Содержание

Как работает ядерный двигатель

  • Технологии

11 декабря 2018 г. | Автор: Александр Ким

Как работает ядерный двигатель

Ракетные двигатели на жидком топливе дали человеку возможность выйти в космос — на околоземные орбиты. Однако подобные ракеты сжигают 99% топлива за первые несколько минут полёта. Остатка топлива может не хватить для путешествия на другие планеты, да и скорость будет настолько малой, что вояж займёт десятки или сотни лет. Решить проблему могут ядерные двигатели. Как? Будем разбираться вместе.

Эта статья была опубликована в журнале OYLA №4(20). Оформить подписку на печатную и онлайн-версию можно здесь.


Принцип работы реактивного двигателя очень прост: он переводит топливо в кинетическую энергию струи (закон сохранения энергии), за счёт направления этой струи ракета движется в пространстве (закон сохранения импульса). Важно понимать, что мы не можем разогнать ракету или самолёт до скорости большей, чем скорость истечения топлива — раскалённого газа, выбрасываемого назад.

Космический аппарат New Horizons


Что же отличает эффективный двигатель от неудачного или устаревшего аналога? Прежде всего то, сколько топлива потребуется двигателю, чтобы разогнать ракету до нужной скорости. Этот важнейший параметр ракетного двигателя называется удельный импульс, который определяется как отношение общего импульса к расходу топлива: чем больше этот показатель, тем эффективнее ракетный двигатель. Если ракета практически целиком состоит из топлива (это означает, что в ней нет места для полезного груза, предельный случай), удельный импульс можно считать равным скорости истечения топлива (рабочего тела) из ракетного сопла. Запуск ракеты — крайне дорогостоящее мероприятие, учитывается каждый грамм не только полезного груза, но и топлива, которое тоже весит и занимает место. Поэтому инженеры подбирают всё более и более активное горючее, единица которой давала бы максимальную отдачу, увеличивая удельный импульс.


Подавляющее большинство ракет в истории и современности было оборудовано двигателями, использующими химическую реакцию горения (окисления) топлива.


Они позволили достичь Луны, Венеры, Марса и даже планет дальнего пояса — Юпитера, Сатурна и Нептуна. Правда, космические экспедиции заняли месяцы и годы (автоматические станции Pioneer, Voyager, New Horizons и др.). Необходимо отметить, что все подобные ракеты расходуют значительную часть топлива для отрыва от Земли, и далее продолжают полёт по инерции с редкими моментами включения двигателя.

Космический аппарат Pioneer


Подобные двигатели подходят для вывода ракет на околоземную орбиту, но, чтобы её разогнать хотя бы до четверти скорости света, понадобится невероятное количество топлива (расчёты показывают, что нужно 103200 грамм топлива, при том, что масса нашей Галактики не более 1056 грамма). Очевидно, что для достижения ближайших планет, а тем более звёзд, нам необходимы достаточно большие скорости, обеспечить которые жидкотопливные ракеты не в состоянии.

​Газофазный ядерный двигатель


Дальний космос — дело совсем другое. Взять хотя бы Марс, «обжитый» фантастами вдоль и поперёк: он хорошо изучен и научно перспективен, а самое главное — близок как никто другой. Дело — за «космическим автобусом», который сможет доставить туда экипаж за разумное время, то есть, как можно быстрее. Но с межпланетным транспортом есть проблемы. Его сложно разогнать до нужной скорости, сохранив при этом приемлемые размеры и потратив разумное количество топлива.

RS-25 (Rocket System 25) — жидкостный ракетный двигатель компании Рокетдайн, США. Применялся на планере космической транспортной системы «Space Shuttle», на каждом из которых было установлено три таких двигателя. Более известен как двигатель SSME (англ. Space Shuttle Main Engine — главный двигатель космического челнока).

Основными компонентами топлива являются жидкий кислород (окислитель) и водород (горючее). RS-25 использует схему закрытого цикла (с дожиганием генераторного газа).


Решением может быть «мирный атом», толкающий космические корабли. О создании лёгкого и компактного устройства, способного вывести на орбиту хотя бы самого себя, инженеры задумались ещё в конце 50‑х годов прошлого века. Главное отличие ядерных двигателей от ракет с двигателями внутреннего сгорания в том, что кинетическая энергия получается не за счёт сгорания топлива, а за счёт тепловой энергии распада радио­активных элементов. Давайте сравним эти подходы.


