Содержание
История двигателя внутреннего сгорания
Главное устройство любого транспортного средства, в том числе наземного, является силовая установка — двигатель, преобразующий различные разновидности энергии в механическую работу.
В ходе исторического развития транспортных двигателей механическая работа движения осуществлялась за счет применения:
1) мускульной силы человека и животных;
2) силы ветра и потоков воды;
3) тепловой энергии пара и различных видов газообразного, жидкого и твердого топлива;
4) электрической и химической энергии;
5) солнечной и ядерной энергии.
Записи о попытках построить самоходные средства передвижения были уже в XV — XVI вв. Правда, силовыми установками этих «средств передвижения» была мускульная сила человека. Одной из первых достаточно хорошо известной самоходной установкой с «мускульным двигателем» является коляска с ручным приводом безногого часовщика из Нюрнберга Стефана Фарфлера, которую он соорудил в 1655 г.
Наибольшую известность в России получила «самобеглая коляска», построенная в Петербурге крестьянином Л. Л. Шамшуренковым в 1752 г.
Эта коляска, вполне вместительная для перевозки нескольких человек, приводилась в движение мускульной силой двух человек. Первый педальный металлический велосипед, близкий по конструкции к современным, был изготовлен крепостным крестьянином Верхотрусского уезда Пермской губернии Артамоновым на рубеже XVIII и XIX вв.
Древнейшими силовыми установками, правда, не транспортными, являются гидравлические двигатели — водяные колеса, приводящиеся в движение потоком (весом) падающей воды, а также ветряные двигатели. Сила ветров с древних времен использовалась для движения парусных судов, а значительно позднее и роторных. Использование ветра в роторных судах осуществлялось с помощью вертикальных вращающихся колонн, заменивших паруса.
Появление в XVII в. водяных двигателей, а позднее и паровых сыграло важную роль в зарождении и развитии мануфактурного производства, а затем и промышленной революции. .Однако большие надежды изобретателей самоходных экипажей по применению первых паровых двигателей для транспортных средств не оправдались. Первый паровой самоход грузоподъемностью 2,5 т, построенный в 1769 г. французским инженером Жозефом Каньо, получился очень громоздким, тихоходным и требующим обязательных остановок через каждые 15 минут движения.
Только в конце XIX в. во Франции были созданы весьма удачные образцы самоходных экипажей с паровыми двигателями. Начиная с 1873 г. французский конструктор Адеме Боле построил несколько удачных паровых двигателей. В 1882 г. появились паровые автомобили Дион-Бутона,
а в 1887 — автомобили Леона Серполе, которого называли «апостолом пара». Созданный Серполе котел с плоскими трубками представлял весьма совершенный парогенератор с почти мгновенным испарением воды.
Паровые автомобили Серполе конкурировали с бензиновыми автомобилями на многих гонках и скоростных состязаниях вплоть до 1907 г. Вместе с тем совершенствование паровых двигателей в качестве транспортных двигателей продолжается и сегодня в направлении снижения их массогабаритных показателей и повышения коэффициента полезного действия.
Совершенствование паровых машин и развитие двигателей внутреннего сгорания во второй половине XIX в. сопровождалось попытками ряда изобретателей использовать электрическую энергию для транспортных двигателей. Накануне третьего тысячелетия Россия отметила столетие со дня использования городского наземного электрического транспорта — трамвая. Немногим более ста лет назад, в 80-е годы XIX в., появились и первые электрические автомобили. Их появление связано с созданием в 1860-е годы свинцовых аккумуляторов. Однако слишком большая удельная масса и недостаточная емкость не позволили электромобилям принять участие в конкуренции с паровыми машинами и газобензиновыми двигателями. Электромобили с более легкими и энергоемкими серебряно-цинковыми аккумуляторами также не нашли широкого применения. В России талантливый конструктор И. В. Романов создал в конце XIX в. несколько типов электромобилей с достаточно легкими аккумуляторами.
