Содержание

Технические характеристики моторных масел: свойства, вязкость

Вязкость моторного масла

Характеристика определяет способность жидкого материала сопротивляться течению за счет внутреннего трения. Значение рассчитывают при разных условиях, поэтому различают два ее типа:

  • кинематическая вязкость показывает способность материала сопротивляться течению под действием силы тяжести. Измеряется в стоксах (Ст) или в квадратных миллиметрах в секунду (мм2/с). Чаще всего характеристику определяют для температур 40 и 100 °С;
  • динамическая вязкость определяет отношение силы к скорости сдвига. Характеристика показывает способность моторного масла к течению при разных температурах, измеряется в сантипуазах (Сп) или в (Н·с/см2).

Индекс вязкости

Вязкость смазочных материалов меняется обратно пропорционально температуре. При нагревании масла показатель снижается, а при охлаждении – увеличивается. В продуктах разных марок изменение характеристики происходит с различной скоростью. Для измерения динамики существует специальное понятие – индекс вязкости. Чем выше его значение, тем меньше вязкостные свойства материала зависят от температуры. Продукты с большим индексом обеспечивают надежную защиту двигателя в разных климатических условиях. Масла с низким значением показателя эксплуатируются в узком диапазоне температур, так как при нагревании материалы утрачивают смазывающую способность, а при охлаждении быстро густеют.

Температура застывания

Показатель определяют в момент увеличения вязкости масла вплоть до потери текучести. В лабораторных условиях температурой застывания считают нижний предел, при котором жидкость в пробирке под наклоном 45 градусов не стекает в течение 1 минуты и остается неподвижной. Низкотемпературные характеристики масла напрямую зависят от состава, от качества компонентов. В продуктах переработки нефти вязкость возрастает при кристаллизации парафинов нормального строения. Поэтому основа проходит тщательную очистку или химическую модификацию для разветвления структуры компонентов и снижения температуры застывания. Синтетические масла имеют более однородный и прогнозируемый состав, что снижает порог кристаллизации и обеспечивает материалу стабильные свойства на морозе.

Температура вспышки

Величина этой характеристики зависит от вида и количества легколетучих фракций в составе масла. Температура вспышки косвенно указывает на потери масла на угар, испарение через вентиляционную систему картера. Параметр также позволяет оценить риск самопроизвольного воспламенения или взрыва материала при экстремальном нагревании.

Щелочное число (Total Base Number, TBN)

Общая щелочность моторного масла зависит от характеристик диспергирующих и моющих присадок, от антиокислительных свойств материала. Параметр указывает на стойкость продукта к окислению при высоких температурах и давлении в присутствии химически активных сред. От щелочного числа также зависит скорость образования отложений, величина межсервисного интервала. Характеристика определяется в (мг КОН/г). Значения щелочного числа варьируются в широком диапазоне. Выбор зависит от типа топлива, а точнее, от содержания серы, которая является главным окисляющим агентом. Например, в двигателях, работающих на мазуте, требуется высокая степень защиты, поэтому выбирают масло с показателем щелочности до 40 мг КОН/г. Моторы легковых авто работают с материалами 7–15 мг КОН/г.

Зольность

Сульфатная зола образуется при сгорании смазочного материала. Базовые масла очищаются и являются практически беззольными, но присадки вносят в состав нежелательные примеси, такие как магний, кальций, фосфор, цинк и другие. В процессе сгорания веществ на поверхности деталей двигателя образуются отложения, которые способствуют преждевременному воспламенению топливной смеси, то есть повышают детонацию. Зола также загрязняет каталитические нейтрализаторы выхлопных газов, сажевые фильтры. Соответственно, чем ниже показатель, тем меньше отложений на деталях.

Стандарты и спецификации

SAE J300

Классификация вязкостно-температурных свойств смазывающих материалов SAE J300 разработана американским обществом автомобильных инженеров Society of Automotive Engineers. Система делит масла на два типа: летние и зимние (маркировка W – winter). Для материалов, предназначенных для эксплуатации при низких температурах, дополнительно регламентируют предел прокачиваемости (тест MRV – Mini Rotary Viscometer) и проворачиваемости (CCS – Cold Cranking Simulator) коленвала. Для летних сортов определяют прочность на сдвиг при экстремальном нагревании (тест HTHS – High Temperature High Shear Rate). Класс вязкости по SAE J300 указывает на диапазон температур эксплуатации конкретной марки моторного масла. Обозначение всесезонных сортов сочетает два показателя: зимний и летний. Например, 5W-40.

