Содержание
Двигатели внешнего сгорания виды
Двигатели внешнего сгорания стали использоваться тогда, когда людям потребовался мощный и экономичный источник энергии. До этого использовались паровые установки, однако они были взрывоопасными, так как использовали горячий пар под давлением. В начале 19 века им на смену пришли устройства с внешним сгоранием, а еще через несколько десятков лет были изобретены уже привычные приборы с внутренним сгоранием.
Происхождение устройств
В 19 веке человечество столкнулось с проблемой, которая заключалась в том, что паровые котлы слишком часто взрывались, а также имели серьезные конструктивные недостатки, что делало их использование нежелательным. Выход был найден в 1816 году шотландским священником Робертом Стирлингом. Эти устройства можно также называть «двигателями горячего воздуха», которые применялись еще в 17 веке, однако этот человек добавил к изобретению очиститель, называющийся в настоящее время регенератором. Таким образом, двигатель внешнего сгорания Стирлинга был способен сильно повысить производительность установки, так как он сохранял тепло в теплой рабочей зоне, в то время как рабочее тело охлаждалось. Из-за этого эффективность работы всей системы была значительно увеличена.
В то время изобретение использовалось достаточно широко и находилось на подъеме своей популярности, однако со временем его перестали использовать, и о нем забыли. На смену оборудованию внешнего сгорания пришли паровые установки и двигатели, но уже привычные, с внутренним сгоранием. Вновь о них вспомнили лишь в 20 веке.
Работа установки
Принцип работы двигателя внешнего сгорания заключается в том, что в нем постоянно чередуются два этапа: нагревание и охлаждение рабочего тела в замкнутом пространстве и получение энергии. Данная энергия возникает из-за того, что постоянно изменяется объем рабочего тела.
Чаще всего рабочим веществом в таких устройствах становится воздух, однако возможно использование еще и гелия или водорода. В то время пока изобретение находилось на стадии разработки, в качестве опытов использовались такие вещества, как двуокись азота, фреоны, сжиженный пропан-бутан. В некоторых образцах пытались применять даже обычную воду. Стоит отметить, что двигатель внешнего сгорания, который запускали с водой в качестве рабочего вещества, отличался тем, что у него была достаточно высокая удельная мощность, высокое давление, а сам он был достаточно компактным.
Первый тип двигателя. «Альфа»
Первой моделью, которая использовалась, стала «Альфа» Стирлинга. Особенность его конструкции состоит в том, что она имеет два силовых поршня, находящихся в разных в раздельных цилиндрах. Один из них имел достаточно высокую температуру и был горячим, другой, наоборот, холодным. Внутри теплообменника с высокой температурой располагалась горячая пара цилиндр-поршень. Холодная пара находилась внутри теплообменника с низкой температурой.
Основными преимуществами теплового двигателя внешнего сгорания стало то, что они имели высокую мощность и объем. Однако температура горячей пары при этом была слишком велика. Из-за этого возникали некоторые технические трудности в процессе изготовления таких изобретений. Регенератор данного устройства находится между горячей и холодной соединительными трубками.
Второй образец. «Бета»
Вторым образцом стала модель «Бета» Стирлинга. Основное конструктивное отличие заключалось в том, что имелся лишь один цилиндр. Один из его концов выполнял роль горячей пары, а другой конец оставался холодным. Внутри данного цилиндра перемещался поршень, с которого можно снимать мощность. Также внутри имелся вытеснитель, который отвечал за изменение объема горячей рабочей зоны. В данном оборудовании использовался газ, который перекачивался из холодной зоны в горячую через регенератор. Этот вид двигателя внешнего сгорания обладал регенератором в виде внешнего теплообменника или же совмещался с поршнем-вытеснителем.
Последняя модель. «Гамма»
Последней разновидностью данного двигателя стала «Гамма» Стирлинга. Этот тип отличался не только наличием поршня, а также вытеснителя, а еще и тем, что в его конструкцию входили уже два цилиндра. Как и в первом случае один из них был холодным и использовался он для отбора мощности. А вот второй цилиндр, как в предыдущем случае, был холодным с одного конца и горячим с другого. Здесь же перемещался вытеснитель. В поршневом двигателе внешнего сгорания также имелся регенератор, который мог быть двух типов. В первом случае он был внешним и соединял между собой такие конструктивные части, как горячую зону цилиндра с холодной, а также с первым цилиндром. Второй тип – это внутренний регенератор. Если использовался этот вариант, то он входил в конструкцию вытеснителя.
Использование Стирлингов обосновано в том случае, если необходим простой и небольшой преобразователь тепловой энергии. Также его можно использовать в том случае, если разница температур недостаточно велика, чтобы использовать газовые или же паровые турбины. Стоит отметить, что на сегодняшний день такие образцы стали использоваться чаще. К примеру, используются автономные модели для туристов, которые способны работать от газовой конфорки.
Применение устройств в настоящее время
Казалось бы, что такое старое изобретение не может использоваться в наши дни, однако это не так. NASA заказало двигатель внешнего сгорания типа Стирлинга, однако в качестве рабочего вещества должны использоваться ядерные и радиоизотопные источники тепла. Кроме этого, он также успешно может быть использован в следующих целях:
- Использовать такую модель двигателя для перекачки жидкости гораздо проще, чем обычный насос. Во многом это благодаря тому, что в качестве поршня можно применять саму перекачиваемую жидкость. Кроме того, она же и будет охлаждать рабочее тело. К примеру, такой вид «насоса» можно использовать, чтобы накачивать воду в ирригационные каналы, используя для этого солнечное тепло.
- Некоторые изготовители холодильников склоняются к установке таких устройств. Стоимость продукции удастся снизить, а в качестве хладагента можно применять обычный воздух.
- Если совместить двигатель внешнего сгорания этого типа с тепловым насосом, то можно оптимизировать работу тепловой сети в доме.
- Довольно успешно Стирлинги используются на подводных лодках ВМС Швеции. Дело в том, что двигатель работает на жидком кислороде, который впоследствии используется для дыхания. Для подводной лодки это очень важно. К тому же такое оборудование обладает достаточно низким уровнем шума. Конечно, агрегат достаточно большой и требует охлаждения, но именно эти два фактора несущественны, если речь идет о подводной лодке.
Преимущества использования двигателя
Если во время конструирования и сборки применить современные методы, то удастся поднять коэффициент полезного действия двигателя внешнего сгорания до 70%. Использование таких образцов сопровождается следующими положительными качествами:
- Удивительно, однако крутящий момент в таком изобретении практически не зависит от скорости вращения коленчатого вала.
- В данном силовом агрегате отсутствуют такие элементы, как система зажигания и клапанная система. Также здесь отсутствует распредвал.
- Достаточно удобно то, что на протяжении всего периода использования не потребуется проводить регулировку и настройку оборудования.
- Данные модели двигателя не способны «заглохнуть». Простейшая конструкция аппарата позволяет использовать его достаточно продолжительное время в полностью автономном режиме.
- В качестве источника энергии можно использовать практически все, начиная от дров и заканчивая урановым топливом.
- Естественно, что в двигателе внешнего сгорания процесс сжигания веществ осуществляется снаружи. Это способствует тому, что топливо дожигается в полном объеме, а количество токсических выбросов минимизируется.
Естественно, что любое изобретение не лишено недостатков. Если говорить о минусах таких двигателей, то они заключаются в следующем:
- Из-за того что сгорание осуществляется вне двигателя, отвод получаемого тепла происходит через стенки радиатора. Это вынуждает увеличивать габариты устройства.
- Материалоемкость. Для того чтобы создать компактную и эффективную модель двигателя Стирлинг, необходимо иметь качественную жаропрочную сталь, которая сможет выдержать большое давление и высокую температуру. Кроме того, должна быть низкая теплопроводность.
- В качестве смазки придется покупать специальное средство, так как обычное коксуется при высоких температурах, которые достигаются в двигателе.
- Для получения достаточно высокой удельной мощности придется использовать либо водород, либо гелий в качестве рабочего вещества.
Водород и гелий в качестве топлива
Получение высокой мощности, конечно же, необходимо, однако нужно понимать, что использование водорода или гелия достаточно опасно. Водород, к примеру, сам по себе достаточно взрывоопасен, а при высоких температурах он создает соединения, которые называются металлогидритами. Это происходит, когда водород растворяется в металле. Другими словами, он способен разрушить цилиндр изнутри.
Кроме того, и водород, и гелий – это летучие вещества, которые характеризуются высокой проникающей способностью. Если говорить проще, то они достаточно легко просачиваются сквозь практически любые уплотнения. А потери вещества означают потери в рабочем давлении.
Роторный двигатель внешнего сгорания
Сердце такой машины – это роторная машина расширения. Для двигателей с внешним типом сгорания этот элемент представлен в виде полого цилиндра, который с обеих сторон прикрыт крышками. Сам по себе ротор имеет вид колеса, который посажен на вал. Также у него имеется определенное количество П-образных выдвигающихся пластин. Для их выдвижения используется специальное выдвижное устройство.
Двигатель внешнего сгорания Лукьянова
Юрий Лукьянов – это научный сотрудник Псковского политехнического института. Он уже достаточно давно занимается разработкой новых моделей двигателей. Ученый старался сделать так, чтобы в новых моделях отсутствовали такие элементы, как коробка передач, распредвал и выхлопная труба. Основной недостаток устройств Стирлинга заключался в том, что они имели слишком большие габариты. Именно этот недостаток ученому и удалось устранить за счет того, что лопасти были заменены на поршни. Это помогло уменьшить размер всей конструкции в несколько раз. Некоторые говорят о том, что можно сделать двигатель внешнего сгорания своими руками.
Всего около ста лет назад двигателям внутреннего сгорания пришлось в жестокой конкурентной борьбе завоевывать то место, которое они занимают в современном автомобилестроении. Тогда их превосходство отнюдь не представлялось столь очевидным, как в наши дни. Действительно, паровая машина — главный соперник бензинового мотора — обладала по сравнению с ним огромными достоинствами: бесшумностью, простотой регулирования мощности, прекрасными тяговыми характеристиками и поразительной «всеядностью», позволяющей работать на любом виде топлива от дров до бензина. Но в конечном итоге экономичность, легкость и надежность двигателей внутреннего сгорания взяли верх и заставили примириться с их недостатками, как с неизбежностью.
В 1950-х годах с появлением газовых турбин и роторных двигателей начался штурм монопольного положения, занимаемого двигателями внутреннего сгорания в автомобилестроении, штурм, до сих пор не увенчавшийся успехом. Примерно в те же годы делались попытки вывести на сцену новый двигатель, в котором поразительно сочетается экономичность и надежность бензинового мотора с бесшумностью и «всеядностью» паровой установки. Это – знаменитый двигатель внешнего сгорания, который шотландский священник Роберт Стирлинг запатентовал 27 сентября 1816 года (английский патент № 4081).
Содержание
Физика процесса
Принцип действия всех без исключения тепловых двигателей основан на том, что при расширении нагретого газа совершается большая механическая работа, чем требуется на сжатие холодного. Чтобы продемонстрировать это, достаточно бутылки и двух кастрюль с горячей и холодной водой. Сначала бутылку опускают в ледяную воду, а когда воздух в ней охладится, горлышко затыкают пробкой и быстро переносят в горячую воду. Через несколько секунд раздается хлопок и нагреваемый в бутылке газ выталкивает пробку, совершая механическую работу. Бутылку можно снова возвратить в ледяную воду — цикл повторится.
в цилиндрах, поршнях и замысловатых рычагах первой машины Стирлинга почти в точности воспроизводился этот процесс, пока изобретатель не сообразил, что часть тепла, отнимаемого у газа при охлаждении, можно использовать для частичного подогрева. Нужна лишь какая-то емкость, в которой можно было бы запасать тепло, отнятое у газа при охлаждении, и снова отдавать ему при нагревании.
Но, увы, даже это очень важное усовершенствование не спасло двигатель Стирлинга. К 1885 году достигнутые здесь результаты были весьма посредственны: 5—7 процентов к.п.д., 2 л. с. мощности, 4 тонны веса и 21 кубометр занимаемого пространства.
Двигатели внешнего сгорания не были спасены даже успехом другой конструкции, разработанной шведским инженером Эриксоном. В отличие от Стирлинга, он предложил нагревать и охлаждать газ не при постоянном объеме, а при постоянном давлении. 8 1887 году несколько тысяч небольших эриксоновских двигателей отлично работало в типографиях, в домах, на шахтах, на судах. Они наполняли водонапорные баки, приводили а действие лифты. Эриксон пытался даже приспособить их для привода экипажей, но они оказались чересчур тяжелыми. В России до революции большое количество таких двигателей выпускалось под названием «Тепло и сила».
Однако попытки увеличить мощность до 250 л. с. окончились полным провалом. Машина с цилиндром диаметром 4,2 метра развивала меньше 100 л. е., огневые камеры прогорели, и судно, на котором были установлены двигатели, погибло.