Электромобили имеют достаточно высокие преимущества. Прежде всего они экологически чистые, так как вообще не имеют выхлопных газов, обладают очень хорошей тяговой характеристикой и большими ускорениями за счет возрастающего крутящего момента при снижении числа оборотов; используют дешевую электроэнергию, просты в управлений, надежны в эксплуатации» и т. д. Сегодня электромобили и троллейбусы имеют серьезные перспективы их развития и применения на городском и пригородном транспорте в связи с необходимостью коренного решения проблем по снижению загрязнения окружающей среды.
Попытки создания поршневых двигателей внутреннего сгорания предпринимались еще в конце XVIII в. Так, в 1799 г. англичанин Д. Барбер предложил двигатель, работавший на смеси воздуха с газом, полученным путем перегонки древесины. Другой изобретатель газового двигателя Этьен Ленуар использовал в качестве топлива светильный газ.
Еще в 1801 г. француз Филипп де Бонне предложил проект газового двигателя, в котором воздух и газ сжимались самостоятельными насосами, подавались в смесительную камеру и оттуда в цилиндр двигателя, где смесь воспламенялась от электрической искры. Появление этого проекта считается датой рождения идеи электрического воспламенения топливовоз-душной смеси.
Первый стационарный двигатель нового типа, работающий по четырехтактному циклу с предварительным сжатием смеси, был спроектирован и построен в 1862 г. кельнским механиком Н. Отто.
Практически все современные бензиновые и газовые двигатели до настоящего времени работают по циклу Отто (цикл с подводом теплоты при постоянном объеме).
Практическое применение двигателей внутреннего сгорания для транспортных экипажей началось в 70 — 80 гг. XIX в. на основе использования в качестве топлива газовых и бензовоздушных смесей и предварительного сжатия в цилиндрах. Официально изобретателями транспортных двигателей, работающих на жидких фракциях перегонки нефти, признаны три немецких конструктора: Готлиб Даймлер, построивший по патенту от 29 августа 1885 г. мотоцикл с бензиновым двигателем;
Карл Бенц, построивший по патенту от 25 марта 1886 г. трехколесный экипаж с бензиновым двигателем;
Рудольф Дизель, получивший в 1892 г. патент на двигатель с самовоспламенением смеси воздуха с жидким топливом за счет теплоты, выделяющейся при сжатии.
Здесь следует отметить, что первые двигатели внутреннего сгорания, работающие на легких фракциях перегонки нефти, были созданы в России. Так, в 1879 г. русским моряком И. С. Костовичем был спроектирован ив 1885 г. успешно прошел испытания 8-цилиндровый бензиновый двигатель малой массы и большой мощности. Этот двигатель предназначался для воздухоплавательных аппаратов.
В 1899 г. в Петербурге создан первый в мире экономичный и работоспособный двигатель с воспламенением от сжатия. Протекание рабочего цикла в этом двигателе отличалось от двигателя, предложенного немецким инженером Р. Дизелем, который предполагал осуществить цикл Карно со сгоранием по изотерме. В России в течение короткого времени была усовершенствована конструкция нового двигателя — бескомпрессорного дизеля, и уже в 1901 г. в России были построены бескомпрессорные дизели конструкции Г. В. Тринклера, а конструкции Я. В. Мамина — в 1910 г.
Русский конструктор Е. А. Яковлев спроектировал и построил моторный экипаж с керосиновым двигателем.
Успешно работали над созданием экипажей и двигателей русские изобретатели и конструкторы: Ф. А. Блинов, Хайданов, Гурьев, Махчанский и многие Другие.
Основными критериями при конструировании и производстве двигателей вплоть до 70-х годов XX в. оставалось стремление к повышению литровой мощности, а следовательно, и к получению наиболее компактного двигателя. После нефтяного кризиса 70 — 80 гг. основным требованием стало получение максимальной экономичности. Последние 10 — 15 лет XX в. главными критериями для любого двигателя стали постоянно растущие требования и нормы по экологической чистоте двигателей и прежде всего по коренному снижению токсичности отработавших газов при обеспечении хорошей экономичности и высокой мощности.