Из жидкостных двигателей выходит раскалённый «коктейль» выхлопных газов (закон сохранения импульса), образующихся при реакции топлива и окислителя (закон сохранения энергии). В большинстве случаев это комбинация кислорода и водорода (результат горения водорода — обычная вода). h3O обладает гораздо большей молярной массой, чем водород или гелий, поэтому её труднее разогнать, удельный импульс для подобного двигателя 4 500 м/с.

Наземные испытания NASA новой системы запуска космических ракет, 2016 год (штат Юта, США). Эти двигатели будут установлены на космический корабль Orion, на котором планируется миссия на Марс.


В ядерных двигателях предлагается использовать только водород и разгонять (разогревать) его за счёт энергии ядерного распада. Тем самым идёт экономия на окислителе (кислороде), что уже замечательно, но не всё. Так как у водорода относительно малая удельная масса, нам проще его разогнать до более высоких скоростей. Конечно, можно использовать и другие тепловосприимчивые газы (гелий, аргон, аммиак и метан), но все они не менее чем в два раза проигрывают водороду в самом главном — достижимом удельном импульсе (более 8 км/c).


Так стоит ли его терять? Выигрыш настолько велик, что инженеров не останавливает ни сложность конструкции и управления реактором, ни его большой вес, ни даже радиационная опасность. Тем более никто и не собирается стартовать с поверхности Земли — сборка таких кораблей будет вестись на орбите.

​«Летающий» реактор


Как работает ядерный двигатель? Реак­тор в космическом двигателе намного меньше и компактнее своих наземных аналогов, но все основные компоненты и механизмы управления принципиально те же. Реактор выступает в роли нагревателя, в который подаётся жидкий водород. Температуры в активной зоне достигают (и могут превышать) 3000 градусов. Затем разогретый газ выпускают через сопло.


Однако такие реакторы испускают вредные радиационные излучения. Для защиты экипажа и многочисленного электронного оборудования от радиации нужны основательные меры. Поэтому проекты межпланетных кораблей с атомным движком часто напоминают зонтик: двигатель располагается в экранированном отдельном блоке, соединённом с основным модулем длинной фермой или трубой.


«Камерой сгорания» ядерного двигателя служит активная зона реактора, в которой подаваемый под большим давлением водород нагревается до 3000 и более градусов. Этот предел определяется только жаропрочностью материалов реактора и свойствами топлива, хотя повышение температуры увеличивает удельный импульс.


Тепловыделяющие элементы — это жаропрочные ребристые (для повышения площади теплоотдачи) цилиндры-«стаканы», заполненные урановыми таблетками. Они «омываются» потоком газа, играющего роль и рабочего тела, и охладителя реактора. Вся конструкция изолирована бериллиевыми экранами-отражателями, не выпускающими опасное радиационное излучение наружу. Для управления выделением тепла рядом с экранами расположены специальные поворотные барабаны


Существует ряд перспективных конструкций ядерных ракетных двигателей, реализация которых ждёт своего часа. Ведь в основном они будут применяться в межпланетных путешествиях, которые, судя по всему, уже не за горами.

Проекты ядерных двигателей


Эти проекты были заморожены по разным причинам — недостаток денег, сложность конструкции или даже необходимость сборки и установки в открытом космосе.

«ОРИОН» (США, 1950–1960)


Проект пилотируемого ядерно-импульсного космического корабля («взрыволёт») для исследования межпланетного и межзвёздного ­пространства.


Принцип работы. Из двигателя корабля, в направлении противоположном полёту, выбрасывается ядерный заряд небольшого эквивалента и подрывается на сравнительно малой дистанции от корабля (до 100 м). Ударная сила отражается от массивной отражающей плиты в хвосте корабля, «толкая» его вперёд.

«ПРОМЕТЕЙ» (США, 2002–2005)


Проект космического агентства NASA по разработке ядерного двигателя для космических аппаратов.


Принцип работы. Двигатель космического корабля должен был состоять из ионизированных частиц, создающих тягу, и компактного ядерного реактора, обеспечивающего установку энергией. Ионный двигатель создаёт тягу порядка 60 грамм, но сможет работать постоянно. В конечном счёте, корабль постепенно сможет набрать огромную скорость — 50 км/сек, затратив минимальное количество энергии.

