Содержание

Причины неисправностей асинхронных двигателей и методы их устранения

Асинхронные электродвигатели больше остальных распространены на производстве и часто встречаются в быту. С их помощью приводят в движение различные станки: токарные, фрезерные, заточные, грузоподъемные механизмы, такие как лифт или подъемный кран, а также различного рода вентиляторы и вытяжки.

Такая популярность обусловлена низкой стоимостью, простотой и надежностью этого типа привода. Но случается так, что и простая техника ломается. В этой статье мы рассмотрим типовые неисправности асинхронных электродвигателей с короткозамкнутым ротором.

Виды неисправностей асинхронных двигателей

Неисправности можно разделить на три группы:

1. Греется двигатель;

2. Не вращается или не нормально вращается вал;

3. Шумит, вибрирует.

При этом корпус двигателя может греться полностью или какое-то отдельное место на нем. И вал электродвигателя может не сдвигаться с места совсем, не развивать нормальные обороты, перегреваться его подшипники, издавать ненормальные для его работы звуки, вибрировать.

Но для начала освежите в памяти его конструкцию, а в этом вам поможет иллюстрация ниже.

Причины неисправностей также можно разделить на две группы:

Электрические;

Механические.

Большинство неисправностей диагностируются с помощью токовых клещей – путем сравнения токов фаз и номинального тока, и другими измерительными приборами. Рассмотрим типовые неисправности.

Не запускается электродвигатель

При подаче напряжения двигатель не начал вращаться и ни издаёт никаких звуков и вал не «пытается» сдвинуться с места. В первую очередь проверяют приходит ли питание на двигатель. Сделать это можно либо вскрыв борно двигателя и измерив в местах подключения питающего кабеля, либо измерив напряжение на питающем рубильнике, контакторе, пускателе или автоматическом выключателе.

Однако если есть напряжение на клеммах двигателя – значит вся линия в норме.

Измерив напряжение в начале линии – на автомате вы узнаете только то, что напряжение подано, а оно может и не дойти до конечного потребителя в результате обрывов кабеля, плохого соединения по всей его длине или из-за неисправных контакторов или магнитных пускателей, а также слаботочных цепей.

Если вы убедились, что напряжение приходит на двигатель, дальнейшая его диагностика заключается в прозвонке обмоток на предмет обрыва. Проверять целостность обмотки нужно мегаомметром, так вы заодно и проверите пробой на корпус. Можно прозвонить обмотки и обычной прозвонкой, но такая проверка не считается точной.

 Чтобы проверить обмотки, не позванивая их и не вскрывая борно двигателя можно воспользоваться токовыми клещами. Для этого измеряют ток в каждой из фаз.

Если обмотки двигателя соединены звездой и при этом оборваны две обмотки – тока не будет ни в одной из фаз. При обрыве в одной из обмоток вы обнаружите что ток есть в двух фазах, и он повышен. При подключении по схеме треугольника даже при перегорании двух обмоток в двух из трёх фазных проводов будет протекать ток.

При обрыве в одной из обмоток двигатель может не запускаться под нагрузкой, или запускать, но медленно вращаться и вибрировать. Ниже изображен прибор для измерения вибраций двигателя.

Если обмотки исправны, а ток при измерении повышен и при этом выбивает автомат или перегорает предохранитель – наверняка заклинен вал или исполнительный механизм приводимый им в движение. Если это возможно – после отключения питания вал пытаются провернуть от руки, при этом нужно отсоединить его от приводимого в движение механизма.

Когда вы определите, что не вращается именно вал двигателя – проверяют подшипники. В электродвигателях устанавливают либо подшипники скольжения, либо подшипники качения. Изношенные втулки (подшипники скольжения) проверяют на наличие смазки, если втулки не имеют внешних изъянов – возможно просто их смазать, предварительно очистив от пыли, стружки и других загрязнений. Но так случается редко, да и такой способ ремонта актуален скорее для маломощных двигателей бытовой техники. В мощных двигателях подшипники чаще просто заменяют.

Проблемы с пониженными оборотами, нагревом, неподвижностью вала и повышенным износом подшипника могут быть связаны с неравномерной нагрузкой на вал, его перекосом, деформации и пригибанию. Если первых два случая исправимы правильной установкой вала или исполнительного механизма, а также снижением нагрузки, то деформация и провисание средней части вала требует его замены или сложного ремонта. Это особо часто возникает в мощных электродвигателях с длинным валом.