Классы вязкости зимних моторных масел SAE J300










 

Низкотемпературная вязкость

Высокотемпературная вязкость

Класс

вязкости

SAE

CCS, МПа-с. Max, при темп.,°С

MRV, МПа-с, Max, при темп.,°С

Кинематическая вязкость, мм2/с при 100 °С

HTHS, МПа-с. Min при 150 °С и 10Л6 с-1,

 

 

 

Min

Max

0W

3250 при -30

30000 при -35

3,8

5W

3500 при -25

30000 при -30

3,8

10W

3500 при -20

30000 при -25

4,1

15W

3500 при -15

30000 при -20

5,6

20W

4500 при -10

30000 при -15

5,6

25W

6000 при -5

30000 при -10

9,3

Классы вязкости летних моторных масел SAE J300














Класс вязкости SAE

Высокотемпературная вязкость

Кинематическая вязкость, мм2/с при 100 °С

HTHS, МПа-с. Min при 150 °С и 10Л6 с-1,

Min

Max

8

4,0

6,1

1,7

12

5,0

7,1

2,0

16

6,1

8,2

2,3

20

6,9

9,3

2,6

30

9,3

12,5

2,9

40

12,5

16,3

2,9*

40

12,5

16,3

3,7**

50

16,3

21,9

3,7

60

21,9

26,1

3,7

* Для классов 10W40, 5W40, 10W40.

** Для классов 15W40, 20W40, 25W40, 40.

API

Классификация разработана специалистами American Petroleum Institute (API) совместно с American Society for Testing and Materials (ASTM) и Society of Automobile Engineers (SAE). Система опирается на эксплуатационные характеристики моторных масел и устанавливает стандарты для бензиновых, дизельных, двухтактных моторов и трансмиссий. По API смазочные материалы делятся на три категории:

  • S – Service (spark ignition). Категория включает масла для бензиновых двигателей легковых автомобилей;
  • C – Commercial (compression ignition). В нее включена продукция для дизельных двигателей;
  • EC – Energy Conserving. Категория описывает энергосберегающие масла.

Классификация материалов внутри категорий начинается с буквы А (SA, SB, SC…) и далее в алфавитном порядке. Каждая последующая марка может использоваться в двигателях, для которых рекомендованы предыдущие. Категории с SA до SG являются устаревшими. Знак SH маркируют только в качестве дополнения к C. Начиная с SJ все категории действующие, а SN считается высшей на сегодняшний день. Марки масел с API CA до API CG-4 признаны устаревшими. Остальные категории действующие, высшей является API CK-4.

ILSAC

Классификация международного комитета по стандартизации и апробации моторных масел ILSAC (INTERNATIONAL LUBRICANTS STANDARDISATION AND APPROVAL COMMITTEE) – это результат совместного труда американской ассоциации American Automobile Manufacturers Association (AAMA) и японских специалистов Japan Automobile Manufacturers Association (JAMA). Стандарт устанавливает требования к смазочным материалам для бензиновых двигателей легковых автомобилей. Знак ILSAC получают масла с высокими показателями экономии топлива, энергосбережения, фильтруемости в условиях низких температур. Для продуктов характерна низкая испаряемость, стойкость к вспениванию и сдвигу, минимальное содержание фосфора. Категории моторных масел по ILSAC:

GF-1. Устаревшая спецификация с минимально допустимыми требованиями к качеству материалов для японских и американских автомобилей. Категория охватывает масла классов SAE: 0W-30, -40, -50, -60, 10W-30, -40, -50, -60 и 5W-30, -40, -50, -60. Спецификация соответствует EC-II и API SH;

GF-2. Соответствует EC-II и API SJ. Категория включает все марки масел GF-1 и дополнительно 0W-20, 5W-20. Строгие ограничения по содержанию фосфора, улучшенные низкотемпературные свойства, стойкость к пенообразованию и образованию отложений;

GF-3. Соответствует EC-II и API SL. Улучшены противоизносные и противоокислительные свойства, снижена испаряемость, увеличены показатели экономии топлива, стабильности вязкостных свойств. Спецификация устанавливает строгие требования к долгосрочным последствиям влияния моторных масел на системы нейтрализации выхлопных газов;

GF-4. Соответствует API SM. Масла проходят испытания на топливную экономичность. Категория включает классы вязкости SAE: 0W-20, 5W-20, 5W-30, 10W-30. Улучшены моющие и противоизносные свойства, снижен риск образования отложений. Содержание фосфора – не более 0,08 %;

GF-5. Соответствуют API SM с жесткими требованиями к совместимости к системам катализаторов, к топливной экономичности, к испаряемости, к стойкости к образованию отложений. Спецификация устанавливает параметры совместимости с эластомерами, защиту систем турбонаддува, возможность применения биотоплива.

Знание основных характеристик необходимо для грамотного выбора моторного масла.

