигания, как будет описано ниже.

    Объемный КПД, отношение объема паров воздуха и топлива, поступающих в двигатель во время такта впуска, к рабочему объему цилиндра, предлагает еще один дескриптор характеристик двигателя. Говоря простым языком, это показатель того, насколько хорошо двигатель «дышит». Движущийся воздух обладает инерцией, и при турбулентности сила сопротивления воздуха пропорциональна квадрату скорости воздуха. Размер и расположение клапанов, а также гладкость внутренних поверхностей, через которые проходят газы, существенно влияют на работу двигателя. Двигатель нашего газонокосилки представляет собой конструкцию с «плоской» или «г-образной» головкой, названную так потому, что клапаны проходят через блок параллельно цилиндру, и, таким образом, камера сгорания должна располагаться не только над поршнем, но и над областью в головке к одной стороне цилиндра, где выскакивают клапаны (рис. 8). Через 19В 40-х годах большинство автомобильных двигателей имели конструкцию с плоской головкой. Примерно в 1950 году производители начали производить конструкции с верхним расположением клапанов (OHV). Перемещение клапанов над поршнем увеличивает эффективность потока и объемную эффективность, поскольку топливно-воздушная смесь поступает в камеру сгорания непосредственно над поршнем, а не сбоку. Теперь, когда клапаны нужно нажимать сверху вниз, а коленчатый вал и распределительные шестерни все еще соединены своими распределительными шестернями, длинные толкатели размещаются над толкателями клапанов и коромыслами, которые качаются вперед и назад на горизонтальном валу, как качели. , теперь сядьте на макушку. Кулачок поднимает толкатель, который поднимает одну сторону коромысла, а другая сторона коромысла давит на клапан, открывая его. Пружины под коромыслами закрывают клапан, когда кулачок выходит из-под толкателя и толкателя.

    Если бы толкатели и коромысла можно было убрать, а распределительный вал расположить на верхней стороне головки, механическая энергия, потребляемая двигателем, перемещающим его внутренние части, была бы значительно снижена. Это достигается в двигателях с верхним распределительным валом (OHC). (Логотип «DOHC», который можно увидеть на значках некоторых автомобилей, обозначает двойные верхние кулачки, один для группы впускных клапанов, а другой для выпускных клапанов.) Когда коленчатый вал и распределительный вал находятся слишком далеко друг от друга, чтобы быть соединенными синхронизирующими шестернями, коленчатый вал вращает распределительного вала ремнем ГРМ или цепью ГРМ. Ремни ГРМ изготовлены из синтетического каучука, армированного проволокой, и их необходимо менять через регулярные промежутки времени, обычно около 9 часов.0000 миль. При обрыве ремня ГРМ открытие клапанов больше не будет зависеть от положения поршня. Столкновение клапана с поршнем приводит к дорогому шуму!

    Для дальнейшего увеличения объемного КПД некоторые двигатели имеют четыре клапана на цилиндр, два впускных и два выпускных клапана. Добавление нагнетателя (или «нагнетателя») значительно увеличивает объемную эффективность. Нагнетатель представляет собой компрессор, приводимый в действие ремнем от шкива коленчатого вала, который нагнетает в двигатель за цикл больше воздуха, чем это было бы возможно только за счет атмосферного всасывания. Нагнетатели использовались на гоночных автомобилях Гран-при к началу 19 века.20 с. Турбокомпрессор использует поток выхлопных газов для привода небольшого компрессора с той же целью.

    Смазка и охлаждение

    Внутри нашего скромного двигателя косилки, работающего со скромными 800 об/мин, царит оживленная атмосфера. Поршень перемещается между ВМТ и НМТ 1600 раз в минуту; коленчатый и распределительный валы вращаются в своих подшипниках со скоростью 800 и 400 об / мин соответственно, вступая в зацепление друг с другом через жужжащие зацепленные шестерни; кулачки кулачка открывают клапаны, которые захлопываются пружинами; а пары бензина взрываются 200 раз в минуту. Некоторые спортивные мотоциклы разгоняются до 14 000 об/мин и более! Чтобы выдержать более нескольких секунд, это шоу должно иметь достаточную смазку, которая не дает металлическим поверхностям сплавляться вместе, когда они вращаются или скользят друг относительно друга. Избыточное тепло необходимо отводить для поддержания постоянной температуры.