При износе одного из подшипников часто вал «закусывает». При этом в результате расширения металла из-за нагрева при трении вал может сначала начинать вращение, но либо не набрать полную скоростью, а в особо запущенном случае и вовсе остановится.

Подшипники качения также требуют регулярной набивки смазки и изнашиваются в процессе работы, особенно быстро если смазки мало или она загрязнена.

Двигатель греется

Первой причиной нагрева двигателя являются проблемы с системой охлаждения. При такой неисправности корпус электродвигателя нагревается полностью. В большинстве двигателей используется воздушное охлаждение. Для этого корпуса выполняются с оребрением, а с одной из сторон на валу устанавливают вентилятор охлаждения, воздушный поток которого направляется с помощью кожуха вдоль ребер.

При повреждении вентилятора, или если он, например, слетит с вала – возникает проблема перегрева. В мощных двигателях используют жидкостную систему охлаждения. Кроме того, бывают двигатели и без вентиляторов – охлаждаемый за счет естественной конвекции.

Если вентилятор в норме нужно продолжать диагностику.

При нагреве двигателя следует проверять, нагрев подшипников. Для этого рукой ощупывают поверхность корпуса со стороны задней крышки (где нет выступающих вращающихся валов – техника безопасности превыше всего).

Если крышки подшипников горячее чем другие части поверхности корпуса – нужно проверить наличие и состояние смазки в них, а при использовании вкладышей – заменить их.

В случае, когда замена смазки в шариковом подшипнике не исправила ситуации также следует заменить их.

Локальный нагрев корпуса – ситуация при которой какой-то его участок явно горячее всех остальных, наблюдается при межвитковых замыканиях. В таких случаях диагностику проводят с помощью токовых клещей – сравнивают токи в фазах. Если в одной из фаз ток явно превышает токи в остальных фазах – тогда неисправность обмоток электродвигателя подтверждается. В этом случае ремонт заключается в частичной или полной перемотке статора.

Повышенный нагрев асинхронного электродвигателя может возникать и при замыкании пластин статора.

Двигатель вибрирует, шумит и издает ненормальные звуки

Шум двигателя также может быть связан также с износом подшипников. Вы наверняка замечали, как воют старые дрели и кухонные электроприборы – причина именно в этом. Вибрации вала возникают при его осевом сдвиге и деформации о которой мы говорили ранее.

Также возможны вибрации, шум или перегрев активной стали если ротор при вращении касается статора. Это происходит либо при пригибании ротора, либо при повреждении пластин статора. В последнем случае его разбирают и пластины перепрессовуют. Место касания пластин можно найти по неровностям или оно будет отполировано ротором.

Заключение

Мы рассмотрели ряд неисправностей электродвигателя, как их устранить и причины возникновения. Эксплуатация перегревающегося двигателя чревата преждевременным выходом из строя изоляции обмоток. После длительного простоя нельзя запускать двигатель не измерив сопротивление между обмотками и корпусом с помощью мегаомметра.

Нормальным считается сопротивление изоляции порядка 1 МОма на 1 кВ питающего напряжения. То есть пригодным для эксплуатации в сети с напряжением 380 В можно считать двигатель у которого сопротивление изоляции обмоток не меньше чем 0,5 МОм. В противном случае вы рискуете повредить его. Если сопротивление изоляции меньше двигатель просушивают, часто снимая с него кожух или заднюю крышку. В процессе эксплуатации сопротивление обмотки постепенно увеличивается – из-за испарения влаги при нагреве.

При соблюдении режима работы, правил эксплуатации и обслуживания, а также нормального электропитания асинхронный двигатель служит долго, часто в разы перерабатывая свой ресурс. При этом основной ремонт заключается в смазке и замене подшипников.

Ранее ЭлектроВести писали, что наиболее распространенным видом агрегатов считаются асинхронные двигатели. Они отличаются невысоким потреблением электроэнергии и хорошими мощностными показателями. Таким моторы идеально подходят для установки на металлообрабатывающих или деревообрабатывающих станках. Их можно часто встретить в составе кузнечно-прессовых, швейных или грузоподъемных механизмов. Электрические двигатели успешно справляются с задачами, поставленными перед климатической техникой, компрессорами, центрифугами или насосами.