Технические характеристики моторных масел 🚗 Свойства масел для двигателей

Содержание

  • Функции моторного масла
  • Требования к качественному маслу
  • На что влияют технические характеристики
  • Что входит в технические характеристики масла
  • Вязкость: кинетическая и динамическая
  • Температура застывания и вспышки
  • Плотность
  • Зольность и щелочное число
  • На что обратить внимание при выборе масла
  • Предложение SINTEC

Важность качественного моторного масла сложно переоценить: правильно подобранная смазочная жидкость необходима, чтобы машина исправно работала, а узлы не изнашивались раньше срока. Чтобы подобрать состав, который будет подходить под конкретные климатические условия, важно разбираться в характеристиках моторных масел. Грамотно выбранные параметры вязкости, зольности, плотности помогут определиться с составом, но главное, конечно, не связываться с недобросовестными производителями и покупать смазочную жидкость только у проверенных компаний.

Функции моторного масла

Основное назначение состава – смазывать двигающиеся детали, чтобы не допускать их трения друг о друга и преждевременного износа. Также масло отводит от механизмов тепло, не дает им перегреваться, а содержащиеся в составе присадки защищают от загрязнений и обладают моющими свойствами. Во многом особенности зависят от состава присадок: разные масла рассчитаны под разные условия, и это еще одна причина, по которой смазочную жидкость нужно подбирать с умом. В расчет берутся три параметра: характеристики самой машины, климатические условия, в которых ее владелец использует авто, и необходимый состав (минеральное, синтетическое или полусинтетическое и т. д.).

Требования к качественному маслу

Могут различаться в зависимости от региона и машины. Но основные требования остаются неизменными:

  • нейтральность по отношению к металлу. Иными словами, состав не должен провоцировать коррозию и ускорять разрушение деталей;
  • моющие и стабилизирующие свойства, которые в основном достигаются за счет присадок;
  • способность функционировать в нужном температурном диапазоне;
  • отсутствие пены при работе;
  • возможность охлаждать греющиеся детали, то есть хорошие термоокислительные и термические способности;
  • совместимость с материалами, из которых делают уплотнительные элементы. Важно, чтобы состав не был чересчур агрессивен к полимерам;
  • способность нейтрализовать кислоты и продлевать тем самым срок работоспособности двигателя;
  • низкая летучесть, небольшой расход;
  • возможность запускать мотор, в том числе из холодного состояния.

На что влияют технические характеристики

В зависимости от того, какими характеристиками и свойствами обладает смесь, можно судить, комфортно ли будет использовать ее в определенных условиях, скажем, зимой или, наоборот, в жаркое время года. Некоторые варианты больше подходят для одних особенностей конструкции, некоторые – для других. Вдобавок стоит смотреть на качество: и синтетическое, и минеральное масла могут хорошо работать, если выпущены грамотными производителями. В случае же, если состав разрабатывался некачественно, итоговых свойств может быть недостаточно для нормальной работы машины. Технические характеристики масла определяют:

  • когда им лучше пользоваться – летом, зимой или круглый год;
  • для каких двигателей оно подходит – бензиновых или дизельных.

Некоторые классы предназначены для тяжелонагруженных моторов или имеют повышенную совместимость с каталитическими нейтрализаторами.

Что входит в технические характеристики масла

Существует несколько классификаций, определяющих параметры смазочной жидкости. Они касаются особенностей применения, вязкости и типа двигателей, для которых предназначено масло. Однако классификация – отдельный вопрос. Если речь идет именно о характеристиках как о свойствах, выраженных количественно, то к ним обычно относят семь параметров:

  • динамическую и кинетическую вязкость;
  • температуру застывания;
  • температуру вспышки;
  • плотность;
  • зольность;
  • щелочное число.

Они описывают физические и химические свойства конкретного масла: именно на их основе смазочную жидкость относят к тому или иному классу по одной из классификаций.

Вязкость: кинетическая и динамическая

Это показатель, который говорит, насколько хороши смазывающие свойства масла. Более вязкая жидкость лучше смазывает, но хуже подходит для низких температур, потому что быстрее застывает. Более жидкие составы обычно используются на холоде или в условиях, когда масла с высокой вязкостью нельзя применять. Эта характеристика разделяется на две:

  • динамическая вязкость описывает поведение масла при холодном моторе, то есть демонстрирует, как оно будет вести себя зимой. Этот показатель даже не всегда указывают в таблицах характеристик, так как он напрямую связан с классом зимней вязкости. Указания класса обычно достаточно;
  • кинетическая же вязкость описывает работу масла во время, когда двигатель включен. Рассчитывается, как правило, для температуры в 100 градусов, и чем больше цифра, тем лучше.

Классификация SAE

Этот международный стандарт делит моторные масла на группы в зависимости от их вязкости и температурных пределов, для которых они предназначены. Согласно этой классификации смазочные жидкости бывают трех основных типов:

  • летние. Класс обозначается одним числом, чем оно выше, тем гуще масло;
  • зимние. Их легко узнать: обозначение – число, после которого указана буква W. Она означает winter – зима. Чем меньше числовое значение, тем более жидким является масло и, соответственно, тем при более низких температурах его можно использовать;
  • всесезонные. Обозначаются сдвоенным значением: первое – зимнее, с буквой W, второе – летнее. По соотношению чисел можно определить температурный диапазон, при котором смазочная жидкость будет нормально функционировать.