Инженеры без сожаления распрощались с этими слабосильными мастодонтами как только появились мощные, компактные и легкие бензомоторы и дизели. И вдруг, в 1960-е, спустя почти 80 лет о «стирлингах» и «эриксонах» (будем условно называть их так по аналогии с дизелем) заговорили как о грозных соперниках двигателей внутреннего сгорания. Разговоры эти не утихают и поныне. Чем же объясняется такой крутой поворот во взглядах?
Цена методичности
Когда узнаешь о старой технической идее, возродившейся в современной технике, сразу же возникает вопрос: что же препятствовало ее осуществлению раньше? В чем состояла та проблема, та «зацепка», без решения которой она не могла проложить себе дорогу в жизнь? И почти всегда выясняется, что своим возрождением старая идея обязана либо новому технологическому методу, либо новой конструкции, до которой не додумались предшественники, либо новому материалу. Двигатель внешнего сгорания можно считать редчайшим исключением.
Теоретические расчеты показывают, что к.п.д. «стирлингов» и «эриксонов» могут достигать 70 процентов — больше, чем у любого другого двигателя. А это значит, что неудачи предшественников объяснялись второстепенными, в принципе устранимыми факторами. Правильный выбор параметров и областей применения, скрупулезное исследование работы каждого узла, тщательная обработка и доводка каждой детали позволили реализовать преимущества цикла. Уже первые экспериментальные образцы дали КПД 39 процентов! (к.п.д. бензиновых двигателей и дизелей, которые отрабатывались годами, соответственно 28—30 и 32—35 процентов.) Какие же возможности «просмотрели» в свое время и Стирлинг и Эриксон?
той самой емкости, в которой попеременно то запасается, то отдается тепло. Расчет регенератора в те времена был просто невозможен: науки о теплопередаче не существовало. Его размеры принимались на глазок, а как показывают расчеты, КПД двигателей внешнего сгорания очень сильно зависит от качества регенератора. Правда, его плохую работу можно в определенной степени компенсировать повышением давления.
Вторая причина неуспеха была в том, что первые установки работали на воздухе при атмосферном давлении: их размеры получались огромными, а мощности — малыми.
Доведя к.п.д. регенератора до 98 процентов и заполнив замкнутый контур сжатым до 100 атмосфер водородом или гелием, инженеры наших дней увеличили экономичность и мощность «стирлингов», которые даже в таком виде показали к.п.д. более высокий, чем у двигателей внутреннего сгорания.
Уже одного этого было бы достаточно, чтобы говорить об установке двигателей внешнего сгорания на автомобилях. Но только высокой экономичностью отнюдь еще не исчерпываются достоинства этих возрожденных из забвения машин.
Как работает Стирлинг
Принципиальная схема двигателя внешнего сгорания:
1 — топливная форсунка;
2 — выпускной патрубок;
3 — элементы воздухоподогревателя;
4 — подогреватель воздуха;
5 — горячие газы;
6 — горячее пространство цилиндра;
7 — регенератор;
8 — цилиндр;
9 — ребра охладителя;
10 — холодное пространство;
11 — рабочий поршень;
12 — ромбический привод;
13 — шатун рабочего поршня;
14 — синхронизирующие шестерни;
15 — камера сгорания;
16 — трубки нагревателя;
17 — горячий воздух;
18 — поршень-вытеснитель;
19 — воздухоприемник;
20 — подвод охлаждающей воды;
21 — уплотнение;
22 — буферный объем;
23 — уплотнение;
24 — толкатель поршня-вытеснителя;
25 — толкатель рабочего поршня;
26 — ярмо рабочего поршня;
27 — палец ярма рабочего поршня;
28 — шатун поршня-вытеснителя;
29 — ярмо поршня-вытеснителя;
30 — коленчатые валы.
Красный фон – контур нагрева;
точечный фон — контур охлаждения
В современной конструкции «стирлинга», работающего на жидком топливе, — три контура, имеющих между собой лишь тепловой контакт. Это контур рабочего тела (обычно водорода или гелия), контур нагрева и контур охлаждения. Главное назначение контура нагрева — поддерживать высокую температуру в верхней части рабочего контура. Контур охлаждения поддерживает низкую температуру в нижней части рабочего контура. Сам контур рабочего тела замкнут.
Контур рабочего тела. В цилиндре 8 движутся два поршня — рабочий 11 и поршень-вытеснитель 18. Движение рабочего поршня вверх приводит к сжатию рабочего тела, движение его вниз вызывается расширением газа и сопровождается совершением полезной работы. Движение поршня-вытеснителя вверх выжимает газ в нижнюю, охлаждаемую полость цилиндра. Движение же его вниз соответствует нагреванию газа. Ромбический привод 12 сообщает поршням перемещение, соответствующее четырем тактам цикла ( <на схеме показаны эти такты).
Такт I — охлаждение рабочего тела. Поршень-вытеснитель 18 движется вверх, выжимая рабочее тело через регенератор 7, в котором запасается тепло нагретого газа, в нижнюю, охлаждаемую часть цилиндра. Рабочий поршень 11 находится в НМТ.
Такт II — сжатие рабочего тела. Энергия, запасенная в сжатом газе буферного объема 22, сообщает рабочему поршню 11 движение вверх, сопровождающееся сжатием холодного рабочего тела.
Такт III — нагревание рабочего тела. Поршень-вытеснитель 18, почти примкнув к рабочему поршню 11, вытесняет газ в горячее пространство через регенератор 7, в котором к газу возвращается тепло, запасенное при охлаждении.
Такт IV — расширение рабочего тела — рабочий такт. Нагреваясь в горячем пространстве, газ расширяется и совершает полезную работу. Часть ее запасается в сжатом газе буферного объема 22 для последующего сжатия холодного рабочего тела. Остальное снимается с валов двигателя.
Контур нагрева. Воздух вентилятором нагнетается в воздухоприемник 19, проходит через элементы 3 подогревателя, нагревается и попадает в топливные форсунки. Получившиеся горячие газы нагревают трубки 16 нагревателя рабочего тела, обтекают элементы 3 подогревателя и, отдав свое тепло воздуху, идущему на сжигание топлива, выбрасываются через выпускной патрубок 2 в атмосферу.
Контур охлаждения. Вода через патрубки 20 подается в нижнюю часть цилиндра и, обтекая ребра 9 охладителя, непрерывно охлаждает их.
«Стирлинги» вместо ДВС
Первые же испытания, проведенные пол-века назад, показали, что «стирлинг» почти идеально бесшумен. У него нет карбюратора, форсунок с высоким давлением, системы зажигания, клапанов, свечей. Давление в цилиндре, хотя и повышается почти до 200 атм, но не взрывом, как в двигателе внутреннего сгорания, а плавно. На двигателе не нужны глушители. Ромбовидный кинематический привод поршней полностью уравновешен. Никаких вибраций, никакого дребезжания.
Говорят, что, даже приложив руку к двигателю, не всегда удается определить, работает он или нет. Эти качества автомобильного двигателя особенно важны, ибо в крупных городах остро стоит проблема снижения шума.
А вот другое качество — «всеядность». По сути дела, нет такого источника тепла, который не годился бы для привода «стирлинга». Автомобиль с таким двигателем может работать на дровах, на соломе, на угле, на керосине, на ядерном горючем, даже на солнечных лучах. Он может работать на теплоте, запасенной в расплаве какой-нибудь соли или окисла. Например, расплав 7 литров окиси алюминия заменяет 1 литр бензина. Подобная универсальность не только сможет всегда выручить водителя, попавшего в беду. Она разрешит остро стоящую проблему задымления городов. Подъезжая к городу, водитель включает горелку и расплавляет соль в баке. В черте города топливо не сжигается: двигатель работает на расплаве.
А регулирование? Чтобы сбавить мощность, достаточно выпустить из замкнутого контура двигателя в стальной баллон нужное количество газа. Автоматика сразу же уменьшает подачу топлива так, чтобы температура оставалась постоянной независимо от количества газа. Для повышения мощности газ нагнетается из баллона снова в контур.
Вот только по стоимости и по весу «стирлинги» пока уступают двигателям внутреннего сгорания. На 1 л. с. у них приходится 5 кг, что намного больше, чем у бензинового и дизельного моторов. Но не следует забывать, что это еще первые, не доведенные до высокой степени совершенства модели.
Теоретические расчеты показывают, что при прочих равных условиях «стирлинги» требуют меньших давлений. Это — важное достоинство. И если у них найдутся еще и конструктивные преимущества, то не исключено, что именно они окажутся самым грозным соперником двигателей внутреннего сгорания в автомобилестроении. А вовсе не турбины.
«Стирлинг» от компании GM
Серьезная работа по усовершенствованию двигателя внешнего сгорания, начавшаяся через 150 лет после его изобретения, уже принесла свои плоды. Предложены различные конструктивные варианты двигателя, работающего по циклу Стирлинга. Есть проекты моторов с наклонной шайбой для регулирования хода поршней, запатентован роторный двигатель, в одной из роторных секций которого происходит сжатие, в другой — расширение, а подвод и отвод тепла осуществляется в соединяющих полости каналах. Максимальное давление в цилиндрах отдельных образцов доходит до 220 кГ/см 2 , а среднее эффективное давление — до 22 и 27 кГ/см 2 и более. Экономичность доведена до 150 г/л.с./час.
Наибольшего прогресса достигла компания General Motors, которая в 1970-е годы построила V-образный «стирлинг» с обычным кривошипно-шатунным механизмом. Один цилиндр у него рабочий, другой — компрессионный. В рабочем находится только рабочий поршень, а поршень-вытеснитель — в компрессионном цилиндре. Между цилиндрами расположены подогреватель, регенератор и охладитель. Угол сдвига фаз, иначе говоря угол отставания одного цилиндра от другого, у этого «стирлинга» равен 90°. Скорость одного поршня должна быть максимальной в тот момент, когда скорость другого равна нулю (в верхней и нижней мертвых точках). Смещение фаз в движении поршней достигается расположением цилиндров под углом 90°. Конструктивно это самый простой «стирлинг». Но он уступает двигателю с ромбическим кривошипным механизмом в уравновешенности. Для полного уравновешивания сил инерции в V-образном двигателе число его цилиндров должно быть увеличено с двух до восьми.
Принципиальная схема V-образного «стирлинга»:
1 — рабочий цилиндр;
2 — рабочий поршень;
3 — подогреватель;
4 — регенератор;
5 — теплоизолирующая муфта;
6 — охладитель;
7 — компрессионный цилиндр.
Рабочий цикл в таком двигателе протекает следующим образом.
В рабочем цилиндре 1 газ (водород или гелий) нагрет, в другом, компрессионном 7 — охлажден. При движении поршня в цилиндре 7 вверх газ сжимается — такт сжатия. В это время начинает двигаться вниз поршень 2 в цилиндре 1. Газ из холодного цилиндра 7 перетекает в горячий 1, проходя последовательно через охладитель 6, регенератор 4 и подогреватель 3 — такт нагревания. Горячий газ расширяется в цилиндре 1, совершая работу, — такт расширения. При движении поршня 2 в цилиндре 1 вверх газ перекачивается через регенератор 4 и охладитель 6 в цилиндр 7 — такт охлаждения.
Такая схема «стирлинга» наиболее удобна для реверсирования. В объединенном корпусе подогревателя, регенератора и охладителя (об их устройстве речь пойдет позже) для этого сделаны заслонки. Если перевести их из одного крайнего положения в другое, то холодный цилиндр станет горячим, а горячий — холодным, и двигатель будет вращаться в обратную сторону.
Подогреватель представляет собой набор трубок из жаростойкой нержавеющей стали, по которым проходит рабочий газ. Трубки нагреваются пламенем горелки, приспособленной для сжигания различных жидких топлив. Тепло от нагретого газа запасается в регенераторе. Этот узел имеет большое значение для получения высокого КПД. Он выполнит свое назначение, если будет передавать примерно в три раза больше тепла, чем в подогревателе, и процесс займет меньше 0,001 секунды. Словом, это быстродействующий аккумулятор тепла, причем скорость теплопередачи между регенератором и газом составляет 30 000 градусов в секунду. Регенератор, КПД которого равен 0,98 единицы, состоит из цилиндрического корпуса, в котором последовательно расположены несколько шайб, изготовленных из проволочной путанки (диаметр проволоки 0,2 мм). Чтобы тепло от него не передавалось холодильнику, между этими агрегатами установлена теплоизолирующая муфта. И наконец, охладитель. Он выполнен в виде водяной рубашки на трубопроводе.
Мощность «стирлинга» регулируется изменением давления рабочего газа. Для этой цели двигатель оборудуется газовым баллоном и специальным компрессором.
Чтобы оценить перспективы применения «стирлинга» на автомобилях, проанализируем его достоинства и недостатки. Начнем с одного из важнейших для теплового двигателя параметров, так называемого теоретического КПД Для «стирлинга» он определяется следующей формулой:
где η – КПД, Тх — температура «холодного» объема и Тг — температура «горячего» объема. Количественно этот параметр у «стирлинга» — 0,50. Это значительно больше, чем у самых лучших газовых турбин, бензиновых и дизельных двигателей, у которых теоретический КПД соответственно равен 0,28; 0,30; 0,40.