Карбюраторные двигатели, долгие годы не имевшие конкурентов по компактности и литровой мощности, не отвечают сегодня экологическим требованиям. Даже карбюраторы с электронным управлением не могут обеспечить выполнение современных требований по токсичности отработавших газов на большинстве рабочих режимов двигателя. Эти требования и жесткие условия конкуренции на мировом рынке достаточно быстро изменили типаж силовых установок для транспортных средств и прежде всего для легкового транспорта. Сегодня различные системы впрыска топлива с различными системами управления, включая электронные, практически полностью вытеснили использование карбюраторов на двигателях легковых автомобилей.
Коренная перестройка двигателестроения крупнейшими автомобильными компаниями мира в последнее десятилетие XX в. совпала с третьим периодом торможения российского двигателестроения. Из-за кризисных явлений в экономике страны отечественная промышленность не смогла обеспечить своевременный перевод двигателестроения на выпуск новых типов двигателей. Вместе с тем Россия имеет хороший научно-исследовательский задел по созданию перспективных двигателей и квалифицированные кадры специалистов, способных достаточно быстро реализовать имеющийся научный и конструкторский задел в производстве. За последние 8 — 10 лет разработаны и изготовлены принципиально новые опытные образцы двигателей с регулируемым рабочим объемом, а также с регулируемой степенью сжатия. В 1995 г. разработана и внедрена на Заволжском моторном заводе и на Нижне-Новгородском автозаводе микропроцессорная система управлением топливоподачей и зажиганием, обеспечивающая выполнение экологических норм ЕВРО-1. Разработаны и изготовлены образцы двигателей с микропроцессорной системой управления топливоподачей и нейтрализаторами, удовлетворяющие экологические требования ЕВРО-2. В этот период учеными и специалистами НАМИ разработаны и созданы: перспективный турбокомпаундный дизель, серия дизельных и бензиновых экологически чистых двигателей традиционной компоновки, двигатели, работающие на водородном топливе, плавающие транспортные средства высокой проходимости с щадящим воздействием на грунт и т. п.
Современные наземные виды транспорта обязаны своим развитием главным образом применению в качестве силовых установок поршневых двигателей внутреннего сгорания. Именно поршневые ДВС до настоящего времени являются основным видом силовых установок, преимущественно используемых на автомобилях, тракторах, сельскохозяйственных, дорожно-транспортных и строительных машинах. Эта тенденция сохраняется сегодня и будет еще сохраняться в ближайшей перспективе. Основные конкуренты поршневых двигателей — газотурбинные и электрические, солнечные и реактивные силовые установки — пока еще не вышли из этапа создания экспериментальных образцов и небольших опытных партий, хотя работы по их доводке и совершенствованию в качестве автотракторных двигателей продолжаются во многих компаниях и фирмах всего мира.
Источник: Колчин А.И., Демидов В.П. — Конструкция и расчет автотракторных двигателей, 2008 г.
История создания двигателя внутреннего сгорания
Вы можете изучить истории возникновения и развития известнейших мировых автокомпаний
История создания двигателя внутреннего сгорания, конструкция и принцип работы двигателя, поршневого двигателя внутреннего сгорания, конструкция блока цилиндра, его неисправности и ремонт
История создания двигателей внутреннего сгорания:
Еще в те далекие годы ученые, инженеры многих стран работали над открытиями в различных областях науки: химии, физике, механике. Так, в 1799 году, Филипп Лебон – французский инженер, открыл светильный газ. Светильный газ он получил из древесины и угля путем сухой перегонки. Открытие послужило началом развития техники освещения.