Индекс вязкости

Это численное значение, которое не говорит о вязкости как таковой: оно обозначает, как сильно она меняется с перепадами температуры. Этот параметр во многом определяет качество масла: в идеале оно должно как можно меньше менять свои свойства, когда меняется температурный режим. В реальности такое недостижимо, но современные синтетические масла достигают значения индекса в 150–180 единиц. Чем выше этот показатель, тем лучше: высокие значения говорят о том, что жидкость не слишком активно изменяется при смене температурного режима и сохраняет свои свойства.

Температура застывания и вспышки

Существуют температурные пределы, при которых масло полностью перестает функционировать. Нижний называется температурой застывания, ее достижение означает, что масло потеряло текучесть и застыло. Де-факто функционировать оно может перестать раньше: еще до застывания текучесть станет настолько низкой, что смазочная жидкость перестанет прокачиваться через фильтр. Обычно это происходит за 5–7 градусов Цельсия до достижения температуры застывания. Грамотные производители учитывают такую возможность при определении класса масла: даже при температурных значениях, близких к минимуму, смесь еще будет прокачиваться. Верхний же предел называется температурой вспышки. Это температурное значение, при котором масла испарится настолько много, что, если рядом окажется источник огня, пары загорятся. Обычно оно выше 200 градусов и недостижимо, если с машиной все в порядке, но показатель позволяет понять скорость испарения масла даже в нормальных условиях. Чем ниже температура вспышки, тем активнее испаряется жидкость.

Плотность

Каждое масло содержит определенное количество летучих фракций. Их объем и определяет плотность – параметр, влияющий на качество работы смазочной жидкости.

  • Высокоплотные составы обычно гуще, они снижают механическую нагрузку на узлы, но при слишком высоком значении плотности могут плохо проникать в труднодоступные места цилиндров.
  • Масла со слишком низкой плотностью не так хорошо справляются со своей работой, как с оптимальной.

Обычно чем выше температура вспышки, тем выше и плотность, но бывают и исключения – высококачественные синтетические масляные основы. Они могут обладать оптимальными значениями обоих параметров одновременно.

Зольность и щелочное число

Технические характеристики моторного масла описывают не только физический, но и химический его состав, к таким можно отнести показатель сульфатной зольности и щелочное число.

  • Зольность иногда считают показателем количества присадок в смазочной жидкости, но в действительности этот параметр не всегда коррелирует с ними. Он показывает, сколько золы остается после испарения масляной основы или ее сгорания. Зола часто содержит в себе сульфаты, которые могут быть вредны для каталитических нейтрализаторов, но в целом показатель зольности критичнее для топлива, чем для масла.
  • Щелочное число показывает, какому количеству гидроксида калия эквивалентны присадки в масле, направленные на нейтрализацию кислот. По сути, показатель демонстрирует, как долго смазочная жидкость сможет избегать окисления.

На что обратить внимание при выборе масла

Помимо основных параметров – для бензина или для дизеля предназначен состав, какой пакет присадок в нем используется – нужно обращать внимание на технические характеристики и сопоставлять их с реальными условиями.

Жителям холодных регионов высокая вязкость не принесет пользы, а жарких, наоборот, сослужит хорошую службу. Если Вы хотите, чтобы масло работало дольше, обращайте внимание на показатели зольности и щелочное число. И, конечно, пользуйтесь продуктами проверенных производителей: «Синтек» предлагает качественную и разнообразную продукцию. В нашем ассортименте минеральные, синтетические, полусинтетические масла с разными характеристиками, подходящими под различные условия использования.

Предложение SINTEC

SINTEC PLATINUM SAE 5W-40 API SN/CF

Синтетическое масло с высокими эксплуатационными характеристиками, подходящее для всех сезонов и содержащее пакет многофункциональных качественных присадок зарубежных производителей.

SINTEC LUX SAE 5W-40 API SL/CF

Универсальный продукт, подходящий и для бензиновых, и для дизельных двигателей. Подходит в том числе грузовикам, машинам отечественного и зарубежного производства.

SINTEC EURO SAE 15W-40 API SJ/CF

Пример качественного минерального масла с характеристиками, подходящими для использования в российских условиях, и пониженным расходом.

Качества хорошего моторного масла

3 основных качества, которыми должно обладать хорошее моторное масло

 если вы ищете лучшее моторное масло в мире иметь. Каждое моторное масло требует определенных характеристик, которые определяют его долговечность и эффективность. Основными характеристиками, которые должны присутствовать в лучшем моторном масле мира , являются высокий индекс вязкости, термическая стабильность и устойчивость к окислению.