Как двигатель внешнего сгорания. стирлинг» может работать на различных топливах: бензине, керосине, дизельном, газообразном и даже на твердом. Такие характеристики топлива, как цетановое и октановое числа, зольность, температура выкипания при горении вне цилиндра двигателя, для «стирлинга» не имеют значения. Чтобы он работал на разных топливах, не требуется больших переделок — достаточно лишь заменить горелку.
Двигатель внешнего сгорания, в котором горение протекает стабильно с постоянным коэффициентом избытка воздуха, равным 1.3. выделяет значительно меньше, чем двигатель внутреннего сгорания, окиси углерода, углеводородов и окислов азота.
Малая шумность «стирлинга» объясняется низкой степенью сжатия (от 1,3 до 1,5). Давление в цилиндре повышается плавно, а не взрывом, как в бензиновом или дизельном двигателе. Отсутствие колебаний столба газов в выпускном тракте определяет бесшумность выхлопа, что подтверждено испытаниями двигателя, разработанного фирмой «Филлипс» совместно с фирмой Ford для автобуса.
«Стирлинг» отличается малым расходом масла и высокой износостойкостью благодаря отсутствию в цилиндре активных веществ и относительно низкой температуре рабочего газа, а надежность его выше, чем у известных нам двигателей внутреннего сгорания, так как в нем нет и сложного газораспределительного механизма.
Важное преимущество «стирлинга» как автомобильного двигателя — повышенная приспособляемость к изменениям нагрузки. Она, например, на 50 процентов выше, чем у карбюраторного мотора, за счет чего можно уменьшить число ступеней в коробке передач. Однако совсем отказаться от сцепления и коробки передач, как в паровом автомобиле, нельзя.
Но почему же двигатель с такими очевидными достоинствами до сих пор не нашел практического применения? Причина проста — у него немало еще неустраненных недостатков. Главнейшие среди них — большая сложность в управлении и регулировке. Существуют и другие «рифы», которые не так просто обойти и конструкторам и производственникам.— в частности, поршням нужны очень эффективные уплотнения, которые должны выдерживать высокое давление (до 200 кГ/см2) и препятствовать попаданию масла в рабочую полость. Во всяком случае, 25-летняя работа фирмы «Филлипс» по доводке своего двигателя пока не смогла сделать его пригодным для массового применения на автомобилях. Немаловажное значение имеет характерная особенность «стирлинга» — необходимость отводить с охлаждающей водой большое количество тепла. В двигателях внутреннего сгорания значительная часть тепла выбрасывается в атмосферу вместе с отработавшими газами. В «стерлинге» же в выхлоп уходит только 9 процентов тепла, получаемого при сгорании топлива. Если в бензиновом двигателе внутреннего сгорания с охлаждающей водой отводится от 20 до 25 процентов тепла, то в «стирлинге» — до 50 процентов. Это значит, что автомобиль с таким двигателем должен иметь радиатор примерно в 2—2.5 раза больше, чем у аналогичного бензинового мотора. Недостатком «стирлинга» является и его высокий удельный вес по сравнению с распространенным ДВС. Еще довольно существенный минус — трудность повышения быстроходности: уже при 3600 об/мин значительно возрастают гидравлические потери и ухудшается теплообмен. И наконец. «стирлинг» уступает обычному двигателю внутреннего сгорания в приемистости.
Работы по созданию и доводке автомобильных «стирлингов», в том числе для легковых машин, продолжаются. Можно считать, что в настоящее время принципиальные вопросы решены. Однако еще много дел по доводке. Применением легких сплавов можно понизить удельный вес двигателя, но он все равно будет выше. чем у мотора внутреннего сгорания, из-за более высокого давления рабочего газа. Вероятно, двигатель внешнего сгорания найдет применение в первую очередь на грузовых автомобилях, особенно военных — благодаря своей нетребовательности к топливу.
Дви́гатели вне́шнего сгора́ния — класс двигателей, где источник тепла или процесс сгорания топлива отделены от рабочего тела.
К этому классу относятся паровые машины, паровые турбины, двигатели Стирлинга, газовые турбины внешнего сгорания, а также другие типы двигателей.
История [ править | править код ]
Двигатели внешнего сгорания были изобретены 203 года тому назад, в 1816 году. Вместе с паровым двигателем, двух- и четырёхтактным двигателем внутреннего сгорания, двигатели внешнего сгорания считаются одними из основных типов двигателей. Они были разработаны с целью создания двигателей, которые были бы более безопасными и производительными, чем паровой двигатель. В самом начале XIX века отсутствие подходящих материалов приводило к многочисленным случаям со смертельным исходом в связи со взрывами паровых двигателей, находящихся под давлением.
Значительный рынок для двигателей внешнего сгорания сформировался во второй половине XIX века, в частности, в связи с более мелкими сферами применения, где их можно было безопасно эксплуатировать без необходимости в услугах квалифицированных операторов.
После изобретения двигателя внутреннего сгорания, в конце XIX века, рынок для двигателей внешнего сгорания исчез. Стоимость производства двигателя внутреннего сгорания ниже по сравнению со стоимостью производства двигателя внешнего сгорания.
Основной недостаток двигателей внутреннего сгорания заключается в том, что для их работы необходимо чистое, ископаемое топливо, увеличивающее выбросы СО2. Однако до недавнего времени выбросам СО2 не уделялось должного внимания.
Двигатель внешнего сгорания достоинства и недостатки. Энергосберегающие технологии: Двигатели внешнего сгорания
Современное автомобилестроение вышло на такой уровень развития, при котором без фундаментальных научных исследований практически невозможно достигнуть кардинальных улучшений в конструкции традиционных моторов внутреннего сгорания. Такая ситуация вынуждает конструкторов обратить внимание на альтернативные проекты силовых установок
. Одни инженерные центры сосредоточили свои силы на создании и адаптации к серийному выпуску гибридных и электрических моделей, другие автоконцерны вкладывают средства в разработку двигателей на топливе из возобновляемых источников (например, биодизель на рапсовом масле). Существуют и другие проекты силовых агрегатов, которые в перспективе могут стать новым стандартным движителем для транспортных средств.
Среди возможных источников механической энергии для автомобилей будущего следует назвать двигатель внешнего сгорания, который был изобретен в середине XIX века шотландцем Робертом Стирлингом в качестве тепловой расширительной машины.
Схема работы
Двигатель Стирлинга преобразует тепловую энергию, подводимую извне, в полезную механическую работу за счет изменения температуры рабочего тела
(газа или жидкости), циркулирующего в замкнутом объеме.
В общем виде схема работы устройства выглядит следующим образом: в нижней части двигателя рабочее вещество (например, воздух) нагревается и, увеличиваясь в объеме, выталкивает поршень вверх. Горячий воздух проникает в верхнюю часть мотора, где охлаждается радиатором. Давление рабочего тела снижается, поршень опускается для следующего цикла. При этом система герметична и рабочее вещество не расходуется, а только перемещается внутри цилиндра.
Существует несколько вариантов конструкции силовых агрегатов, использующих принцип Стирлинга.
Стирлинг модификации «Альфа»
Двигатель состоит из двух раздельных силовых поршней (горячего и холодного), каждый из которых находится в своем цилиндре. К цилиндру с горячим поршнем подводится тепло, а холодный цилиндр расположен в охлаждающем теплообменнике.
Стирлинг модификации «Бета»
Цилиндр, в котором находится поршень, нагревается с одной стороны и охлаждается с противоположного конца. В цилиндре двигается силовой поршень и вытеснитель, предназначенный для изменения объема рабочего газа. Обратное перемещение остывшего рабочего вещества в горячую полость двигателя выполняет регенератор.
Стирлинг модификации «Гамма»
Конструкция состоит из двух цилиндров. Первый — полностью холодный, в котором движется силовой поршень, а второй, горячий с одной стороны и холодный с другой, служит для перемещения вытеснителя. Регенератор для циркуляции холодного газа может быть общим для обоих цилиндров или входить в конструкцию вытеснителя.
Преимущества двигателя Стирлинга
Как и большинство моторов внешнего сгорания, Стирлингу присуща многотопливность
: двигатель работает от перепада температуры, независимо от причин его вызвавших.
Интересный факт!
Однажды была продемонстрирована установка, которая функционировала на двадцати вариантах топлива. Без остановки двигателя во внешнюю камеру сгорания подавались бензин, дизельное топливо, метан, сырая нефть и растительное масло — силовой агрегат продолжал устойчиво работать.
Двигатель обладает простотой конструкции
и не требует дополнительных систем и навесного оборудования (ГРМ, стартер, коробка передач).
Особенности устройства гарантируют длительный эксплуатационный ресурс: более ста тысяч часов непрерывной работы.
Двигатель Стирлинга бесшумен
, так как в цилиндрах не происходит детонация и отсутствует необходимость вывода отработанных газов. Модификация «Бета», оснащенная ромбическим кривошипно-шатунным механизмом, является идеально сбалансированной системой, которая в процессе работы не имеет вибраций.
В цилиндрах двигателя не происходят процессы, которые могут оказать негативное воздействие на окружающую среду. При выборе подходящего источника тепла (например, солнечная энергия) Стирлинг может быть абсолютно экологически чистым
силовым агрегатом.
Недостатки конструкции Стирлинга
При всем наборе положительных свойств немедленное массовое применение двигателей Стирлинга невозможно по следующим причинам:
Основная проблема заключается в материалоемкости конструкции. Охлаждение рабочего тела требует наличия радиаторов большого объема, что существенно увеличивает размеры и металлоемкость изготовления установки.
Нынешний технологический уровень позволит двигателю Стирлинга сравниться по характеристикам с современными бензиновыми моторами только за счет применения сложных видов рабочего тела (гелий или водород), находящихся под давлением более ста атмосфер. Этот факт вызывает серьезные вопросы как в области материаловедения, так и обеспечения безопасности пользователей.
Немаловажная эксплуатационная проблема связана с вопросами теплопроводности и температурной стойкости металлов. Тепло подводится к рабочему объему через теплообменники, что приводит к неизбежным потерям. Кроме того, теплообменник должен быть изготовлен из термостойких металлов, устойчивых к высокому давлению. Подходящие материалы очень дороги и сложны в обработке.
Принципы изменения режимов двигателя Стирлинга также кардинально отличаются от традиционных, что требует разработки специальных управляющих устройств. Так, для изменения мощности необходимо изменить давление в цилиндрах, угол фаз между вытеснителем и силовым поршнем или повлиять на емкость полости с рабочим телом.
Один из способов управления скоростью вращения вала на модели двигателя Стирлинга можно увидеть на следующем видео:
Коэффициент полезного действия
В теоретических расчетах эффективность двигателя Стирлинга зависит от разницы температур рабочего тела и может достигать 70% и более в соответствии с циклом Карно.
Однако первые реализованные в металле образцы обладали крайне невысоким КПД по следующим причинам:
- неэффективные варианты теплоносителя (рабочего тела), ограничивающие максимальную температуру нагрева;
- потери энергии на трение деталей и теплопроводность корпуса двигателя;
- отсутствие конструкционных материалов, устойчивых к высокому давлению.
Инженерные решения постоянно совершенствовали устройство силового агрегата. Так, во второй половине XX века четырехцилиндровый автомобильный двигатель Стирлинга с ромбическим приводом показал на испытаниях КПД равный 35%
на водном теплоносителе с температурой 55 °C.Тщательная проработка конструкции, применение новых материалов и доводка рабочих узлов обеспечили КПД экспериментальных образцов в 39%.
Примечание!
Современные бензиновые двигатели аналогичной мощности обладают коэффициентом полезного действия на уровне 28-30%, а турбированные дизели в пределах 32-35%.
Современные образцы двигателя Стирлинга, такие как созданный американской компанией Mechanical Technology Inc, демонстрируют эффективность до 43,5%. А с освоением выпуска жаропрочной керамики и аналогичных инновационных материалов появится возможность значительного повышения температуры рабочей среды и достижения КПД в 60%.
Примеры успешной реализации автомобильных Стирлингов
Несмотря на все сложности, известно немало работоспособных моделей двигателя Стирлинга, применимых для автомобилестроения.
Заинтересованность в Стирлинге, подходящем для установки в автомобиль, появилась в 50-е годы XX века. Работу в данном направлении вели такие концерны, как Ford Motor Company, Volkswagen Group и другие.
Компания UNITED STIRLING (Швеция) разработала Стирлинг, в котором максимально использовались серийные узлы и агрегаты, выпускаемые автопроизводителями (коленчатый вал, шатуны). Получившийся в результате четырехцилиндровый V-образный мотор обладал удельной массой 2,4 кг/кВт, что сравнимо с характеристиками компактного дизеля. Данный агрегат был успешно опробован в качестве силовой установки семитонного грузового фургона.