«ПЛУТОН» (США, 1957–1964)


Проект по разработке ядерного прямоточного воздушно-реактивного двигателя.


Принцип работы. Воздух через переднюю часть транспортного средства попадает в ядерный реактор, в котором нагревается. Горячий воздух расширяется, приобретает большую скорость и высвобождается через сопло, обеспечивая необходимую тягу.

NERVA (США, 1952–1972)


(англ. Nuclear Engine for Rocket Vehicle Application) — совместная программа Комиссии по атомной энергии США и NASA по созданию ядерного ракетного двигателя.


Принцип работы. Жидкий гидрогель подаётся в специальный отсек, в котором происходит его нагревание ядерным реактором. Горячий газ расширяется и высвобождается в сопле, создавая тягу.

Тэги:

технологиикак это работаеткосмостранспорткак это устроено

Как работает ядерный двигатель — Мастерок.жж.рф — LiveJournal

Ядерный ракетный двигатель — ракетный двигатель, принцип действия которого основан на ядерной реакции или радиоактивном распаде, при этом выделяется энергия, нагревающая рабочее тело, которым могут служить продукты реакций либо какое-то другое вещество, например водород.

Давайте разберем варианты и принципы из действия…

 

Существует несколько разновидностей ракетных двигателей, использующих вышеописанный принцип действия: ядерный, радиоизотопный, термоядерный. Используя ядерные ракетные двигатели, можно получить значения удельного импульса значительно выше тех, которые могут дать химические ракетные двигатели. Высокое значение удельного импульса объясняется большой скоростью истечения рабочего тела — порядка 8—50 км/с. Сила тяги ядерного двигателя сравнима с показателями химических двигателей, что позволит в будущем заменить все химические двигатели на ядерные.

 

 

Основным препятствием на пути полной замены является радиоактивное загрязнение окружающей среды, которое наносят ядерные ракетные двигатели.

 

 

Их разделяют на два типа — твердо-и газофазные. В первом типе двигателей делящееся вещество размещается в сборках-стержнях с развитой поверхностью. Это позволяет эффективно нагревать газообразное рабочее тело, обычно в качестве рабочего тела выступает водород. Скорость истечения ограничена максимальной температурой рабочего тела, которая, в свою очередь, напрямую зависит от максимально допустимой температуры элементов конструкции, а она не превышает 3000 К. В газофазных ядерных ракетных двигателях делящееся вещество находится в газообразном состоянии. Его удержание в рабочей зоне осуществляется посредством воздействия электромагнитного поля. Для этого типа ядерных ракетных двигателей элементы конструкции не являются сдерживающим фактором, поэтому скорость истечения рабочего тела может превышать 30 км/с. Могут быть использованы в качестве двигателей первой ступени, невзирая на утечку делящегося вещества.

 

 

В 70-х гг. XX в. в США и Советском Союзе активно испытывались ядерные ракетные двигатели с делящимся веществом в твердой фазе. В США разрабатывалась программа по созданию опытного ядерного ракетного двигателя в рамках программы NERVA.

 

 

Американцами был разработан графитовый реактор, охлаждаемый жидким водородом, который нагревался, испарялся и выбрасывался через ракетное сопло. Выбор графита был обусловлен его температурной стойкостью. По этому проекту удельный импульс полученного двигателя должен был вдвое превышать соответствующий показатель, характерный для химических двигателей, при тяге в 1100 кН. Реактор Nerva должен был работать в составе третьей ступени ракеты-носителя «Сатурн V», но в связи с закрытием лунной программы и отсутствием других задач для ракетных двигателей этого класса реактор так и не был опробован на практике.

 

 

В настоящее время в стадии теоретической разработки находится газофазный ядерный ракетный двигатель. В газофазном ядерном двигателе подразумевается использовать плутоний, медленно движущаяся газовая струя которого окружена более быстрым потоком охлаждающего водорода. На орбитальных космических станциях МИР и МКС проводились эксперименты, которые могут дать толчок к дальнейшему развитию газофазных двигателей.