 высокий индекс вязкости

 вязкость e в основном представляет собой сопротивление жидкости течению. Для того, чтобы знать о качестве смазочного материала, очень важно учитывать его вязкость при различных температурах, для этого индекс вязкости был введен Э. Дином и Г. Дэвисом еще в 1929 году. Высокий индекс вязкости считается лучшая черта, которой должно обладать лучшее моторное масло в мире . К счастью, Atlantic lube содержит смазочные материалы с высоким коэффициентом вязкости, что делает их смазочные материалы лучшими из лучших в мире.

 Термостойкость

 Еще одной важной характеристикой, которой должно обладать хорошее моторное масло, является его устойчивость к высоким температурам. Так как смазочные материалы работают в той части вашего автомобиля или мотоцикла, где температура самая высокая, то они должны обладать характеристиками, не позволяющими им разрушаться при высокой температуре. Хорошее моторное масло должно обеспечивать запуск двигателя при низких температурах и быть стабильным при высоких температурах. В противном случае плохая термическая стабильность может привести к выходу из строя вашего двигателя из-за высокой вязкости. Atlantic lube это прекрасно знает и поэтому производимые там смазки способны противостоять высоким температурам и запускать двигатель даже при очень низких температурах. Короче говоря, смазочные материалы обладают термостабильностью, что делает их лучшими смазочными материалами в мире.

   Стабильность к окислению

 Другой важной характеристикой, которой должно обладать хорошее моторное масло, является стойкость к окислению. Под окислением понимают химическую реакцию, происходящую между смазочным маслом и кислородом. В случае более высокой степени окисления сокращается срок службы моторного масла или смазки. Не только это, но и высокая вязкость масла, что приводит к образованию шлама. Чтобы ваш двигатель работал должным образом, вы должны выбрать моторное масло, которое не будет смешиваться с кислородом. Таким образом, двигатель вашего автомобиля или мотоцикла останется невредимым, а смазка сможет работать длительное время. Смазочные материалы, приготовленные на Atlanticlube обладает хорошей устойчивостью к окислению, что продлевает срок службы вашего двигателя. Внутри двигателя все дело в химических реакциях. Чем больше вы пытаетесь избежать вредных химических реакций, тем больше пользы это принесет вам. Для определения устойчивости масла к окислению можно использовать несколько методов, и Atlanticlube знает их все. Чтобы получить лучшее моторное масло в мире вы должны выбрать масло Atlantic.

 

Как определить качество моторного масла

Хотя большинство моторных масел изготавливаются в соответствии с приемлемыми стандартами, их общие и специфические качества могут сильно различаться. Некачественные моторные масла часто выбрасываются на рынок по незнанию или жадности. К сожалению, для неосведомленного автовладельца качественное моторное масло и некачественное моторное масло будут выглядеть и ощущаться одинаково.

Двигатель и стендовые испытания

Двигатель всегда был конечной платформой для определения требуемого качества масла. Несмотря на то, что конструкция двигателя была изменена, чтобы соответствовать стандартам производительности, топливной эффективности и экологическим стандартам, двигатель по-прежнему остается высшим арбитром качества масла.

Однако использование двигателя для измерения качества масла при динамометрических испытаниях может оказаться дорогостоящим делом. Тем не менее, чтобы помочь контролировать затраты на гарантийное обслуживание, производители двигателей неизбежно должны разрабатывать и использовать тесты двигателей при определении качества масла, необходимого для конкретной конструкции или компонента.

Хотя это необходимо, создание воспроизводимых динамометрических испытаний двигателя может быть сложной задачей. Поскольку конструкция двигателя постепенно увеличивает мощность по сравнению с двигателями меньшего размера, сложность проведения воспроизводимых динамометрических испытаний возрастает еще быстрее. К счастью, когда уровень качества определен на динамометре или в полевых условиях, существует гораздо менее затратный подход, который можно применить для более точной оценки качества масла.

Это включает в себя использование лабораторных стендовых испытаний, предназначенных для тесной связи с испытаниями на динамометрическом стенде двигателя или полевым опытом. Эти стендовые испытания позволяют относительно недорого измерить качество масла. Однако ценность и значимость этого типа испытаний зависит от ряда факторов, включая определение конкретных потребностей двигателя, четкую и непротиворечивую информацию о двигателе либо в ходе динамометрических испытаний, либо в полевых условиях, а также понимание взаимосвязи между потребности двигателя и физические и/или химические свойства масла.

Свойства моторного масла

Для обслуживания двигателя масло должно обладать определенными физическими и химическими свойствами. Во время службы масла в двигателе возникает ряд рабочих нагрузок, которые отрицательно сказываются на долгосрочной способности масла функционировать на неизменно высоком уровне. Условия эксплуатации также могут сильно различаться в зависимости от окружающей среды и способа использования автомобиля. Следовательно, выбор моторного масла для удовлетворения конкретных потребностей и условий обслуживания требует знания нескольких важных свойств масла, включая вязкость.

Вязкость

Вязкость можно определить как сопротивление жидкости течению. Поскольку молекулы жидкости несколько притягиваются друг к другу, требуется энергия, чтобы разделить их и создать поток. Как правило, более крупные молекулы имеют большее притяжение между собой и более высокую вязкость. Энергия, необходимая для преодоления этого притяжения между молекулами и создания потока жидкости, можно рассматривать как форму трения.