Одним из успешных образцов является четырехцилиндровый двигатель Стирлинга нидерландского производства модели «Philips 4-125DA», предназначавшийся для установки на легковой автомобиль. Мотор имел рабочую мощность 173 л. с. в размерах, аналогичных классическому бензиновому агрегату.
Значительных результатов добились инженеры компании General Motors, построив в 70-х годах восьмицилиндровый (4 рабочих и 4 компрессионных цилиндра) V-образный двигатель Стирлинга со стандартным кривошипно-шатунным механизмом.
Аналогичной силовой установкой в1972 году оснащалась ограниченная серия автомобилей Ford Torino
, расход топлива у которой снизился на 25% по сравнению с классической бензиновой V-образной восьмеркой.
В настоящее время более полусотни зарубежных компаний ведут работы по совершенствованию конструкции двигателя Стирлинга в целях его адаптации к массовому выпуску для нужд автомобилестроения. И если удастся устранить недостатки данного типа двигателей, в то же время сохранив его преимущества, то именно Стирлинг, а не турбины и электромоторы, придет на смену бензиновым ДВС.
Вытеснил остальные виды силовых установок, однако, работы, направленные на отказ от использования этих агрегатов, наводят на мысль о скорой смене лидирующих позиций.
С начала технического прогресса, когда использование моторов, сжигающих горючее внутри, только начиналось, не было очевидным их превосходство. Паровая машина, как конкурент, содержит в себе массу преимуществ: наряду с тяговыми параметрами, бесшумная, всеядная, легко управляется и настраивается. Но лёгкость, надёжность и экономичность позволили двигателю внутреннего сгорания взять вверх над паром.
Сегодня во главе угла стоят вопросы экологии, экономичности и безопасности. Это заставляет инженеров бросать силы на серийные агрегаты, работающие за счёт возобновляемых источников топлива. В 16 году девятнадцатого века Роберт Стирлинг зарегистрировал двигатель, работающий от внешних источников тепла. Инженеры считают, что этот агрегат способен сменить современного лидера. Двигатель Стирлинга сочетает экономичность, надёжность, работает тихо, на любом топливе, это делает изделие игроком на автомобильном рынке.
Роберт Стирлинг (1790-1878 года жизни):
История двигателя Стирлинга
Изначально, установку разрабатывали с целью заменить машину, работающую за счёт пара. Котлы паровых механизмов взрывались, при превышении допустимых норм давлением. С этой точки зрения Стирлинг намного безопасней, функционирует, используя температурный перепад.
Принцип работы двигателя Стирлинга в поочередной подаче или отборе тепла у вещества, над которым совершается работа. Само вещество заключено в объём закрытого типа. Роль рабочего вещества выполняют газы, либо жидкости. Встречаются вещества, выполняющие роль двух компонентов, газ преобразовывается в жидкость и наоборот. Жидкопоршневой мотор Стирлинга обладает: небольшими габаритами, мощный, вырабатывает большое давление.
Уменьшение и увеличение объёма газа при охлаждении либо нагреве соответственно, подтверждается законом термодинамики, согласно которого все составляющие: степень нагрева, величина занимаемого пространства веществом, сила, действующая на единицу площади, связаны и описываются формулой:
P*V=n*R*T
- P – сила действия газа в двигателе на единицу площади;
- V – количественная величина, занимаемая газом в пространстве двигателя;
- n – молярное количество газа в двигателе;
- R – постоянная газа;
- T – степень нагрева газа в двигателе К,
Модель двигателя Стирлинга:
За счёт неприхотливости установок, двигатели подразделяются: твердотопливные, жидкое горючее, солнечная энергия, химическая реакция и другие виды нагрева.
Цикл
Двигатель внешнего сгорания Стирлинга, использует одноимённую совокупность явлений. Эффект от протекающего действия в механизме высок. Благодаря этому есть возможность сконструировать двигатель с неплохими характеристиками в рамках нормальных габаритов.
Необходимо учитывать, что в конструкции механизма предусмотрен нагреватель, холодильник и регенератор, устройство, отвода тепла от вещества и возвращения тепла, в нужный момент.
Идеальный цикл Стирлинга, (диаграмма «температура-объём»):
Идеальные круговые явления:
- 1-2 Изменение линейных размеров вещества с постоянной температурой;
- 2-3 Отвод теплоты от вещества к теплообменнику, пространство, занимаемое веществом постоянно;
- 3-4 Принудительное сокращение пространства, занимаемого веществом, температура постоянна, тепло отводится охладителю;
- 4-1 Принудительное увеличение температуры вещества, занимаемое пространство постоянно, тепло подводится от теплообменника.
Идеальный цикл Стирлинга, (диаграмма «давление-объём»):
Из расчёта (моль) вещества:
Подводимое тепло:
Получаемое охладителем тепло:
Теплообменник получает тепло (процесс 2-3), теплообменник отдаёт тепло (процесс 4-1):
R – Универсальная постоянная газа;
СV – способность идеального газа удерживать тепло при неизменной величине занимаемого пространства.
За счёт применения регенератора, часть теплоты остается, в качестве энергии механизма, не меняющейся за проходящие круговые явления. Холодильник получает меньше тепла, таким образом, теплообменник экономит тепло нагревателя. Это увеличивает эффективность установки.
КПД кругового явления:
ɳ =
Примечательно, что без теплообменника совокупность процессов Стирлинга осуществима, но его эффективность будет значительно ниже. Прохождение совокупности процессов задом наперёд ведёт к описанию охлаждающего механизма. В этом случае наличие регенератора, обязательное условие, поскольку при прохождении (3-2) невозможно нагреть вещество от охладителя, температура которого значительно ниже. Так же невозможно отдать тепло нагревателю (1-4), температура которого выше.
Принцип работы двигателя
Что бы понять, как работает двигатель Стирлинга, разберёмся в устройстве и периодичности явлений агрегата. Механизм преобразует тепло, полученное от нагревателя, находящегося за пределами изделия в действие силы на тело. Весь процесс происходит благодаря температурному перепаду, в рабочем веществе, находящемся в закрытом контуре.
Принцип действия механизма базируется на расширении за счёт тепла. Непосредственно до расширения, вещество в замкнутом контуре нагревается. Соответственно, перед тем, как сжаться, вещество охлаждают. Сам цилиндр (1) окутан водяной рубашкой (3), ко дну подается тепло. Поршень, совершающий работу (4) помещен в гильзу и уплотнён кольцами. Между поршнем и дном находится механизм вытеснения (2), имеющий значительные зазоры и свободно перемещающийся. Вещество, находящееся в замкнутом контуре, двигается по объёму камеры за счёт вытеснителя. Перемещение вещества ограничено двумя направлениями: дно поршня, дно цилиндра. Движение вытеснителя обеспечивает шток (5), который проходит через поршень и функционирует за счет эксцентрика с запаздыванием на 90° в сравнении с приводом поршня.
- Позиция «A»:
Поршень расположен в крайнем нижнем положении, вещество охлаждается за счет стенок.
- Позиция «B»:
Вытеснитель занимает верхнее положение, перемещаясь, пропускает вещество через торцевые щели ко дну, сам охлаждается. Поршень стоит неподвижно.
- Позиция «C»:
Вещество получает тепло, под действием тепла увеличивается в объёме и поднимает расширитель с поршнем вверх. Совершается работа, после чего вытеснитель опускается на дно, выталкивая вещество и охлаждаясь.
- Позиция «D»:
Поршень опускается вниз, сжимает охлаждённое вещество, выполняется полезная работа. Маховик служит в конструкции аккумулятором энергии.
Рассмотренная модель без регенератора, поэтому КПД механизма не велико. Тепло вещества после совершения работы отводится в охлаждающую жидкость, используя стенки. Температура не успевает снижаться на нужную величину, поэтому время охлаждения продлевается, скорость мотора маленькая.
Виды двигателей
Конструктивно, есть несколько вариантов, использующих принцип Стирлинга, основными видами считаются:
Конструкция применяет два разных поршня, помещенных в различные контуры. Первый контур используется для нагрева, второй контур применяется для охлаждения. Соответственно, каждому поршню принадлежит свой регенератор (горячий и холодный). Устройство обладает хорошим соотношением мощности к объёму. Недостаток в том, что температура горячего регенератора создает конструктивные сложности.
- Двигатель «β – Стирлинг»:
Конструкция использует один замкнутый контур, с разными температурами на концах (холодный, горячий). В полости расположен поршень с вытеснителем. Вытеснитель делит пространство на холодную и горячую зону. Обмен холодом и теплом происходит путём перекачивания вещества через теплообменник. Конструктивно, теплообменник выполняется в двух вариантах: внешний, совмещённый с вытеснителем.
- Двигатель «γ – Стирлинг»:
Поршневой механизм предусматривает применение двух замкнутых контуров: холодного и с вытеснителем. Мощность снимается с холодного поршня. Поршень с вытеснителем с одной стороны горячий, с другой стороны холодный. Теплообменник располагается как внутри, так и снаружи конструкции.
Некоторые силовые установки не похожи на основные виды двигателей:
- Роторный двигатель Стирлинга.
Конструктивно изобретение с двумя роторами на валу. Деталь совершает вращательные движения в замкнутом пространстве цилиндрической формы. Заложен синергетический подход реализации цикла. Корпус содержит радиальные прорези. В углубления вставлены лопасти с определённым профилем. Пластины надеты на ротор и могут двигаться вдоль оси при вращении механизма. Все детали создают меняющиеся объёмы с выполняющимися в них явлениями. Объёмы различных роторов связаны при помощи каналов. Расположение каналов имеют сдвиг в 90° друг к другу. Сдвиг роторов относительно друг друга составляет 180°.
- Термоакустический двигатель Стирлинга.
Двигатель использует акустический резонанс для проведения процессов. Принцип основан на перемещении вещества между горячей и холодной полостью. Схема уменьшает количество движущихся деталей, сложность в снятии полученной мощности и поддержании резонанса. Конструкция относится к свободнопоршневому виду мотора.
Двигатель Стирлинга своими руками
Сегодня довольно часто в интернет магазине можно встретить сувенирную продукцию, выполненную в виде рассматриваемого двигателя. Конструктивно и технологично механизмы довольно просты, при желании двигатель Стирлинга легко сконструировать своими руками из подручных средств. В интернете можно найти большое количество материалов: видео, чертежи, расчёты и прочая информация на эту тему.
Низкотемпературный двигатель Стирлинга:
- Рассмотрим самый простой вариант волнового двигателя, для выполнения которого понадобится консервная банка, мягкая полиуретановая пена, диск, болты и канцелярские скрепки. Все эти материалы легко найти дома, осталось выполнение следующих действий:
- Возьмите мягкую полиуретановую пену, вырежьте на два миллиметра меньшим диаметром от внутреннего диаметра консервной банки круг. Высота пены на два миллиметра больше половины высоты банки. Поролон играет роль вытеснителя в двигателе;
- Возьмите крышку банки, в средине проделайте дырку, диаметр два миллиметра. Припаяйте к отверстию полый шток, который будет выполнять, роль направляющей для шатуна двигателя;
- Возьмите круг, вырезанный из пены, вставьте в средину круга винтик и застопорите с двух сторон. К шайбе припаяйте предварительно выпрямленную скрепку;
- В двух сантиметрах от центра просверлите дырочку, диаметром три миллиметра, проденьте вытеснитель через центральное отверстие крышки, припаяйте крышку к банке;
- Сделайте из жести небольшой цилиндр, диаметром полтора сантиметра, припаяйте его к крышке банки таким образом, что бы боковое отверстие крышки оказалось чётко по центру внутри цилиндра двигателя;
- Сделайте коленчатый вал двигателя из скрепки. Расчёт выполняется таким образом, что бы разнос колен был 90°;
- Изготовьте стойку под коленчатый вал двигателя. Из полиэтиленовой плёнки сделайте упругую перепонку, наденьте плёнку на цилиндр, продавите её, зафиксируйте;
- Самостоятельно изготовьте шатун двигателя, один конец выпрямленного изделия выгнете в форме кружка, второй конец вставьте в кусочек ластика. Длина подгоняется таким образом, что бы в крайней нижней точке вала перепонка была втянута, в крайней верхней точке, перепонка максимально вытянута. Настройте другой шатун по такому же принципу;
- Шатун двигателя с резиновым наконечником приклейте к перепонке. Шатун без резинового наконечника закрепите на вытеснителе;
- Наденьте на кривошипный механизм двигателя маховик из диска. К банке приделайте ножки, чтобы не держать изделие в руках. Высота ножек позволяет разместить под банкой свечку.
После того, как удалось сделать двигатель Стирлинга дома, мотор запускают. Для этого под банку помещают зажженную свечку, а после того, как банка прогрелась, дают толчок маховику.
Рассмотренный вариант установки можно быстро собрать у себя дома, как наглядное пособие. Если задаться целью и желанием сделать двигатель Стирлинга максимально приближённый к заводским аналогам, в свободном доступе есть чертежи всех деталей. Пошаговое выполнение каждого узла позволит создать работающий макет ни чем не хуже коммерческих версий.