 

 

На сегодняшний день можно сказать, что Россия немного «заморозила» свои исследования в области ядерных двигательных установок. Работа российских ученых больше ориентирована на разработку и совершенствование базовых узлов и агрегатов ядерных энергодвигательных установок, а также их унификацию. Приоритетным направлением дальнейших исследований в этой области является создание ядерных энергодвигательных установок, способных работать в двух режимах. Первым является режим ядерного ракетного двигателя, а вторым — режим установки генерирующей электроэнергии для питания аппаратуры, установленной на борту космического аппарата.

Это копия статьи, находящейся по адресу http://masterokblog.ru/?p=20860.

Tags: Технологии, Энергия

Telegram channel

6 вещей, которые вы должны знать о ядерных тепловых двигателях

Офис
Атомная энергетика

10 декабря 2021 г.

НАСА хочет отправить астронавтов на Марс, и они могли бы сделать это с помощью ядерных ракетных двигателей.

Ядерные тепловые двигательные установки (NTP) не новы, но они могут значительно сократить время полета и нести большую полезную нагрузку, чем современные химические ракеты, что дает людям отличный шанс исследовать дальний космос.

Вот 6 вещей, которые вы должны знать о ядерных тепловых двигателях.

URL видео

Посмотрите анимацию выше, чтобы узнать о преимуществах ядерных тепловых двигателей.

Видео предоставлено Министерством энергетики

1. Системы NTP питаются от деления

Системы NTP работают, прокачивая жидкое топливо, скорее всего водород, через активную зону реактора. Атомы урана распадаются внутри ядра и выделяют тепло в результате деления. Этот физический процесс нагревает топливо и превращает его в газ, который расширяется через сопло для создания тяги.

2. Системы НТП более эффективны, чем химические ракеты

Ракеты НТП обладают большей энергоемкостью, чем химические ракеты, и в два раза эффективнее.

Инженеры измеряют эту производительность как удельный импульс, который представляет собой величину тяги, которую можно получить от определенного количества топлива. Удельный импульс химической ракеты, сжигающей жидкий водород и жидкий кислород, составляет 450 секунд, что ровно вдвое меньше, чем у начальной мишени для ядерных ракет (900 секунд).

Это потому, что более легкие газы легче разогнать. Когда химические ракеты сжигаются, они производят водяной пар, гораздо более тяжелый побочный продукт, чем водород, который используется в системе NTP. Это приводит к большей эффективности и позволяет ракете лететь дальше на меньшем количестве топлива.

3. Системы NTP не будут использоваться при запуске

Системы NTP не будут использоваться на Земле. Вместо этого они будут запущены в космос химическими ракетами до того, как их запустят. Системы NTP не предназначены для создания тяги, необходимой для отрыва от поверхности Земли.

4. Системы NTP обеспечивают большую гибкость

Системы NTP обеспечивают большую гибкость для полетов в дальний космос. Они могут сократить время полета до Марса на 25% и, что более важно, ограничить воздействие космической радиации на летный экипаж. Они также могут обеспечить более широкие окна запуска, которые не зависят от выравнивания орбиты, и позволяют астронавтам прерывать миссии и при необходимости возвращаться на Землю.

Загрузите нашу инфографику по ядерным тепловым двигателям.

5. Системы NTP были разработаны при поддержке DOE

NTP не нова. Он был изучен НАСА и Комиссией по атомной энергии (ныне Министерство энергетики США) в 1960-х годах в рамках программы «Ядерный двигатель для ракетных транспортных средств». За это время ученые Лос-Аламосской национальной лаборатории помогли успешно построить и испытать ряд ядерных ракет, на которых сегодня основаны нынешние конструкции NTP.

Хотя программа завершилась в 1972 году, продолжались исследования по улучшению базовой конструкции, материалов и топлива, используемых для систем NTP.

НАСА и Министерство энергетики в настоящее время работают с промышленностью над разработкой обновленных конструкций ядерных тепловых двигательных реакторов. Три отраслевые команды выиграли конкурс проектов в 2021 году и в настоящее время продолжают разработку проектов, которые будут представлены для оценки осенью 2022 года.

6. Системы NTP сосредоточены на использовании низкообогащенного урана испытание, разработка и оценка возможности использования нового топлива, требующего меньшего обогащения урана, для систем НТП. Это топливо может быть изготовлено с использованием новых передовых технологий производства и потенциально может помочь снизить связанные с безопасностью затраты, связанные с использованием высокообогащенного топлива.