Следовательно, вязкость можно определить как форму молекулярного трения. Из всех физических и химических свойств моторного масла его вязкость и вискозиметрические свойства во время использования часто считаются наиболее важными.

Вязкость и предотвращение износа

Это же молекулярное трение предотвращает слишком быструю утечку масла, когда две поверхности двигателя в относительном движении сближаются под давлением. Эта неспособность промежуточного масла быстро выйти и уровень его несжимаемости удерживает две поверхности друг от друга и предотвращает износ, процесс, который называется гидродинамической смазкой. Чем выше вязкость, тем больше притяжение молекул масла и выше защита от износа.

Класс вязкости

Вязкость смазочного материала всегда ассоциировалась с защитой от износа. В начале своей истории SAE признала вязкость важным фактором для работы двигателя и ввела систему классификации J300, которая устанавливает уровни вязкости для двигателей по ряду классов. Эти марки определяются уровнями вязкости в одной или двух температурных зонах. Сегодня классы устанавливаются для рабочих температур двигателя и для зимних температур, при которых масло влияет на запуск и прокачку.

Вязкость при рабочих условиях

В первые годы существования автомобильных двигателей масла формулировались просто и подчинялись уравнению Ньютона для вязкости: чем больше сила, используемая для движения жидкости (напряжение сдвига), тем быстрее она будет течь (скорость сдвига). По существу, отношение напряжения сдвига к скорости сдвига — вязкости — оставалось постоянным при всех скоростях сдвига. Все моторные масла того времени были практически одного сорта и не имели классификации SAE «W».

Это вискозиметрическое соотношение изменилось в 1940-х годах, когда было обнаружено, что добавление небольших количеств высокомолекулярных полимеров, по-видимому, придает маслу желаемые характеристики текучести как для низкотемпературного пуска, так и для работы двигателя при высоких температурах. Соответственно, эти полимерсодержащие масла относились по системе классификации вязкости SAE к всесезонным моторным маслам, так как удовлетворяли требованиям обеих вязкостно-температурных зон.

С тех пор большую популярность приобрели всесезонные масла (например, SAE 10W-40, 5W-30, 0W-20 и т. д.). Однако они больше не были ньютоновскими по характеристикам течения, поскольку было обнаружено, что вязкость уменьшается с увеличением скорости сдвига. Это считалось важным для смазывания двигателей, которые работали при высоких скоростях сдвига (измеряемых в миллионах обратных секунд), в отличие от нескольких сотен обратных секунд вискозиметров с низким сдвигом, которые тогда использовались для характеристики моторных масел.

Вискозиметрия при высокой скорости сдвига

Следовательно, возникла необходимость в разработке вискозиметра с высокой скоростью сдвига для измерения вязкости в двигателях при рабочих температурах. В начале 1980-х годов были разработаны прибор и методика, которые могли достигать нескольких миллионов обратных секунд при 150°C, а также обеспечивать высокие скорости сдвига при других температурах как на свежем, так и на отработанном моторном масле.

Прибор назывался вискозиметром с имитацией конического подшипника. Этот метод был принят ASTM как метод испытаний D4683 для использования при 150 ° C (и совсем недавно как D6616 для использования при 100 ° C). Это критическое стендовое испытание качества моторного масла стало известно как вязкость при высоких температурах и высокой скорости сдвига (HTHS). Затем были установлены минимальные пределы для различных марок в системе классификации вязкости SAE.

Интересно, что позже было показано, что этот инструмент был уникальным и в основном абсолютным в обеспечении измерений как крутящего момента сдвига, так и напряжения сдвига, а также скорости сдвига во время работы. Это единственный известный вискозиметр, способный это делать.

Вязкость и гелеобразование масла при низких температурах

Первоначально всесезонные моторные масла были представлены для снижения вязкости масла при низких температурах, чтобы облегчить запуск двигателя. Это важное преимущество сразу же стало очевидным, и с тех пор всесезонные масла стали самой популярной формой моторного масла во всем мире.

С облегчением пуска двигателя при низких температурах стала очевидной еще одна проблема — прокачиваемость масла. Это была значительно более серьезная проблема, так как недостаточная прокачиваемость масла могла вывести двигатель из строя. В ходе испытаний на динамометрическом стенде в холодильной камере было установлено, что существуют две формы проблемы прокачиваемости. Первый был просто связан с высокой вязкостью и назывался поведением с ограничением потока.