Преимущества
Для двигателя Стирлинга характерны такие плюсы:
- Для работы двигателя необходим температурный перепад, какое топливо вызывает нагрев не важно;
- Нет необходимости использовать навесное и вспомогательное оборудование, конструкция двигателя простая и надёжная;
- Ресурс двигателя, благодаря особенностям конструкции, составляет 100000 часов работы;
- Работа двигателя не создаёт постороннего шума, поскольку отсутствует детонация;
- Процесс работы двигателя не сопровождается выбросом отработанных веществ;
- Работа двигателя сопровождается минимальной вибрацией;
- Процессы в цилиндрах установки экологически безвредны. Использование правильного источника тепла позволяет сделать двигатель «чистым».
Недостатки
К недостаткам двигателя Стирлинга относятся:
- Трудно наладить серийное производство, поскольку конструктивно двигатель требует использования большого количества материалов;
- Высокий вес и большие габариты двигателя, поскольку для эффективного охлаждения надо применять большой радиатор;
- Для повышения эффективности двигатель форсируют, применяя в качестве рабочего тела сложные вещества (водород, гелий), что делает эксплуатацию агрегата опасным;
- Высокотемпературная стойкость стальных сплавов и их теплопроводность усложняет процесс изготовления двигателя. Значительные потери тепла в теплообменнике снижают эффективность агрегата, а применение специфических материалов делают изготовление двигателя дорогим;
- Для регулировки и перехода двигателя с режима на режим надо применять специальные устройства управления.
Использование
Двигатель Стирлинга нашел свою нишу и активно применяется там, где габариты и всеядность важный критерий:
- Двигатель Стирлинг-электрогенератор.
Механизм преобразования тепла в электрическую энергию. Часто встречаются изделия, используемые в качестве портативных туристических генераторов, установки по использованию солнечной энергии.
- Двигатель, как насос (электрика).
Двигатель применяют для установки в контур отопительных систем, экономя на электрической энергии.
- Двигатель, как насос (обогреватель).
В странах с тёплым климатом двигатель используют как обогреватель для помещений.
Двигатель Стирлинга на подводной лодке:
- Двигатель, как насос (охладитель).
Практически все холодильники в своей конструкции применяют тепловые насосы, устанавливая двигатель Стирлинга, экономятся ресурсы.
- Двигатель, как насос, создающий сверхнизкие степени нагрева.
Устройство применяют в качестве холодильника. Для этого процесс запускают в обратную сторону. Агрегаты сжижают газ, охлаждают измерительные элементы в точных механизмах.
- Двигатель для подводной техники.
Подводные корабли Швеции и Японии работают благодаря двигателю.
Двигатель Стирлинга в качестве солнечной установки:
- Двигатель, как аккумулятор энергии.
Топливо в таких агрегатах, расплавы соли, двигатель применяют, как источник энергии. Мотор по запасу энергии опережает химические элементы.
- Солнечный двигатель.
Преобразуют энергию солнца в электричество. Вещество в данном случае, водород или гелий. Двигатель ставится в фокусе максимальной концентрации энергии солнца, созданного при помощи параболической антенны.
Экология потребления.Наука и техника:Мотор Стирлинга чаще всего применяется в ситуациях, когда требуется аппарат для преобразования тепловой энергий, отличающийся простотой и эффективностью.
Менее ста лет назад двигатели внутреннего сгорания пытались завоевать свое законное место в конкурентной борьбе среди прочих имеющихся машин и движущихся механизмов. При этом в те времена превосходство бензинового двигателя не являлось столь очевидным. Существующие машины на паровых двигателях отличались бесшумностью, великолепными для того времени характеристиками мощности, простотой обслуживания, возможностью использования различного вида топлива. В дальнейшей борьбе за рынок двигатели внутреннего сгорания благодаря своей экономичности, надежности и простоте взяли верх.
Дальнейшая гонка за совершенствования агрегатов и движущих механизмов, в которую в середине 20 века вступили газовые турбины и роторные разновидности двигателей, привела к тому, что несмотря на верховенство бензинового двигателя были предприняты попытки ввести на «игровое поле» совершенно новый вид двигателей — тепловой, впервые изобретенный в далеком 1861 году шотландским священником по имени Роберт Стирлинг. Двигатель получил название своего создателя.
ДВИГАТЕЛЬ СТИРЛИНГА: ФИЗИЧЕСКАЯ СТОРОНА ВОПРОСА
Для понимания, как работает настольная электростанция на Стирлинге, следует понимать общие сведения о принципах работы тепловых двигателей. Физически принцип действия заключается в использовании механической энергии, которая получается при расширении газа при нагревании и его последующем сжатии при охлаждении. Для демонстрации принципа работы можно привести пример на основе обычной пластиковой бутыли и двух кастрюль, в одной из которых находится холодная вода, в другой горячая.
При опускании бутылки в холодную воду, температура которой близка к температуре образования льда при достаточном охлаждении воздуха внутри пластиковой емкости ее следует закрыть пробкой. Далее, при помещении бутыли в кипяток, спустя некоторое время пробка с силой «выстреливает», поскольку в данном случае нагретым воздухом была совершена работа во много раз большая, чем совершается при охлаждении. При многократном повторении опыта результат не меняется.
Первые машины, которые были построены с использованием двигателя Стирлинга, с точностью воспроизводили процесс, демонстрирующийся в опыте. Естественно механизм требовал усовершенствования, заключающееся в применении части тепла, которое терял газ в процессе охлаждения для дальнейшего подогрева, позволяя возвращать тепло газу для ускорения нагревания.
Но даже применение этого новшества не могло спасти положение дел, поскольку первые «Стирлинги» отличались большими размерами при малой вырабатываемой мощности. В дальнейшем не раз предпринимались попытки модернизировать конструкцию для достижения мощности в 250 л.с. приводили к тому, что при наличии цилиндра диаметром 4,2 метра, реальная выходная мощность, которую выдавала электростанция на Стирлинге (Stirling) в 183 кВт на деле составляла всего 73 кВт.
Все двигатели Стирлинга работают по принципу цикла Стирлинга, включающего в себя четыре основные фазы и две промежуточные. Основными являются нагрев, расширение, охлаждение и сжатие. В качестве стадии перехода рассматриваются переход к генератору холода и переход к нагревательному элементу. Полезная работа, совершаемая двигателем, строится исключительно на разнице температур нагревающей и охлаждающей частей.
СОВРЕМЕННЫЕ КОНФИГУРАЦИИ СТИРЛИНГА
Современная инженерия различает три основных вида подобных двигателей:
- альфа-стирлинг, отличие которого в двух активных поршнях, расположенных в самостоятельных цилиндрах. Из всех трех вариантов данная модель отличается самой высокой мощностью, обладая самой высокой температурой нагревающегося поршня;
- бета-стирлинг, базирующийся на одном цилиндре, одна часть которого горячая, а вторая холодная;
- гамма-стирлинг, имеющий кроме поршня еще и вытеснитель.
Производство электростанции на Стирлинге будет зависеть от выбора модели двигателя, что позволит учесть всю положительные и отрицательные стороны подобного проекта.
ПРЕИМУЩЕСТВА И НЕДОСТАТКИ
Благодаря своим конструктивным особенностям данные двигатели обладают рядом преимуществ, но при этом не лишены недостатков.
Настольная электростанция Стирлинга, купить которую невозможно в магазине, а только у любителей, самостоятельно осуществляющих сбор подобных устройств, относятся:
- большие размеры, которые вызваны потребностью к постоянному охлаждению работающего поршня;
- использование высокого давления, что требуется для улучшения характеристик и мощности двигателя;
- потеря тепла, которая происходит за счет того, что выделяемое тепло передается не на само рабочее тело, а через систему теплообменников, чей нагрев приводит к потере КПД;
- резкое снижение мощности требует применения особых принципов, отличающихся от традиционных для бензиновых двигателей.
Наряду с недостатками, у электростанций, функционирующих на агрегатах Стирлинга, имеются неоспоримые плюсы:
- любой вид топлива, поскольку как любые двигатели, использующие энергию тепла, данный двигатель способен функционировать при разнице температур любой среды;
- экономичность. Данные аппараты могут стать прекрасной заменой паровым агрегатам в случаях необходимости переработки энергии солнца, выдавая КПДна 30% выше;
- экологическая безопасность. Поскольку настольная электростанция кВт не создает выхлопного момента, то она не производит шума и не выбрасывает в атмосферу вредных веществ. В виде источника получения мощности выступает обычное тепло, а топливо выгорает практически полностью;
- конструктивная простота. Для своей работы Стирлинг не потребует дополнительных деталей или приспособлений. Он способен самостоятельно запускаться без использования стартера;
- повышенный ресурс работоспособности. Благодаря своей простоте, двигатель может обеспечить не одну сотню часов беспрерывной эксплуатации.
ОБЛАСТИ ПРИМЕНЕНИЯ ДВИГАТЕЛЕЙ СТИРЛИНГА
Мотор Стирлинга чаще всего применяется в ситуациях, когда требуется аппарат для преобразования тепловой энергий, отличающийся простотой, при этом эффективность прочих видов тепловых агрегатов существенно ниже при аналогичных условиях. Очень часто подобные агрегаты применяются в питании насосного оборудования, холодильных камер, подводных лодок, батарей, аккумулирующих энергию.
Одним из перспективных направлений области использования двигателей Стирлинга являются солнечные электростанции, поскольку данный агрегат может удачно применяться для того, чтобы преобразовывать энергию солнечных лучей в электрическую. Для осуществления этого процесса двигатель помещается в фокус зеркала, аккумулирующего солнечные лучи, что обеспечивает перманентное освещение области, требующей нагрева. Это позволяет сфокусировать солнечную энергию на малой площади. Топливом для двигателя в данном случае служит гелии или водород. опубликовано
Всего около ста лет назад двигателям внутреннего сгорания пришлось в жестокой конкурентной борьбе завоевывать то место, которое они занимают в современном автомобилестроении. Тогда их превосходство отнюдь не представлялось столь очевидным, как в наши дни. Действительно, паровая машина — главный соперник бензинового мотора — обладала по сравнению с ним огромными достоинствами: бесшумностью, простотой регулирования мощности, прекрасными тяговыми характеристиками и поразительной «всеядностью», позволяющей работать на любом виде топлива от дров до бензина. Но в конечном итоге экономичность, легкость и надежность двигателей внутреннего сгорания взяли верх и заставили примириться с их недостатками, как с неизбежностью.
В 1950-х годах с появлением газовых турбин и роторных двигателей начался штурм монопольного положения, занимаемого двигателями внутреннего сгорания в автомобилестроении, штурм, до сих пор не увенчавшийся успехом. Примерно в те же годы делались попытки вывести на сцену новый двигатель, в котором поразительно сочетается экономичность и надежность бензинового мотора с бесшумностью и «всеядностью» паровой установки. Это — знаменитый двигатель внешнего сгорания, который шотландский священник Роберт Стирлинг запатентовал 27 сентября 1816 года (английский патент № 4081).
Физика процесса
Принцип действия всех без исключения тепловых двигателей основан на том, что при расширении нагретого газа совершается большая механическая работа, чем требуется на сжатие холодного. Чтобы продемонстрировать это, достаточно бутылки и двух кастрюль с горячей и холодной водой. Сначала бутылку опускают в ледяную воду, а когда воздух в ней охладится, горлышко затыкают пробкой и быстро переносят в горячую воду. Через несколько секунд раздается хлопок и нагреваемый в бутылке газ выталкивает пробку, совершая механическую работу. Бутылку можно снова возвратить в ледяную воду — цикл повторится.
в цилиндрах, поршнях и замысловатых рычагах первой машины Стирлинга почти в точности воспроизводился этот процесс, пока изобретатель не сообразил, что часть тепла, отнимаемого у газа при охлаждении, можно использовать для частичного подогрева. Нужна лишь какая-то емкость, в которой можно было бы запасать тепло, отнятое у газа при охлаждении, и снова отдавать ему при нагревании.
Но, увы, даже это очень важное усовершенствование не спасло двигатель Стирлинга. К 1885 году достигнутые здесь результаты были весьма посредственны: 5-7 процентов к.п.д., 2 л. с. мощности, 4 тонны веса и 21 кубометр занимаемого пространства.
Двигатели внешнего сгорания не были спасены даже успехом другой конструкции, разработанной шведским инженером Эриксоном. В отличие от Стирлинга, он предложил нагревать и охлаждать газ не при постоянном объеме, а при постоянном давлении. 8 1887 году несколько тысяч небольших эриксоновских двигателей отлично работало в типографиях, в домах, на шахтах, на судах. Они наполняли водонапорные баки, приводили а действие лифты. Эриксон пытался даже приспособить их для привода экипажей, но они оказались чересчур тяжелыми. В России до революции большое количество таких двигателей выпускалось под названием «Тепло и сила».