Национальная лаборатория Айдахо в настоящее время помогает НАСА разрабатывать и тестировать топливные композиты на своей установке для испытаний переходных реакторов (TREAT), чтобы изучить, как они работают при суровых температурах, необходимых для ядерных тепловых двигателей. Первоначальные испытания показали, что ядерное топливо, разрабатываемое НАСА и Министерством энергетики, способно выдерживать повышение температуры до рабочих температур ядерных тепловых двигателей без значительных повреждений.

Узнайте больше о работе НАСА по ядерным тепловым двигателям и узнайте о роли Министерства энергетики в освоении космоса.

Следите за Управлением ядерной энергии

Ядерные двигательные установки | ANSTO

Плотность энергии ядерного топлива значительно выше, чем плотность энергии всех других используемых видов топлива. Например, уголь — 33 МДж/кг, бензин — 47 МДж/кг, водород — 142 МДж/кг, а U-235 — 8×10 7 МДж/кг. Причина в большой разнице между электронными связями и ядерными связями, что делает ядерное топливо очень привлекательным для двигательных установок. В современных технологиях используется процесс деления (расщепления атомов), который генерирует большое количество тепловой энергии, прямо или косвенно используемой для движения.

Применения

Космос

Использование ядерной силовой установки является единственной практической технологией, которая позволяет развивать полеты в дальний космос к внешним частям Солнечной системы. Фотоэлектрические солнечные батареи не подходят для этой среды. Существует несколько различных концепций реакторных двигателей; однако основное внимание уделяется двум типам ядерных двигательных установок: (i) ядерным электрическим двигателям и (ii) ядерным тепловым двигателям.

Spear Probe — сверхлегкий зонд НАСА с ядерным электрическим двигателем

Nuclear Electric Propulsion преобразует тепловую энергию, вырабатываемую ядерным реактором, в электричество, которое затем используется для ионизации (положительного заряда) инертного газа-вытеснителя (ксенона, криптона). ). На последнем этапе ионизированное топливо ускоряется из двигателя с помощью электромагнитного поля, создавая небольшую тягу, толкая космический корабль вперед.

Эти ионные двигатели малой тяги могут разгонять космические корабли в течение продолжительного времени. Они превосходят химические ракетные двигатели большой тяги короткого замыкания. Ионные двигатели уже развернуты на спутниках и космических зондах; однако они обычно питаются от солнечных батарей, вырабатывающих электроэнергию. Поскольку использование фотоэлектрических солнечных элементов становится неэффективным дальше от Солнца, ядерные двигатели становятся единственным надежным вариантом для полетов в дальний космос.

Схема ядерной тепловой двигательной установки для применения в космосе

Ядерная тепловая двигательная установка напрямую использует тепловую энергию, вырабатываемую ядерным делением в ядерном реакторе. Это не похоже на ядерную электрическую двигательную установку, которая использует тепловую энергию для выработки электроэнергии.

В этом видео от Министерства энергетики США рассказывается о ядерных тепловых двигателях для космических приложений

Nuclear Thermal Propulsion использует жидкое топливо, такое как сжиженный водород, который прокачивается через активную зону реактора, где он быстро нагревается и расширяется до газа, который затем вытесняется из сопла ракеты, создавая большую тягу и ускоряя космический корабль вперед. Ядерная тепловая двигательная установка примерно в два раза эффективнее химических ракет и может сократить время полета, доставляя большую полезную нагрузку. Например, поездку на Марс можно сократить на четверть. Сокращение времени полета особенно важно для миссий с экипажем, поскольку короткое время в пути снизит воздействие на летный экипаж вредного космического излучения.

 

 

Морской 

На сегодняшний день наиболее успешным применением ядерной силовой установки является военно-морской флот для атомных авианосцев и подводных лодок.

Ядерная силовая установка дает ряд преимуществ, таких как отсутствие необходимости дозаправки в течение всего жизненного цикла судна, более высокие скорости и отсутствие выбросов парниковых газов. Кроме того, эти системы безопасны, надежны и широко распространены, поскольку они основаны на так называемом реакторе с водой под давлением 9.0070 (PWR).

PWR является наиболее распространенной конструкцией реактора для гражданских энергетических реакторов.