Второй был менее очевиден и связан с гелеобразованием масла при длительном цикле глубокого охлаждения. Это было названо «связыванием воздуха», поскольку масляный насос оказался связанным воздухом в результате того, что столб масла вытягивался из поддона, а масло не заполняло эту пустоту, как показано на рис. 1.9.0005

Этих знаний и стендовых испытаний, которые изначально, казалось, предсказывали обе формы отказа, было недостаточно. Зимой 1979–1980 годов в Су-Фолс, Южная Дакота, цикл охлаждения показал, что связывание воздуха может происходить при относительно мягких условиях охлаждения. За 24 часа было выведено из строя несколько двигателей, содержащих масло.

Цикл охлаждения привел к состоянию, при котором масло стало связанным с воздухом. Дорогостоящий инцидент выявил потребность в более чувствительных стендовых испытаниях, которые могли бы точно предсказать тенденцию отказов прокачиваемости из-за связывания воздуха.

Индекс гелеобразования

Связанное с воздухом моторное масло, вызвавшее аварии в Су-Фоллс, стало серьезным примером. Были разработаны новый прибор и методика стендовых испытаний для выявления любой склонности испытуемого масла к гелеобразованию. Этот метод, предполагающий непрерывную низкоскоростную работу цилиндрического ротора в свободно окружающем статоре, был немедленно включен в спецификации моторного масла и позже стал ASTM D5133.

Это не только показало тенденцию масла к ограничению потока, но также определило степень гелеобразования, которое может произойти в измеренном диапазоне температур (обычно от минус 5 до минус 40 градусов C). Этот параметр был назван индексом гелеобразования. Сегодня спецификации моторных масел для всесезонных масел требуют максимального индекса гелеобразования 12.9.0005

Вязкость и поглощение энергии

Несмотря на то, что вязкость полезна для двигателя в предотвращении износа за счет гидродинамической смазки, она также имеет некоторые негативные аспекты, которые могут повлиять на эффективность работы двигателя. Молекулярное трение масла, разделяющее две поверхности в относительном движении, требует энергии для его преодоления. Это значительное количество энергии от двигателя в обмен на обеспечиваемую защиту от износа. Таким образом, тщательное определение вязкости масла имеет решающее значение для владельцев транспортных средств и для правительств, устанавливающих ограничения экономии топлива.

Снижение вязкости масла может быть важным шагом в уменьшении вязкого трения для повышения эффективности использования топлива. Интересно, что за последние несколько лет увеличилось количество автомобилей, работающих на моторных маслах с более низким уровнем вязкости, что заметно улучшило эффективность их двигателей.

Десять лет назад самыми низкими классами вязкости по SAE были масла SAE 0W-20 и 5W-20, при этом SAE 20 имело минимальную вязкость при высокой скорости сдвига 2,6 сантипуаз (сП) для имитации работы двигателя при 150 °C. На рис. моторные масла, продаваемые в Северной и Южной Америке, а также моторные масла SAE 5W-30.

Японские автопроизводители недавно призвали к еще более низким классам вязкости. Как следствие, SAE ввела три новых рабочих класса, обозначенных как SAE 16 (минимум 2,3 сП при 150°C), SAE 12 (минимум 2,0 сП при 150°C) и SAE 8 (минимум 1,7 сП при 150°C). Эти требования также показаны на рис. 2 для сравнения.

Ни одно из этих масел более низкого качества еще не поступило на рынок для анализа. Поскольку вязкость напрямую связана с количеством энергии, затрачиваемой двигателем на защиту от износа за счет гидродинамической смазки, можно было бы ожидать, что такое снижение вязкости будет иметь важные преимущества с точки зрения эффективности использования топлива, но только в двигателях, предназначенных для их использования.

Индекс топливной эффективности в зависимости от вязкости

Учитывая влияние вязкости масла на двигатель, была разработана методика расчета влияния моторных масел на эффективность использования топлива. Чтобы иметь смысл, значения вязкости должны были быть получены при высоких скоростях сдвига, связанных с работой в определенных частях двигателя.

Более ранняя работа с динамометром определила процент трения и рабочую температуру пяти основных мест смазки в поршневом газовом двигателе, ответственных почти за все потери эффективности. Эта информация использовалась для разработки параметра индекса эффективности вязкого топлива (V-FEI).

При этом значении, которое находится в диапазоне от 0 до 100, чем выше V-FEI данного моторного масла, тем меньше энергии теряется из-за вязкости и, следовательно, тем более экономичным является двигатель. Хотя различные конструкции двигателей могут иметь разные уровни трения в основных смазывающих зонах, использование этих данных о трении обеспечивает сравнительную ценность моторных масел.

На Рисунке 3 показано среднее значение моторных масел SAE 0W-20 и 5W-30 на рынках Северной и Южной Америки с 2008 по 2014 год. Для сравнения среднее значение V-FEI для SAE 0W-20 и 5W-30 в более раннем исследовании было 46 и 47 соответственно.

Как и ожидалось, было установлено, что усредненные за год всесезонные масла SAE 0W-20 способствовали большей топливной экономичности двигателя, чем усредненные всесезонные масла SAE 5W-30 из-за различий в вязкости, показанных на рисунке 2. За исключением 2012 г., увеличение V-FEI эквивалентно почти 7-8 процентам эффективности использования топлива в зависимости от вязкости.