Основной принцип работы двигателя Стирлинга заключается в постоянно чередуемых нагревании и охлаждении рабочего тела в закрытом цилиндре. Обычно в роли рабочего тела выступает воздух, но также используются водород и гелий.
Цикл работы двигателя Стирлинга состоит из четырёх фаз и разделён двумя переходными фазами: нагрев, расширение, переход к источнику холода, охлаждение, сжатие и переход к источнику тепла. Таким образом, при переходе от тёплого источника к холодному источнику происходит расширение и сжатие газа, находящегося в цилиндре. При этом изменяется давление, за счёт чего можно получить полезную работу. Поскольку теоретические объяснения удел ученых мужей, слушать их временами утомительно, поэтому перейдем к наглядной демонстрации работы двигателя Стерлинга.
Как работает двигатель Стирлинга
1.Внешний источник тепла нагревает газ в нижней части теплообменного цилиндра. Создаваемое давление толкает рабочий поршень вверх.
2.Маховик толкает вытеснительный поршень вниз, тем самым перемещая разогретый воздух из нижней части в охлаждающую камеру.
3.Воздух остывает и сжимается, рабочий поршень опускается вниз.
4.Вытеснительный поршень поднимается вверх, тем самым перемещая охлаждённый воздух в нижнюю часть. И цикл повторяется.
В машине Стирлинга движение рабочего поршня сдвинуто на 90 градусов относительно движения поршня-вытеснителя. В зависимости от знака этого сдвига машина может быть двигателем или тепловым насосом. При сдвиге 0 градусов машина не производит никакой работы (кроме потерь на трение) и не вырабатывает её.
Еще одним изобретением Стирлинга, увеличившим КПД двигателя стал регенератор, который представляет собой камеру, заполненную проволокой, гранулами, гофрированной фольгой для улучшения теплоотдачи проходящего газа (на рисунке регенератор заменен ребрами радиатора охлаждения).
В 1843 году Джеймс Стирлинг использовал этот двигатель на заводе, где он в то время работал инженером. В 1938 году фирма «Филипс» инвестировала в двигатель Стирлинга мощностью более двухсот лошадиных сил и отдачей более 30 %.
Достоинства двигателя Стирлинга:
1. Всеядность. Можно использовать любое топливо, главное создать разницу температур.
2. Низкая шумность. Поскольку работа построена на перепаде давления рабочей жидкости, а не на поджоге смеси, то шумность по сравнению с двигателем внутреннего сгорания существенно ниже.
3. Простота конструкции, отсюда высокий запас прочности.
Однако все эти достоинства в большинстве случаев перечеркиваются двумя большими недостатками:
1. Большие габариты. Рабочее тело необходимо охлаждать, и это приводит к существенному увеличению массы и размеров за счёт увеличенных радиаторов.
2. Низкий КПД. Тепло подводится не к рабочему телу непосредственно, а только через стенки теплообменников, соответственно потери КПД велики.
С развитием двигателя внутреннего сгорания двигатель Стирлинга ушел…нет не в прошлое, а в тень. Он с успехом эксплуатируется в качестве вспомогательных силовых установок на подводных лодках, в тепловых насосах на теплоэлектростанциях, в качестве преобразователей солнечной и геотермальной энергии в электрическую, с ним связаны космические проекты по созданию силовых установок работающих на радиоизотопном топливе (радиоактивный распад происходит с выделением температуры, кто не знал). Кто знает, возможно однажды двигатель Стирлинга ждет большое будущее!
Роторные двигатели внешнего сгорания
Первые тепловые машины созданные человечеством были машинами внешнего сгорания. Они широко (для того времени) использовались в различных отраслях промышленности и на транспорте. Как правило, основой преобразования энергии газа во вращательное движение была кинематика поршневого двигателя с кривошипно-шатунным механизмом. После создания двигателей внутреннего сгорания, сфера применения двигателей с внешним подводом тепла значительно сократилась. В последнее время в связи с развитием технологии, появлением новых материалов появились перспективы реализовать потенциальные возможности двигателей внешнего сгорания. Их относительная экологическая чистота, возможность применения помимо традиционного другого разнообразного топлива или источников тепла (солнечной, ядерной энергии) меньшая шумность возродила интерес к ним.
Одним из самых конструктивно и технологически проработанным (не считая турбин) двигателем внешнего сгорания является двигатель Стирлинга, который к тому же имеет довольно высокий теоретический (до 70 %) КПД. Правда, основные модификации (альфа, бета, гамма) таких двигателей конструктивно сложны и громоздки, а схема преобразования теплоты, содержащейся в топливе, предполагает значительные потери механической энергии, и небольшую по сравнению с обычным ДВС, удельную мощность. Кроме того, сложно решить вопросы уплотнения и герметизации рабочего тела. И попытки обойти эти проблемы в существующих схемах, даже с учетом новых технологий, пока не привели к созданию конкурентоспособной с обычным ДВС силовой установки.
Авторы предлагают варианты схем построения двигателей внешнего сгорания, лишенных, на их взгляд, некоторых из вышеописанных, существенных недостатков. Такие схемы позволяют иметь высокие удельные характеристики двигателей, меньшие требования к уплотнениям, использование распространенных компонент в качестве рабочего тела и более низкие значения средних давлений цикла без потери эффективности. Тип расширительной машины и схемы построения двигателя позволяют иметь два важных свойства.
Первое – однонаправленностьпроцесса исключает потери, связанные с изменением направления движения рабочего тела. Возвратно–поступательное движение поршневой машины (большинство построенных двигателей имеет этот тип кинематики), создает и соответственное движение рабочего тела. А это, при больших паразитных объемах и на высоких частотах вращения, приводит к уменьшению перемещаемой массы рабочего тела в системе согласно тактам цикла. В существующих двигателях с возвратно поступательным движением, порции рабочего тела не могут в цикле находится более чем в двух смежных тактах. Приходится резко ограничивать объемы теплообменников и трубопроводов. Ограничение объемов теплообменников свою очередь ведет к снижению скорости теплообмена. И тогда, для построения двигателей с высокими удельными характеристиками полученных за счет значительных оборотов, надо использовать рабочее тело с большим коэффициентом теплопередачи (водород, гелий). А ограничение объемов трубопроводов приводит к большим газодинамическим потерям (уменьшение проходного сечения).
Однонаправленность, же позволяет иметь в устоявшемся режиме относительно постоянную скорость рабочего тела в системе и темне позволяет пружинить рабочим телом, что значительно уменьшает потери от паразитных объемов. Используя это свойство можно иметь в теплообменнике 2-3 «порций» рабочего тела. Отсюда, при сквозном проходе рабочего тела по закольцованному контуру, время теплообмена можно увеличить в 2-3 раза, и при этом иметь более развитую площадь теплообмена за счет больших теплообменников. А это в свою очередь увеличит и скорость теплообмена. Похожие схемы имеют двигатель Нисковских и частично Цвауэра.
Второе – параллелизм, кратно увеличивающий (при равном количестве рабочих тактов в единицу времени) время такта в цикле т.к. каждый такт в параллельных секциях происходит одновременно и синфазно, что приводит и соответственному увеличению времени теплообмена. К примеру, это время вчетверо больше, чем в существующих двигателях Стирлинга любой модификации с последовательным чередованием тактов цикла. И это качество, при равных условиях, позволяет иметь меньшую скорость рабочего тела, тем самым значительно уменьшая и газодинамические потери.
В итоге, реализуя оба свойства длительность теплообмена можно увеличить на порядок. А это – повышение удельных показателей двигателей использующих доступный газ, к примеру азот (воздух) на уровень двигателей, где в качестве рабочего тела используется вещество с большим коэффициентом передачи теплоты (водород и гелий). И поэтому появляется возможность создания относительно дешевых двигателей с высокими удельными характеристиками, с меньшими требованиями к уплотнениям, с функцией компенсации потери рабочего тела(воздух) и поддержании среднего давления цикла посредством подкачки (компрессор с независимым приводом или от двигателя, ресивер и т.д.) из атмосферы. Кроме того, более высокая масса воздуха (по сравнению с водородом), при однонаправленном движения рабочего тела, способствует накоплении энергии, чем выравниваются возникающие пульсации потока.
Естественно в качестве рабочего тела можно использовать и другие газы, а с применением водорода или гелия можно кратно увеличить удельную мощность (за счет оборотов) по отношению к существующим двигателям, до пределов механических ограничений.
Сердце данных двигателей его силовая часть, основа преобразования – роторная машина расширения (Рис.1).
Машина расширения для двигателя внешнего сгорания содержит неподвижный корпус представляющий полый цилиндр, который с торцов прикрыт крышками, ротор в виде посаженного на вал колеса и имеющего n П-образных выдвигающихся, посредством выдвижного устройства (ВУ), пластин –лопаток расположенных в спицах. Внутренняя ободная поверхность корпуса и внешняя ободная поверхность ротора образуют n синусоидальнообразных полостей с впускными и выпускными окнами каждая.
Конструктивные особенности машины расширения позволяют иметь довольно значительные объемы полостей, при небольших общих габаритах. Самым оптимальным является трехлопаточный вариант, (и при дальнейшем увеличении лопаток — кратно трем) обеспечивающий при минимальном диаметре ротора максимальное значение опорной части лопаток при их полном выдвижении, и наибольшую величину этого выдвижения.
Механизм ВУ обладает несложной кинематикой и суть вспомогательное устройство, а не элемент преобразования энергии, и служит для согласования выдвижения лопаток с углом поворота ротора. Механизм ВУ не подвергается большим динамическим нагрузкам и не является источником значительных механических потерь.
Герметизацию полостей машины расширения можно обеспечить путем лабиринтных уплотнений. В внутриободном пространстве ротора можно иметь избыточное давление без потерь КПД ( в отличии альфа модификаций, где подпоршневое давление в картере уменьшает КПД). Лопатки находятся в закрытых (изолированных от внутриободного пространства ротора) каналах расположенных в спицах с выходом только в рабочие полости и соединенных с элементами ВУ (толкателями) через легко уплотняемые штоки. Последние, в свою очередь, могут быть защищены гофрированными втулками от масла. Внутриободное пространство ротора в свою очередь должно быть отделено (не показано) от подверженного смазке около осевого пространства (где расположены элементы ВУ). В каналах лопаток (лучше с выталкивающей стороны) расположены желобки, для подвода рабочего тела к тыльной грани лопаток, что бы избежать тормозящего разряжения.
Работа машины расширения осуществляется следующим образом (Рис.2).
Рабочее тело через впускное окно подается в рабочую полость и, воздействуя на заднюю грань (по ходу вращения) лопатки, заставляет ротор вращаться. А в дальнейшем лопатка своей передней гранью выталкивает отработанное рабочее тело через выпускное окно, чем обеспечивается его прямоточное движение внутри расширительной машины.
Построение двигателя как комбинации нескольких размещенных на одном валу модулей (секций машин расширения) с подобранными объемами полостей и расположением зон нагрева и охлаждения, позволяет задать любой термодинамический цикл его работы (с учетом параметров рабочего тела, конструкционных материалов, и используемого топлива), к примеру цикл Стирлинга, Эриксона и т. д. Варианты схем построения двигателей ограниченны только рациональностью и здравым смыслом и показывают гибкость данной конструкции.
Классический цикл Стирлинга реализуется в двигателе, в котором на всех этапах цикла используется только газообразное рабочее тело с четырьмя переменными объемами и с использованием регенераторов (Рис3. схема построения).
Двигатель составлен из последовательно расположенных на одном валу секций-модулей Si (где i = 1,2…k), каждая из которых имеет N полостей определенного (условного) объема Vi. И двигатель состоит из двух четко разделенных частей. Одна – нагревается (горячая) Dh, а другая – охлаждается (холодная) Dc.. Участки корпуса и ротора, принадлежащие к разным частям, теплоизолированы друг от друга. Основные элементы Ву (кривошипы, коромысло) расположены в «холодной» части двигателя. Водило с расположенными на нем элементами, организующими качание вала выдвижного устройства, может быть общим для всех секций двигателя. А вал ВУ проходит по геометрической оси через общий полый вал роторов модулей и «поэтажно» имеет рычаги с толкателями лопаток. Этим обеспечивается синфазное выдвижение лопаток всех модулей. Каждая часть состоит из двух секций S. Соотношение объемовVполостей соответствующих секций Si (модулей), ( V1 = V2, V3 = V4для цикла Стирлинга). Выпускные окна полостей одной секции (Si)последовательно соединены трубопроводами с впускными окнами другой Si+1 (последующей по циклу). А так, как не имеет значения, из какой полости секции (Si) рабочее тело перейдет в конкретную полость следующей по циклу секции (Si+1), то можно выходы одной секции и входы следующей свести в один коллектор кольцевого типа, охватывающий двигатель и исполняющий роль теплообменника, причем значительная площадь его поверхности будет этому способствовать. В определенном месте (в соответствии с термодинамическим циклом) в разрез трубопроводов противонаправленных потоков рабочего тела вставлены вращающиеся вокруг своей оси дисковые регенераторы (регенератор) рабочеготела Rg 1. Регенераторимеет радиальное разделение его насадок на секторы теплоизоляционными продольными пластинами (в поперечном разрезе – как цитрусовые). Трубопроводы различных направлений (относительно зон нагрева и охлаждения), в разрез которых вставлен диск-кассета, чередуясь, последовательно разнесены с учетом направления вращения диска с насадками (причем на один диск могут подводится трубопроводы от нескольких полостей, или их общего коллектора). Скорость вращения диска регенератора и толщина насадок должна быть согласована со скоростью вращения ротора, с учетом привода от двигателя (возможный и независимый привод). Задавая направленность рабочего тела (подсоединением трубопроводов к соответствующим сторонам диска регенератора), можно еще использовать и резонансный эффект.