По материалам electrik.info

Измерение сопротивления изоляции кабельных линий, проводов мегаомметром в Москве по доступной цене — замер, испытания и расчет от Testvolt

Электролаборатория TESTVOLT проводит измерение сопротивления изоляции кабеля мегаомметром. Расскажем, что это за измерительный прибор, какие виды бывают, как им пользоваться, а главное – для каких целей. 

Для чего нужна проверка

Внутри провода находится одна или несколько жил (например, медных). Они должны быть изолированы друг от друга, человека, а также от окружающей среды, в том числе от воздуха, влаги. Таким изолятором является пластмассовый, резиновый или выполненный из других электроизоляционных материалов кожух кабеля. 

У этой неметаллической оболочки есть такой показатель, как сопротивление (измеряется в омах). Оно обратно проводимости, то есть определяет, насколько хорошо сердцевина защищена от проведения электрической энергии. Есть поверхности и материалы, которые называются токопроводящими. У них, соответственно, это свойство на низком уровне, зато проводимость высокая. А вот у хорошего изолятора провода все должно быть наоборот, чтобы не происходило утечек тока и пробоев.

Мы предлагаем осуществлять проверку при вводе системы в эксплуатацию, при наличии подозрений на неисправности, а также регулярно в качестве превентивной меры с регулярностью. И чем старее проводка, тем чаще следует проводить испытания. Из-за чего может нарушиться изоляция:

  • естественный износ, растрескивание – по прохождению длительного времени;
  • повышенная влажность воздуха;
  • механические повреждения – надрывы, царапины, растяжения;
  • химические дефекты из-за нахождения в агрессивной среде.

Допустимые значения при замерах сопротивления изоляции мегаомметром

Этот показатель в технической литературе записывается как Rx. Нижние границы прописаны в ГОСТах, СанПиНах и других нормативных документах при изготовлении кабелей. Все перечислять достаточно долго и зачастую бессмысленно. Наиболее часто испытываются силовые линии с напряжением до 1 кВ. Для них Rx не должно быть ниже, чем 0,5 МОм. Если проводник предназначен для величин, превышающих 1 кВ, то замеры не осуществляются. 

Устройство и принцип работы мегаомметра

Аппарат действует очень просто. На исследуемый кабель подается установленное заранее значение напряжения. В этот же момент производятся автоматические замены номинального тока. Зная две эти величины, можно применить закон Ома (формула R=U/I) и получить сопротивление изоляции.

Используется заряд именно постоянного тока. Переменный бы вносил некоторые неточности в исследовании.

Конструктивные особенности мегаомметров

Конструкция напрямую зависит от разновидности (их мы рассмотрим ниже). Но без разницы от того, какая модель устройства используется, все они будут содержать:

  • Генератор напряжения на достаточно высокое количество вольт. Особенность в том, что поддерживается и подается одинаковый заряд, который выставляется на приборе заранее.
  • Амперметр, который позволяет измерить силу тока (А).
  • Измерительная шкала. Она может бывать в амперах (но тогда понадобятся вторично все замерять) или сразу проградуирована в омах.

Виды мегаомметров для измерения сопротивления изоляции проводов 

Специалисты компании «Тествольт» пользуются только проверенным оборудованием, которое проходит регулярные проверки на точность. Все аппараты делятся на две категории по степени автоматизации процесса.

Электромеханические

Они укомплектованы механическим генератором. То есть чтобы осуществить подачу напряжения, нужно вручную задействовать динамо-машину – крутит ручкой со скоростью два оборота в секунду. Как и любая механика, в отличие от электроники, она имеет преимущества в своей автономности – не нужно подключение к сети или зарядка. Но в старом механизме, а этот образец не отличается современностью, есть большое количество недостатков:

  • Точные данные можно получить только тогда, когда оборудование максимально статично. А при том, что нужно постоянно крутить ручку генератора, добиться неподвижности очень сложно.
  • Иногда приходится работать вдвоем, чтобы обеспечить чистоту эксперимента.
  • Наличие аналоговой, а не линейной шкалы также приводит к погрешностям.

Электронные

Основное отличие – встроенный микропроцессор, за счет чего расширяется функционал приборов. Понадобится только ввести исходные данные, произвести сам замер, на цифровом табло появится точный результат. Особенность и основное преимущество в повышенной точности аппарата. Есть и еще достоинства, которые приводят к повсеместному переходу от механических к электронным мегаомметрам – это их компактность, удобство в работе, а также многофункциональность, ведь их можно использовать для некоторых других электрических испытаниях.