    В двигателе нашей косилки масло (1 кварта 30 Вт) разбрызгивается на движущиеся части внутри картера с помощью маслоотражателя (рис. 7), шестерни, находящейся в зацеплении с распределительным валом и оснащенной небольшими лопастными колесами по периметру. Несмотря на то, что она примитивна, она обеспечивает достаточную смазку даже в гонках на картах, в которых двигатели испытывают гораздо большую нагрузку, чем при стрижке газонов. В более крупных двигателях масляный насос, приводимый в действие распределительным валом, подает масло непосредственно к подшипникам через каналы в блоке и головке. Масло не только обеспечивает смазку, предотвращающую слипание движущихся частей металла, но и помогает отводить тепло. Масло блокируется от протекания мимо поршня в камеру сгорания (где оно может засорить свечу и образовать сизый дым), а воздушно-топливная смесь не может продавливаться мимо поршня, чтобы разбавить масло в картере с помощью набора поршней. кольца, круги из пружинистого сплава (с небольшим зазором для установки и теплового расширения), которые ездят в канавках у верха поршня (рис. 2).

    Двигатель газонокосилки имеет воздушное охлаждение (рис. 2, 4). Головка и блок, выполненные из алюминия, эффективно проводящего тепло, имеют залитые ребра охлаждения, которые обеспечивают большую площадь поверхности для теплообмена с окружающим воздухом. Маховик на двигателе косилки выполняет функцию охлаждающего вентилятора. Окруженный кожухом из листового металла (рис. 1) с проволочной сеткой, позволяющей втягивать воздух внутрь, маховик имеет залитые в него лопасти, которые при вращении обеспечивают циркуляцию воздуха над ребрами охлаждения на блоке (рис. 9).). Пластмассовая лопасть, называемая регулятором (рис. 9), соединенная пружиной с дроссельной заслонкой, находится между периметром маховика и кожухом, где она поворачивается в ответ на изменения давления воздуха, возникающие при изменении частоты вращения двигателя из-за переменной нагрузки на двигатель. Простой регулятор помогает поддерживать постоянную скорость двигателя при заданной настройке дроссельной заслонки и предотвращает случайное увеличение оборотов двигателя оператором.

    Большинство автомобильных двигателей имеют водяное охлаждение; в блоке и головке залиты каналы, называемые водяными рубашками, по которым циркулирует охлаждающая жидкость. От двигателя охлаждающая жидкость поступает в радиатор, где проходит по длинным трубкам, окруженным охлаждающими ребрами, прежде чем вернуться в двигатель. В дополнение к движению автомобиля вперед, вентилятор, приводимый в действие либо ремнем вентилятора, либо поликлиновым ремнем, либо электродвигателем, помогает проталкивать воздух через радиатор. Охлаждающая жидкость проходит между двигателем и радиатором через верхний и нижний шланги радиатора и проталкивается водяным насосом, который обычно приводится в действие ремнем вентилятора или зубчатым ремнем. Охлаждающая жидкость обычно состоит на 50 % из дистиллированной воды и на 50 % из этиленгликоля; более низкая температура замерзания этой смеси по сравнению с чистой водой предотвращает растрескивание блоков в холодную погоду (поскольку вода при замерзании расширяется), а также смесь обеспечивает коррозионную стойкость.

    Термодинамика Эффективность

    В контексте двигателей «эффективность» означает отношение выполненной работы (что вы хотите) к подводимой тепловой энергии (сколько это стоит). Второй закон термодинамики говорит, что эффективность никогда не может достичь единицы, что поднимает вопрос о том, насколько большой она может быть, ограничиваясь только вторым законом. Паровые двигатели получают свою энергию от перегретого пара, впрыскиваемого при температуре TH в цилиндр. Они совершают работу и выбрасывают отработавший пар в окружающий воздух при температуре ТС. Цикл Карно был изобретен Сади Карно (179 г.6-1832) в 1824 году для создания идеализированной версии паровой машины. При этом достигается максимальная эффективность, в принципе достижимая двухтемпературным двигателем. В каждом цикле двигатель Карно изотермически получает энергию в виде тепла от горячего резервуара при абсолютной температуре TH, совершает работу и изотермически отдает тепло в холодный резервуар при температуре TC. Два изотермических теплообмена связаны адиабатическими процессами. Обычное упражнение по общей физике требует показать, что эффективность двигателя Карно равна 1 – TC/TH.