Для предотвращения потерь связанных с холостым проходом рабочего тела рабочих полостей, в модуле расширения (или в других модулях в зависимости от цикла), при нахождении лопаток в зоны перехода, нужна перекрывающая задвижка перед впускным окном соответствующего модуля. Диск регенератора также может исполнять роль запирающей задвижки, перекрывающей трубопровод в момент прохождения лопаткой зону перехода, когда соответствующий сектор будет глухо закрыт пластиной.
Нагрев рабочего тела происходит в нагревателе Hот любого источника тепла ((в представленном – горелки). Охлаждение рабочего тела в холодильнике С посредством охлаждающей жидкости с последующим отводом тепла через радиатор Rd. Нагрев и охлаждение также захватывают стенки модулей в соответствии расположении последних в определенных зонах (частях ) двигателя. Для более эффективного использования тепла рабочего тела служит и предварительный теплообменник НС 1 выравнивающий температуру отходящего и входящего потока рабочего тела. Для регулировки мощности служит золотник Z , управляемый посредством штока, и перепускной канал, соединяющий выпускной трубопровод секции S1 с впускным. Выдвигаясь, при регулировании, золотник отсекает часть потока рабочего тела выходящего из модуля «холодного» отдела и следующего в «теплый» и возвращает во входящий трубопровод данного модуля. Тем самым определяется количество рабочего тела проходящего через зону нагрева, что и соответственно влияет на изменение мощности с высокой степенью реакции.
Подвод воздуха к горелкам (для источников тепла требующих кислород) происходит посредством нагнетателя, через воздушный регенератор Rg 2( построенного аналогично Rg 1) и встроенного в противонаправленные каналы подвода воздуха и отвода отработанных газов. Тем самым идет подогрев воздуха к горелкам и уменьшаются тепловые потери. Для той же цели также используется и воздушный предварительный теплообменник НС 2. Такая обвязка позволяет максимально исключить (уменьшить) тепловые потери.
В данном исполнении термодинамический цикл, благодаря синфазности выдвижения лопаток будет более полно соответствовать теоретическому циклу Стирлинга.
Полезная работа двигателя будет
L= Pср. h (V2 –V1) – Pср.c(V3 – V4) – Lспр.
где, Pср. h — среднее давление в горячем отделе
Pср. c — среднее давление в холодном отделе
Pср. h = Pср.c *(T2 ) / (T1 ) ,
где T1 — температура (K) холодильника ( в отделе C), T2 – температура (K) нагревателя (в отделе H)
L спр. – работа сил механического, газодинамического и др. сопротивления.
Мы уже отмечали гибкость системы для построения двигателей по различным термодинамическим циклам. И, как вариант, исключим одну малую «горячую» секцию с условным объемом V2.Образующая система с подобранными объемами V1, V3. V4. и рабочим процессом при трех тактах будет реализовывать следующий термодинамический (в теории естественно) цикл.
Это естественно, приведет к некоторой потере эффективности. Но, помимо упрощения конструкции двигателя и снижения его массогабаритных показателей, можно иметь важное преимущество. В «горячей» области в секции с условным объемом V3, давление, перед и после лопатки существенно не различимо (естественно будут определенные незначительные отклонения). Отсюда в самой термически нагруженной части двигателя значительно упрощаются требования к уплотнениям лопаток. Достаточно иметь технологические зазоры (как в турбине) между стенками рабочей полости и торцами лопатки. Это возможно, так как выдвижение лопаток согласованно с углом поворота ротора. А в оставшихся «холодной» секции с почти «комнатной» температурой, проблемы уплотнений (включая материал изготовления) решить значительно проще.
Также можно позволяют построить паровой двигатель с использованием регенераторов (общий вид рис. 1).
В двигателе, в качестве рабочего тела используются две компоненты, одна постоянно пребывающая в цикле в газообразном состоянии — газовый носитель, и компоненты изменяющей свое фазовое состояние. Газовая составляющая в двухобъемном варианте, может и не является рабочим телом. Это несущая и вспомогательная субстанция позволяющая использовать регенераторы в паровой машине. И газовая составляющая изначально находится при повышенном давлении.
Для построения данного двигателя используем две секции (модуля), первая S1 с условным объемом V1 является насосом газовой составляющей, а вторая S3 с условным большим объемом V3- непосредственно машина расширения (Рис.5).
Рабочее тело (в газообразном состоянии) с газовым носителем, пройдя после расширения регенератор Rg 1, в конденсаторе-сепараторе Cs, конденсируется и становится жидкостью, а газовая составляющая попадает в малую «холодную» секцию S1 (V1).
На выходе этой секции перед регенератором или через открытый торец его обода компоненты опять смешиваются, там жидкообразная распыляется форсункой F, а газовая несущая позволяет создавать направленность потока и осуществляет перенос компоненты изменяющей фазовое состояние.
Трубопровод перед регенератором разделен камеры таким образом сначала в первой камере (по чередованию прохождения насадки) происходит смешивание компонент. Пройдя регенератор жидкая составляющая опять становится газом (паром), и поступает через нагреватель в зону расширения всекцию S3 (V3). В итоге получается паровая машина с регенераторами, где газовая составляющая является постоянной компонентой замкнутого цикла. Форсунка Fa расположенная в зоне нагрева служит для максимально быстрого изменения – акселерации (увеличения) мощности.
Если задействовать в паровой машине три секции(и более) получим более перспективное направление – двигатели, использующие смешанное двухкомпонентное рабочее тело. Здесь газовая компонента суть рабочее тело, иуже будет совершать работу, содействуя приросту КПД. Наиболее перспективным выглядит двухкомпонентный двигатель и с тремя секциями S1,S3,S4 с условными объемами V1, V3 , V4 (Рис.6).
Основным достоинством такого рабочего тела является возможность получения при существующих уровнях среднего давления рабочего тела удельной мощности, почти в 2 раза большей, чем в случае однокомпонентного газового топлива. Кроме того, процессы парообразования и конденсации, наблюдаемые при фазовом переходе компонентов, характеризуется высокими коэффициентами теплоотдачи. Поэтому процессы сжатия и расширения в большей степени приближенны к изотермическим, чем в цикле с газовым рабочим телом. Важно и то, что при этом значительно (на две-три сотни градусов) снижается максимальная температура цикла и начальное давление газообразного рабочего тела. При этом чувствительность мощности двигателя к изменению «мертвого» объема оказывается чрезвычайно низкой.
Таким образомширокий выбор вариантов построения двигателя с определенным циклом, способом организации рабочего процесса, при однонаправленном движением рабочего тела, в сочетании с простотой расширительной машины и использованием вращающихся регенераторов позволяет с помощью дешевых и доступных материалов добиться повышения КПД и удельных характеристик двигателя. Сохраняя при этом уже известные достоинства двигателей данного типа– малошумность, «всеядность», высокий крутящий момент в очень широком диапазоне частот вращения выходного вала, увеличенный ресурс и низкие затраты на обслуживание при длительной эксплуатации. А указанные способы регулирования мощности позволяют применять данный двигатель не только в качестве стационарной силовой установки, но и стать реальной альтернативой мобильным (транспортным) ДВС.
Литература.
- Уокер Г. Пер.с англ. – М.: Машиностроение,1985.
- Г.Т.Ридер, Ч.Хупер.. М., Наука, 1986.
- Двигатели Стирлинга / [В.Н. Даниличев, С.И. Ефимов, В.А. Звонок и др.]; под ред. М.Г. Круглова. – М.: «Машиностроение», 1977.
- Патент РФ 2454546. Роторный преобразователь энергии и двигатель внешнего сгорания с его использованием. Чантурия И.Г., Чантурия О.Г.
О.ЧАНТУРИЯ, И.ЧАНТУРИЯ.
Как работает двигатель внешнего сгорания?
Содержание
- 1 Что такое двигатель внешнего сгорания?
- 2 Работа двигателя внешнего сгорания
- 3 Типы двигателей внешнего сгорания
- 3,1 1) Паровой двигатель
- 3,2 2) Двигатель Стирлинга
- 4 Запчасти и функция двигателя внешнего сгорания
- 9000 4.0.1 1. ) Цилиндр
- 4. 0.2 2) Поршень
- 4.0.3 3) Коленвал
- 4.0.4 4) Маховик
- 4.0,5 5) Распределительный вал
- 5.1 Преимущества внешнего двигателя сгорания
9000 6.2 Disadvantages Engine Engine
9 9000 6 6.2 Application of Of Veminte Engine
9 9000 6 6000 6. 7 Двигатель внешнего сгорания VS Двигатель внутреннего сгорания
- 8.1 Какие существуют типы двигателей внешнего сгорания?
- 8.2 Для чего используются двигатели внешнего сгорания?
- 8.3 Кто изобрел двигатель ЕС?
- 8.4 Каковы примеры двигателей внешнего сгорания?
- 8.5 Из каких компонентов состоит двигатель внешнего сгорания?
Двигатель – это механическое оборудование, преобразующее энергию топлива в механическую работу. Двигатели используются для различных целей по всему миру. Существует несколько типов двигателей в зависимости от характера применения. Однако двумя наиболее известными типами двигателей являются двигатель внешнего сгорания (EC) и двигатель внутреннего сгорания (IC). В предыдущей статье мы подробно обсудили двигатели внутреннего сгорания. Поэтому в этой статье в основном рассказывается о двигателе ЕС.
Типы двигателей внутреннего сгорания, стр…
Пожалуйста, включите JavaScript
Типы двигателей внутреннего сгорания, детали и компоненты
Что такое двигатель внешнего сгорания?
Двигатель внешнего сгорания (двигатель ЕС) представляет собой поршневой двигатель, в котором внешний источник тепла используется для нагрева (внутреннего) рабочего тела через теплообменник или стенки двигателя. Когда жидкость нагревается, она расширяется, вырабатывает энергию и приводит в движение транспортное средство.
Простыми словами, двигатель , в котором сгорание рабочего топлива происходит вне рабочего цилиндра , называется двигателем внешнего сгорания .
В этих типах двигателей в качестве рабочего тела используется газ, пар или жидкость. В этом двигателе топливно-воздушная смесь заполняется во внешнюю камеру сгорания. При сгорании топливно-воздушной смеси выделяется большое количество тепла.
Теплообменник или стенка двигателя используются для передачи произведенного тепла от внешней камеры сгорания к внутреннему рабочему телу. Когда внутренняя жидкость нагревается, она расширяется и воздействует на механизмы двигателя, в результате чего возникает движение и возможная работа.
Паровой двигатель является наиболее распространенным примером двигателя внешнего сгорания. В этом двигателе, когда пар входит в двигатель, он расходуется, вращает поршень и преобразует тепловую энергию в механическую энергию. В случае паровой машины пар генерируется вне двигателя (т. Е. Котла). Поэтому он называется двигателем ЕС.
В настоящее время двигатели ЕС не используются на транспорте из-за неэффективности мобильной конструкции, но все еще используются на электростанциях. Эти типы двигателей чаще всего используются на гидроэлектростанциях.
Угольные электростанции работают аналогичным образом: уголь доставляется из шахт на электростанции и сжигается в котлах. Трубы используются для подачи воды в котел. Когда вода поступает в котел, горящий уголь нагревает воду и превращает ее в пар, который приводит в действие турбину для производства электроэнергии.
Работа двигателя внешнего сгорания
Двигатель внешнего сгорания — это тип двигателя, в котором для сжигания внутреннего рабочего тела используется внешний источник тепла. Двигатель Стирлинга и паровой двигатель являются наиболее распространенными типами двигателей ЕС. Двигатель ЕС работает следующим образом:
- Прежде всего, теплоноситель (например, уголь) подается к внешнему источнику тепла (например, котлу).
- Подача воды из резервуара в котел.
- Когда вода поступает в котел, уголь воспламеняется и нагревает воду.
- При повышении температуры воды она превращается в пар.
- После преобразования воды в пар пар проходит через компрессор, который сжимает пар и увеличивает давление пара.
- Когда сильно сжатый пар достигает цилиндра двигателя, он расширяется и заставляет поршень двигаться вперед и назад.
- Коленчатый вал соединен с поршнем. Поршень сообщает свое движение коленчатому валу.