Как правильно проверять сопротивление изоляции приспособлением

Главное в тестировании – это исправность и точность оборудования. Если в нем специалист уверен, то дело остается за его личными навыками, а именно, за умением подбирать верные показатели. Мы приведем таблицу для самостоятельных замеров: 

Какой объект тестируетсяТестовое напряжение, которое нужно подавать, ВМинимально допустимое сопротивл., МОм
Электрическая проводка10000,5
Кухонная плита10001
Электрощиты и линии электропередач1000–25001
Другие электроприборы, которые потребляют до 50 Вт10005, если иное не указано в техпаспорте изделия
Оборудование, потребляющее до 380 вольт500–10000,5
Электрооборудование до 1000 Вт25000,5

Инженеры электролаборатории «Тествольт» знают и соблюдают все регламенты измерений, что позволяет получать максимально точные результаты.

Пошаговая инструкция 

Можно отметить, что мегаомметр, а также испытания с его помощью – достаточно простые вещи. Но если не знать или не выполнять точного алгоритма, то даже эти действия станут проблематичными. Ведь любая работа с электроэнергией опасна, если неверно к ней подойти. К тому же нужно учитывать, что специалист при тестировании генерирует и подает прибором достаточно высокое напряжение, которое может травмировать. Поэтому важно соблюдать технику безопасности (о ней ниже), а также проводить испытания полностью в соответствии с указанной методикой. Раскроем ее этапы.

Подготовка 

Сперва обязательно нужно снять подключаемую обычно нагрузку, то есть убрать все источники электропитания. Затем кабель необходимо обесточить. Если проверка производится дома, отключите УЗО и выдерните все вилки изо всех розеток, а из источников искусственного света уберите лампы накаливания (или иного типа).

Затем нужно заземлить этот участок. Заземление уберет остаточный заряд из обесточенной электроцепи. Для этого медный многожильный проводник подключить одним оголенным концом к шине электрощита, а другим – к изоляционной штанге. Если ее нет, подойдет сухая древесина.

На этом подготовительный этап закончен.

Подключение прибора к испытуемой линии

В любой комплектации и разновидности мегаомметра имеется три щупа. Два из них (они подключены к гнездам «З» и «Л», то есть земля и линия) нужно подвести к соответствующим проводам. Третий, маркируемый «Э», используется крайне редко для проверки экранируемых кабелей. При этом каждый провод зажимается крокодильчиком к линии по одному, относительно других жил, которые в этот момент заземляются. Если такой проверки недостаточно, то каждый из медных проводников можно протестировать по отношению к земле, а также к другим жилкам.

Алгоритм испытаний

Когда мы уже знаем, как проводить подготовку, а также осуществлять подключение, можно начать действовать по строгому порядку:

  • Задать уровень тестового напряжения на мегаомметре. Часто это 1000 В, но более подробный список представлен в таблице выше.
  • Выбрать диапазон сопротивления. Он зависит от ваших ожиданий о полученном результате.
  • С помощью мультиметра удостовериться, что проверяемая сеть на момент проведения теста обесточена.
  • Подключите щупы-крокодилы к контакту «Л». Как – описано выше.
  • Уберите заземление с объекта.
  • Подайте напряжение. Это или соответствующая кнопка, или начало вращения ручки генератора, как на старых аналоговых приборах.
  • Записываем полученные данные в протокол.
  • Опять заземляем систему, чтобы отвести остаточный ток.
  • Отключаем установку.

После этого, специалисты компании «Тествольт» заполняют отчетную документацию и делают вывод о возможности последующей эксплуатации этого объекта.

Измерение изоляции асинхронного двигателя 

Механизм проверяется по алгоритму:

  • Отключение питания.
  • Снятия остаточного напряжения заземлением.
  • Прикрепление щупа к корпусу движка – главное, чтобы поверхность была металлическая, чистая, без краски.
  • Второй контакт подсоединяется к каждой из обмоток поочередно.

Тестовое напряжение – 500 В.