Снижение средней топливной экономичности моторных масел SAE 0W-20, собранных в 2012 году, может свидетельствовать о разработке рецептур, отвечающих опасениям автопроизводителей, что преимущества гидродинамической смазки не будут потеряны при усилиях по повышению эффективности использования топлива.

Испаряемость моторного масла

Еще один аспект, который следует учитывать при снижении вязкости в рецептурах моторных масел, заключается в том, что такое снижение чаще всего достигается за счет использования базовых масел с более высокой летучестью. Испаряющееся масло снижает количество смазочного материала, используемого в двигателе, и может содержать компоненты, загрязняющие катализатор выхлопных газов, что негативно влияет на способность катализатора уменьшать смог. Масло, оставшееся после потери более летучих компонентов, также будет более вязким и энергоемким.

На рис. 4 показана характеристика двух наиболее летучих классификаций всесезонных моторных масел. Также показана максимальная летучесть, установленная Международным комитетом по стандартизации и одобрению смазочных материалов (ILSAC).

В последние несколько лет стало очевидным, что классификационные категории SAE 0W-20 и 5W-30 были разработаны с достаточным запасом для соответствия спецификации ILSAC по летучести. Эти результаты показывают, что контроль испаряемости может быть менее требовательным при использовании всесезонных масел, недавно классифицированных как SAE 0W-16, 0W-12 и 0W-8.

Выбросы и летучесть фосфора

Растворимые соединения фосфора, такие как диалкилдитиофосфат цинка (ZDDP), уже много лет используются в рецептурах моторных масел. Эти противоизносные и антиокислительные соединения оказали значительную поддержку конструкции современных двигателей.

В середине 1900-х поршневой двигатель был признан основным источником загрязнения воздуха. Несгоревшие или частично сгоревшие углеводороды из выхлопных газов двигателей под действием солнечного света превращались в вредные газообразные углеводороды, из-за которых в некоторых крупных городах образовывался смог.

Как следствие, в 1970-х годах были разработаны каталитические нейтрализаторы выхлопных газов для обработки выхлопных газов и преобразования их в углекислый газ и воду. К сожалению, спустя годы после разработки каталитического нейтрализатора было обнаружено, что некоторые элементы в бензине или моторном масле, включая фосфор и серу, деактивируют катализатор, покрывая его. В конечном итоге это привело к ограничениям количества этих химикатов в моторном масле и топливе.

Индекс выбросов фосфора

Тест Селби-Ноака на испаряемость был разработан в начале 1990-х годов как лучший и более безопасный подход к определению летучести моторного масла. Он собрал летучий компонент теста на летучесть для дальнейшего анализа, что помогло обнаружить фосфор и серу. При первом анализе летучих веществ, собранных в ходе стендовых испытаний, было очевидно, что фосфорсодержащие присадки в моторных маслах также производят фосфор в результате разложения присадок.

На основе этих результатов был разработан параметр, связанный с количеством фосфора, высвобождаемого во время испытания, который называется индексом выброса фосфора (PEI).

На рис. 5 показано изменение PEI за последние восемь лет. Очевидно, что был достигнут значительный прогресс в снижении разложения фосфора и/или летучести этих двух всесезонных классификаций SAE. Снижение PEI до 6-10 миллиграммов на литр моторного масла является значительным изменением в защите каталитического нейтрализатора от воздействия фосфора.

В связи с тенденцией к использованию двигателей меньшего размера, экономичных и оснащенных турбокомпрессором двигателей, генерирующих более высокие температуры во время работы, стендовые испытания, которые могут выявить тенденции выбросов фосфора в составе масла, были бы полезны при разработке смазочных материалов, наиболее подходящих для двигателя и окружающей среды.

Содержание фосфора и летучесть

Насколько сильно фосфор в моторном масле влияет на количество фосфора, улетучивающегося во время работы двигателя, является важным вопросом, влияющим на выбор присадок в рецептуре масла. На рис. 6 показано содержание фосфора в ряде моторных масел SAE 0W-20 и 5W-30 в зависимости от полученных значений PEI.

Данные показывают, что летучесть фосфора, определяемая тестом Селби-Ноака, практически не связана с количеством фосфора, присутствующего в масле в качестве присадки. Отсутствие корреляции между содержанием фосфора в моторном масле и количеством испарившегося фосфора проявляется в низких значениях коэффициента корреляции (R²).

Этот параметр был бы близок к единице, если бы концентрация фосфора влияла на его летучесть. Как показано на рисунке 6, значения, полученные на основе данных, намного ниже: R² составляет 0,05 для моторных масел SAE 0W-20 и 0,17 для моторных масел SAE 5W-30.

Данные PEI в основном сгруппированы по значениям от 2 миллиграммов на литр до примерно 30 миллиграммов на литр.