- Коленчатый вал преобразует движение поршня во вращательное и приводит во вращение маховик.
- При вращении маховик дополнительно передает мощность на шины автомобиля и помогает ему двигаться.
Типы двигателей внешнего сгорания
Двигатель внешнего сгорания бывает двух основных типов:
- Паровой двигатель
- Двигатель Стирлинга
1) Паровой двигатель
. Этот тип двигателя EC использует пар в качестве рабочей среды для выполнения механической работы. Паровая машина преобразует тепловую энергию пара в энергию вращения.
Двигатель, в котором рабочая среда отделена от продукта горения. Для анализа этого процесса используется идеальный термодинамический цикл, известный как «цикл Ренкина».
Этот двигатель использует тепловую энергию пара для перемещения поршня вперед и назад в цилиндре. Это возвратно-поступательное движение поршня передается на коленчатый вал и шатун. Коленчатый вал преобразует движение поршня во вращательное движение, приводя в действие систему рулевого управления автомобиля.
2) Двигатель Стирлинга
Двигатель Стирлинга является одним из самых известных типов двигателей внешнего сгорания. В холодную погоду заводится быстро. Обладает высокой гибкостью.
Эти типы двигателей имеют тихую работу. Они могут использовать различные источники тепла, такие как ядерное, геотермальное и биологическое.
Детали и функция двигателя внешнего сгорания
Двигатель внешнего сгорания имеет приведенные ниже основные детали:
- Цилиндр
- Piston
- Внешний тепло
- . 0006
1) Цилиндр
Рабочий цилиндр — это часть двигателя ЕС, в которой находится рабочее топливо (т. е. газ). Получая тепло от внешнего источника тепла, он нагревает рабочее тело, сжигает его и производит полезную работу.
2) Поршень
Этот поршневой компонент двигателя внешнего сгорания совершает возвратно-поступательное движение внутри рабочего цилиндра.
Когда рабочее топливо воспламеняется в цилиндре, генерируемая мощность перемещает поршень возвратно-поступательно вперед и назад. Это движение поршня дополнительно вращает коленчатый вал.
3) Коленчатый вал
Когда коленчатый вал совершает возвратно-поступательное движение от поршня, он преобразует это движение во вращательное и приводит во вращение маховик.
4) Маховик
Когда маховик получает мощность от коленчатого вала, он преобразует полученное вращательное движение в механическую энергию и приводит в движение колеса автомобиля.
5) Распределительный вал
Основной функцией распределительного вала является управление открытием и закрытием впускных и выпускных клапанов. Эта часть двигателя обеспечивает правильное открытие и закрытие впускных и выпускных клапанов и обеспечивает правильную подачу топлива.
Преимущества и недостатки двигателей внешнего сгорания
Преимущества двигателей внешнего сгорания
- Эти двигатели могут работать на всех видах топлива.
- Двигатели внешнего сгорания производят очень мало шума.
- Имеют низкий уровень выбросов.
- Они лучше всего подходят для приложений с высокой мощностью.
Недостатки двигателя внешнего сгорания
- Они не идеальны для приложений с низким энергопотреблением.
- Проблемы с утечкой рабочей жидкости.
- Двигатель ЕС имеет больший размер, чем двигатель внутреннего сгорания.
- Они потребляют больше смазки, чем двигатели внутреннего сгорания.
- Эти двигатели имеют высокую рабочую температуру. Поэтому они нуждаются в большем уходе и высоком строительном материале.
Применение двигателя внешнего сгорания
- Двигатели внешнего сгорания используются в судостроении и локомотивах.
- Использование в экспериментальных космических аппаратах
- Использование в силовых установках и крупных морских судах
Двигатель внешнего сгорания VS Двигатель внутреннего сгорания
Основное различие между двигателем внешнего сгорания и двигателем внутреннего сгорания приведено ниже:
Двигатель внешнего сгорания | Двигатель внутреннего сгорания |
---|---|
В двигателе ЕС процесс сжигания рабочего топлива происходит вне рабочего цилиндра. | В двигателе внутреннего сгорания процесс горения рабочего топлива происходит внутри цилиндра. |
Они имеют большой размер. | Имеют небольшие размеры. |
Для установки двигателя внешнего сгорания требуется большое пространство. | Для установки двигателя внутреннего сгорания требуется меньше места, чем для двигателя ЕС. |
Эти двигатели имеют большой вес. | Они легкие. |
Их трудно запустить. | Их очень легко завести. |
Этот двигатель требует больше времени для первоначального запуска. | Запускается очень быстро. |
КПД двигателя внешнего сгорания составляет от 15% до 25% . | КПД двигателя внутреннего сгорания составляет от 35% до 45% . |
Он имеет высокие капитальные затраты. | Низкие капитальные затраты. |
Двигатель ЕС имеет низкий тепловой КПД. | Двигатель внутреннего сгорания имеет высокий тепловой КПД. |
Топливо, используемое для двигателей ЕС, имеет низкую стоимость. | Топливо, используемое для двигателей внутреннего сгорания, имеет высокую стоимость. |
Он менее эффективен, чем двигатель внутреннего сгорания. | Самый эффективный двигатель. |
Часто задаваемые вопросы Раздел
Какие существуют типы двигателей внешнего сгорания?
Двигатель ЕС бывает следующих основных типов:
- Паровой двигатель
- Двигатель Стирлинга
Для чего используются двигатели внешнего сгорания?
Двигатели внешнего сгорания используются для локомотивов, транспортных средств и морских судов.
Кто изобрел двигатель ЕС?
В 1816 , Роберт Стирлинг изобрел первый двигатель внешнего сгорания, известный как двигатель Стирлинга.
Какие примеры двигателей внешнего сгорания?
Двигатели ЕС чаще всего используются на гидроэлектростанциях и морских судах. Двигатель Стирлинга и паровой двигатель являются наиболее распространенными примерами двигателей внешнего сгорания.
Какие компоненты двигателя внешнего сгорания?
- Внешний тепловой источник
- Цилиндр
- Распределительный вал
- Коленчатый вал
- Поршень
- Соедикающий стержень
- Flywheel
Что такое внешний сбитый сбитый ствол.
Джиннеш Сабхадия
Что такое двигатель внешнего сгорания?
Двигатель внешнего сгорания – это тепловой двигатель, в котором (внутреннее) рабочее тело нагревается за счет сгорания внешнего источника через стенку двигателя или теплообменник. Затем жидкость, расширяясь и воздействуя на механизм двигателя, производит движение и полезную работу.
Затем жидкость охлаждается, сжимается и повторно используется в замкнутом цикле. В отличие от парового двигателя, в котором в качестве рабочего тела используется вода как в жидкой, так и в газообразной фазах, в двигателе Стирлинга содержится фиксированное количество постоянно газообразной жидкости, такой как воздух или гелий.
Как и во всех тепловых двигателях, общий цикл состоит из сжатия холодного газа, нагрева газа, расширения горячего газа и, наконец, охлаждения газа перед повторением цикла.
Понимание двигателя внешнего сгорания
Внешние тепловые двигатели обычно представляют собой паровые двигатели, и они отличаются от двигателей внутреннего сгорания тем, что источник тепла отделен от рабочей жидкости. Например, двигатель внешнего сгорания будет использовать пламя для нагрева воды в пар, а затем использовать пар для вращения турбины. Это отличается от внутреннего сгорания, как в двигателе автомобиля, где бензин воспламеняется внутри поршня, работает, а затем выбрасывается.
Все двигатели внешнего сгорания являются внешними тепловыми двигателями. Существуют ЭТЭ, такие как солнечные тепловые электростанции, атомные электростанции и геотермальные электростанции, которые не являются двигателями внешнего сгорания. Несмотря на это, внешние тепловые двигатели, как и ядерные реакторы, иногда называют двигателями внешнего сгорания.
Двигатели внешнего сгорания являются наиболее распространенной формой внешних тепловых двигателей из-за их использования на электростанциях. Двигатель внешнего сгорания отличается от других ЭТО тем, что ему требуется топливо для сгорания, чтобы создать тепло, которое используется для работы.
Двигатели внешнего сгорания больше не используются на транспорте, так как мобильные конструкции недостаточно эффективны, но их продолжают использовать на электростанциях. Например, электростанция, работающая на природном газе, превращает воду в пар, который вращает турбину и вырабатывает электричество.
Конструкция с внешним сгоранием означает, что природный газ не вступает в непосредственный контакт с водой, а двигатель по-прежнему использует огромное количество выделяемой энергии для выполнения полезной работы. Примерно так же работает угольная электростанция, где уголь забирается на электростанцию из шахты и сжигается в котле. Трубы направляют воду в котел, и горящий уголь кипятит воду, создавая пар, который вращает турбину и вырабатывает электричество.
Что такое горение?
«Сжигание» относится к сжиганию топлива с окислителем для подачи тепла. Двигатели аналогичной (или даже идентичной) конфигурации и работы могут использовать подвод тепла из других источников, таких как ядерные, солнечные, геотермальные или экзотермические реакции, не связанные с горением; тогда они строго не классифицируются как двигатели внешнего сгорания, а как внешние тепловые двигатели.
Рабочая жидкость
Рабочая жидкость может быть любого состава, а система может быть однофазной (только жидкость или только газ) или двухфазной (жидкость/газ).
- Однофазный: Газ используется в двигателе Стирлинга. Иногда можно использовать однофазную жидкость.
- Двухфазный: Двухфазные двигатели внешнего сгорания используют фазовый переход для преобразования температуры в полезную работу, например, из жидкости в (как правило, намного большую) газ. Этот тип двигателя соответствует вариантам цикла Ренкина. Паровые двигатели являются распространенным примером двухфазных двигателей. Другой пример — двигатели, использующие органический цикл Ренкина.
Примеры
- Реактор CANDU (разновидность атомной электростанции)
- Угольная электростанция
- Электростанция на природном газе
- Паровоз (хотя осталось очень мало5 Солнечная тепловая установка)
6
силовая установка
- Двигатель Стирлинга
Преимущества двигателей внешнего сгорания
- Можно использовать почти любой доступный вид топлива.
- Выбросы двигателя также очень низкие
- очень экономичны для огромного производства электроэнергии
Недостатки двигателей внешнего сгорания
- Не подходящие для низких требований
- Утечка рабочей плода
- . относительно большой
- Общая рабочая температура высока, поэтому требуется большой уход и специальные строительные материалы
Применение двигателей внешнего сгорания
- Паровые двигатели: Локомотив, Морские
- Двигатели Стирлинга: Экспериментальные космические транспортные средства
- Паровые турбины: Сила, большой Marine
- Закрытый газовый турбин: Power, Marine
- Закрытый велосипед Двигатели
Что такое двигатель внешнего сгорания? (с изображением)
`;
Автомобили
Факт проверен
Джеймс ДерингДвигатель внешнего сгорания представляет собой поршневой двигатель, в котором сгорание происходит вне цилиндров. Ранним примером является паровой двигатель, который обычно сжигал уголь вне двигателя, чтобы превратить воду в пар. Двигатель Стирлинга представляет собой двигатель внешнего сгорания, использующий рабочую жидкость для перемещения поршней в цилиндрах. С другой стороны, в двигателе внутреннего сгорания топливо сгорает внутри цилиндров двигателя. Хотя паровые двигатели в значительной степени были заменены, у двигателей Стирлинга есть много потенциальных применений.
Хотя продукты сгорания не поступают в цилиндры двигателя внешнего сгорания, они должны находиться в тепловом контакте с двигателем, чтобы он функционировал. В паровой машине тепло от сжигания угля передается воде через стенки котла. Это тепло превращает воду в пар, который направляется в цилиндры двигателя. В нужный момент пар давит на поршень, который вращает коленчатый вал. Таким образом, паровая машина преобразует химическую энергию, запасенную в угле, в механическую энергию вращающегося коленчатого вала.
Двигатель Стирлинга похож на паровой двигатель, за исключением того, что он использует постоянно содержащийся газ, а не одноразовый пар для толкания поршней. Он работает путем обмена теплом в разных местах своих цилиндров. Тепло проходит через стенку цилиндра и нагревает рабочий газ, который толкает поршень, создавая мощность. Когда поршень должен вернуться в исходное положение, теплообменник позволяет соседнему газу охладиться.
За последние два столетия двигатель внешнего сгорания нашел множество применений. Энергия пара широко использовалась на фабриках, а также на кораблях и поездах во время промышленной революции, в значительной степени заменив водяные колеса и мускулы животных в качестве источников энергии. Хотя паровые двигатели в конечном итоге уступили место двигателям внутреннего сгорания, они оставались основным источником энергии в 20 веке.
Двигатель Стирлинга применяется еще более гибко. Преобразовывая энергию вращения в электричество, он может использовать источник тепла для комбинированного производства тепла и электроэнергии. Его также можно использовать в качестве теплового насоса, получая электроэнергию и откачивая тепло.
Поскольку двигатель Стирлинга передает в свои цилиндры только тепло, а не материю, он не требует, чтобы горение было источником тепла.