Правила безопасности

ТБ при работе с мегаомметром предполагает:

  • использование только специализированных, приспособленных для этого устройств, а также запчастей, например, щупов.
  • Перед началом проверки оценить состояние прибора и расходников – на них не должно быть следов от механических или иных воздействий.
  • Несколько раз перепроверьте – участок необходимо полностью обесточить.
  • После каждой подачи напряжения используйте переносное заземление, чтобы убрать остаточный заряд.
  • Производите все работы в диэлектрических перчатках.

Преимущества электролаборатории TESTVOLT 

Наша компания оказывает качественные услуги и постоянно совершенствуется с 2014 года. На все предлагаемые виды работ мы имеем соответствующие лицензии и разрешения. Почему стоит обратиться именно к нам:

  • У нас широкий спектр возможностей, оборудования, поэтому мы обслуживаем как клиентов с частными нуждами, так и заказы крупного масштаба – производственные объекты.
  • Все наши инженеры имеют соответствующее образование и опыт, быстро и качественно справляются с поставленными задачами.
  • Применяем только лучшие измерительные приборы, а также регулярно тестируем их на исправность и точность.
  • Следим за нормативными документами и другими поправками, которые вносятся в законодательство РФ в этой области, поэтому всегда проводим тестирование и заполняем протоколы согласно нормативам.

Заключение

Мы рассказали об измерении сопротивления изоляции мегаомметром кабельных линий. Вы можете заказать услугу на нашем сайте. Подробнее о проведении испытаний можно посмотреть на видео:

How to Megger a Motor Ram Meter, Inc.

18 января 2021 г.:
С технической точки зрения, вы не можете «меггерить» мотор. Megger — это не глагол, а зарегистрированная торговая марка производителя электрических контрольно-измерительных приборов, которую по совпадению можно найти на нашем веб-сайте ЗДЕСЬ. Однако на протяжении многих лет, благодаря их хорошей репутации в отрасли, слово «меггер» использовалось для описания действия по измерению сопротивления изоляции. Таким образом, реальный вопрос заключается в том, как вы можете провести тест сопротивления изоляции на двигателе?

Обратите внимание: информация взята из инструкции по применению Megger и в основном относится к продуктам, продаваемым Megger. Тем не менее, большинство принципов по-прежнему применимы.

Так зачем вам меггер двигателя? Или почему вы должны проводить тесты сопротивления изоляции на вашем двигателе?

При работе с новыми двигателями электрическая изоляция должна быть в идеальном состоянии. Однако, несмотря на значительные производственные усовершенствования двигателей за эти годы, изоляция по-прежнему подвержена классическому износу, а также другим злодеям, таким как механические повреждения, вибрация, чрезмерное нагревание или охлаждение, грязь, масло, коррозионные пары, влага от процессов или просто естественная влажность, которая может привести к нарушению изоляции.

Со временем эти проблемы приводят к появлению крошечных отверстий и трещин, что позволяет влаге или посторонним частицам просачиваться на поверхность изоляции, уступая место низкоомному пути для тока утечки. И когда это начнется, пути назад уже не будет. Однако, как правило, сопротивление падает постепенно, и именно здесь вступают в действие электрические испытания.

Ключевым моментом является периодическая проверка изоляции двигателя. Хорошая изоляция имеет высокое сопротивление, тогда как плохая изоляция имеет относительно низкое сопротивление. Фактические значения могут варьироваться в зависимости от температуры или влажности, поэтому необходимо вести точные записи.

При наличии плана профилактического обслуживания полного отказа в обслуживании можно избежать, заблаговременно запланировав восстановление или ремонт. Это экономит не только время простоя, но и дорогостоящий ремонт! Кроме того, отсутствие проверки изоляции двигателя может привести к опасным условиям при подаче напряжения, и двигатель может полностью сгореть.

Но как проверить изоляцию двигателя?

Сначала вам понадобится тестер изоляции, мегомметр или универсальный тестер вращающихся машин, такой как Megger MTR105 — многофункциональный тестер вращающихся машин, тестер изоляции, омметр и мультиметр, который даст вам измерение в омах или мегаомах.

Имейте в виду, что этот тест не является разрушающим, поэтому вам не нужно беспокоиться о дальнейшем повреждении изоляции вашего двигателя. Ваш прибор просто подаст напряжение и измерит результирующий ток на поверхности изоляции, что даст вам значение сопротивления.