     

    Концептуальный цикл, называемый циклом Отто (ок. 1880 г.), выполняет те же теоретические функции для четырехтактного бензинового двигателя. Этот идеализированный цикл назван в честь Николауса Отто (1832-1891), который построил первые коммерчески успешные четырехтактные двигатели. Как и цикл Карно, цикл Отто термодинамически обратим (т. е. отклонения от равновесия пренебрежимо малы), а рабочим телом служит идеальный газ. Но шаги в цикле отличаются от шагов Карно. Давайте продумаем их и отобразим изменения их состояния на диаграмме давление-объем (рис. 10), начиная с рабочего хода, который мы разобьем на две части. Начнем с события, срабатывания свечи зажигания в точке а на PV-диаграмме, которое происходит при объеме V1 с поршнем в ВМТ. Это событие повышает температуру и давление с точки а до точки b на PV-диаграмме, в то время как объем остается равным V1. Остальная часть рабочего хода моделируется адиабатическим давлением поршня вниз до НМТ (от b до c) по мере увеличения объема газов от V1 до V2. Затем такт выпуска выбрасывает горячие выхлопные газы, когда поршень движется от НМТ к ВМТ, а такт впуска вводит более холодную топливно-воздушную смесь, когда поршень возвращается в НМТ. В пространстве PV чистый эффект тактов выпуска и впуска заключается в падении температуры и давления при постоянном объеме V2, переходя от цикла с к d. Такт сжатия адиабатически уменьшает объем от V2 до V1, повышая температуру и давление и возвращая представление цикла на диаграмме PV из d обратно в точку a.

    Эффективность этого цикла, как вы могли показать на вводном курсе термодинамики, равна 1 – (V2/V1)1−γ. V2/V1 — степень сжатия, а γ — отношение удельной теплоемкости при постоянном давлении к теплоемкости при постоянном объеме. Для воздуха γ ≈ 1,4. Двигатели косилок имеют степень сжатия около 5, что соответствует теоретическому верхнему пределу эффективности 0,47. Напротив, двигатель для соревнований со степенью сжатия 15 имеет верхний предел эффективности 0,66. Реальный двигатель менее эффективен, чем его идеальный верхний предел, поскольку в нем присутствуют не только диссипативные воздействия, такие как трение, но и теплообмены, выходящие за рамки требований второго закона, потери работы при перемещении его внутренних масс и т. д., не говоря уже о качении. и сопротивление воздуха, работающее против движения машины. Как правило, автомобиль работает хорошо, если четверть выходной мощности, измеренной на маховике, преобразуется в кинетическую энергию всего центра масс автомобиля.[9]]

    Теперь, когда мы вступаем в сезон кошения, проявите уважение к двигателю газонокосилки, побаловав его заменой масла и промытым или новым воздушным фильтром, очистив охлаждающие ребра от грязи и взаимодействуя с вашей машиной с увлечением!

    Во второй части мы обсудим, как топливо смешивается с воздухом перед сгоранием и как в эту смесь подается искра в решающий момент между тактом сжатия и рабочим тактом. Эта статья также будет включать несколько заметок об обслуживании, и мы увидим некоторых известных исторических физиков, взаимодействующих со своими автомобилями и мотоциклами. //

    Благодарность

    Большое спасибо Девину Пауэллу за внимательное редактирование этой статьи.

    Ссылки и примечания

    [1] Лаборатория трупов двигателей с фотографиями студентов, работающих над двигателями, описана в «Техническое обслуживание мотоциклов и оценка физики», Radiations (осень 2007 г.), стр. 5-11. Веб-сайт с интерактивным моделированием всех видов двигателей можно найти по адресу http://www.animatedengines.com/index.html.
    [2] Тот факт, что мы вообще можем понять атомы благодаря существованию простейшего из них, водорода, элегантно изложен Джоном Ригденом в книге «Водород, основной элемент» (издательство Гарвардского университета, Кембридж, Массачусетс, 2002).
    [3] Выработка работы обязательно должна быть меньше подводимой теплоты, что является утверждением второго закона термодинамики. См. «Второй закон термодинамики и несохранение энтропии», Информационный бюллетень SPS (июнь 1998 г.), стр. 9–13.
    [4] Гленн Элерт, изд., Справочник по физике, http://hypertextbook.com/facts/2003/ArthurGolnik.shtml.
    [5] Брэд Кинг, All Color Book of Racing Cars (Crescent Books, New York, NY, 1972), стр. 5-7.
    [6] Объем одноцилиндровых двигателей Brigg & Stratton варьируется от 5 до 32 кубических дюймов; эта и другие спецификации двигателя косилки из книги Пола Демпси, «Как отремонтировать двигатели Briggs & Stratton» (Tab Books, Blue Summit, PA, 19).78), с. 9.
    [7] Чтобы двигаться быстрее, рабочий объем ранних гоночных автомобилей становился все больше. Fiat S79 1910 года имел, возможно, самый большой 4-цилиндровый двигатель из когда-либо существовавших: 28,3 литра от дирижабля и развил скорость 132,37 миль в час в 1913 году. Кинг, исх. 5, стр. 5-7, 22.
    [8] В двухтактных двигателях поршень используется в качестве клапана с отверстиями или портами, выточенными в боковых сторонах цилиндра, впуск и выпуск на противоположных сторонах.