*ВАЖНО* НИКОГДА и ни при каких обстоятельствах не подключайте тестер изоляции Megger (или любой ИК-тестер) к оборудованию, находящемуся под напряжением!

Подключение теста

Для двигателей переменного тока и пускового оборудования ознакомьтесь с приведенной ниже схемой из книги Megger «Шов во времени… Полное руководство по тестированию сопротивления изоляции». Обратите внимание, что пусковое оборудование, соединительные линии и двигатель подключены параллельно, а пускатель переключатель установлен в положение «включено».Всегда лучше также отсоединять составные части и проверять их все по отдельности, чтобы точно знать, где существует слабость.

Для генераторов и двигателей постоянного тока необходимо поднять щетки, показано на рисунке ниже.Также можно проверить такелажные и полевые катушки отдельно от самого якоря.

Как вы интерпретируете показания сопротивления?

Для двигателей всегда рекомендуется получить копию руководства IEEE «Рекомендуемые методы проверки сопротивления изоляции вращающихся механизмов», так как это наиболее полный ресурс для решения проблемы интерпретации измерений сопротивления изоляции двигателей.

Однако, как правило, периодические испытания являются ключевыми! периодическое повторное тестирование и ведение хороших записей.

Примечание. Информация взята из примечания к заявке, любезно предоставленного Megger (через веб-сайт Megger). Ram Meter Inc. продает и хранит на складе ассортимент тестеров сопротивления изоляции Megger и другой продукции, которую можно найти на нашем веб-сайте по адресу www.rammeter.com/megger. Вы также можете ознакомиться с нашим полным ассортиментом других тестеров сопротивления изоляции.

Почему мой двигатель прошел проверку мегомметром, но все равно не работает?

Блог

Опубликовано | Оставить комментарий

Электродвигатели состоят из нескольких отдельных движущихся частей, которые работают вместе для создания вращательного или линейного движения. Поскольку двигатели очень сложны и состоят из множества различных компонентов, определение причины проблем может быть сложной задачей. Чтобы определить причину проблемы, операторам может потребоваться протестировать каждую отдельную деталь, что, конечно же, может занять много времени. Но что происходит, когда каждый компонент на самом деле работает правильно, но двигатель все еще не работает?

Понимание теста Меггера

Хотя для выявления конкретных проблем доступно несколько тестов двигателя, одним из наиболее распространенных процессов устранения неполадок двигателя является проверка сопротивления изоляции или проверка мегомметром. Этот тест помогает определить состояние изоляции двигателя, и эта информация может быть использована для определения потребности в обслуживании двигателя .

Устройство для проверки сопротивления изоляции внешне похоже на обычный омметр, но имеет гораздо более высокое напряжение. Он работает путем подачи напряжения постоянного тока через изоляционный барьер в двигателе. Затем он измеряет величину тока, проходящего через изоляцию, и рассчитывает сопротивление изоляции. Тем не менее, меггер требует тонкого баланса правильных настроек, подключений, синхронизации и мер безопасности, чтобы предотвратить травмы пользователя и повреждение двигателя и оборудования. Операторы могут подавать различные напряжения в зависимости от размера тестируемого двигателя и объема испытаний.

Подводные камни при тестировании Меггером

Данные, собранные при тестировании Megger, помогают определить рабочий возраст и общее состояние двигателя. Хотя эта информация часто может быть очень полезной для определения того, на какой стадии жизненного цикла находится двигатель, иногда она также может вводить в заблуждение. На самом деле, двигатель может пройти тест Меггера, просто создав достаточно высокое сопротивление изоляции, даже если сам двигатель не работает. Эта ошибка является просто результатом внутренней природы теста Меггера; в то время как он проверяет между землей двигателя и обмотками, он не проверяет каждую отдельную обмотку. Это может привести к короткому замыканию в цепи между двумя обмотками, что приведет к неточным показаниям.

Чтобы избежать этой ошибки, рассмотрите возможность использования других методов тестирования в сочетании с тестом Меггера, чтобы получить точную оценку вашего двигателя. Другие тесты включают тесты при рабочем токе, тесты сопротивления обмотки двигателя переменного тока (AC) , тесты непрерывности обмотки двигателя переменного тока, тесты источника питания, а также тесты целостности и сопротивления заземления. В последние годы также стало доступно новое оборудование для диагностики и тестирования двигателей, обеспечивающее более высокую точность, чем традиционное испытательное оборудование.