В 1801 году он разработал свою конструкцию газового двигателя. Работа двигателя основывалась, опять же, на свойствах открытого им газа. Газ, в смеси с воздухом при нагревании, воспламенялся, горел с выделением огромного количества тепла и расширялся. Эту энергию он использовал в своем первом двигателе. Конструкция его двигателя состояла из двух компрессоров и смесительной камеры. Один компрессор закачивал сжатый воздух, второй – светильный газ из газогенератора. Смесь газов направлялась в рабочие цилиндры, расположенные по обе стороны от поршня. Смесь поочередно воспламенялась, то в одном цилиндре, то — в другом. Это открытие послужило предпосылкой создания двигателя внутреннего сгорания. Но воплотить свою идею о создании двигателя внутреннего сгорания он не успел. В 1804 году он погиб. Его идею разработали другие изобретатели.
Конструкции двигателей внутреннего сгорания, в последующие годы, разрабатывались учеными в зависимости от использования горючих веществ — топлива.
В 1877 году Август Отто, немецкий изобретатель, разработал новый двигатель с четырёхтактным циклом. Этот цикл по сей день лежит в основе работы большинства газовых и бензиновых двигателей.
В конце XIХ века появились двухцилиндровые двигатели.
С начала XX века — четырёхцилиндровые.
В зависимости от вида топлива, используемого в двигателе, автомобили делятся на:
— автомобили с карбюраторными двигателями, работающие на легковоспламеняющемся жидком топливе – бензине
— автомобили с дизельными двигателями, работающие на тяжелом жидком дизельном топливе
— автомобили, работающие на сжатом или сжиженном газе, хранящиеся на автомобиле в баллонах.
Двигатели внутреннего сгорания бывают:
1. Поршневые.
2. Роторные.
3. Газотурбинные.
4. Роторно-поршневые.
5. Комбинированный двигатель внутреннего сгорания.
6. RCV.
Мы будем говорить о поршневых двигателях внутреннего сгорания.
1. О конструкции двигателя внутреннего сгорания.
Двигатель внутреннего сгорания – поршневой
Двигатели внутреннего сгорания состоят из основных конструктивных узлов:
1. Цилиндра с поршнем – камера сгорания.
Где, пары топлива смешанные с воздухом, воспламеняются от электрической искры, сгорают, нагреваются, расширяются, создают давление и перемещают поршень. Химическая энергия топлива превращается в механическую энергию.
2. Кривошипно-шатунного механизма.
Служит для преобразования прямолинейного, возвратно-поступательного движения поршня во вращательное движение коленчатого вала.
В него входят:
— блок цилиндров с головкой, поршни с кольцами, поршневые пальцы, шатуны,
коленчатый вал, маховик, картер.
3. Газораспределительного механизма.
Служит для своевременного впуска в цилиндры свежего заряда горючей смеси и выпуска отработанных газов.
Состоит из:
— впускных и выпускных клапанов с пружинами, деталями их крепления, толкателей, направляющих втулок клапанов и толкателей, распределительного вала, распределительных шестерен.
4. Системы охлаждения.
Предназначена для отвода тепла от деталей двигателя, нагревающихся при его работе.
В нее входят:
— рубашка охлаждения блока, головки цилиндров, радиатор, насос, вентилятор,
водораспределительная труба, термостат, соединительные шланги, краники слива жидкости, жалюзи и указатель температуры охлаждающей жидкости.
5. Системы смазки.
Служит для подачи масла к трущимся поверхностям деталей двигателя, частичного охлаждения их и очистки масла.
К ней относятся:
— поддон картера, маслоприемник, масляный насос, масляные фильтры грубой и тонкой очистки, масляный радиатор, указатель давления масла, трубопроводы и каналы.
6. Системы питания.
Предназначена для подвода топлива, очистки и подачи воздуха к карбюратору, приготовления горючей смеси, подвода ее к цилиндрам и отвода из них отработавших газов.
К системе питания относятся:
— топливный бак, фильтр отстойник, насос, карбюратор
7. Системы зажигания.
Служит для образования электрической искры и воспламенения ее в цилиндрах двигателя.
2. О принципе работы поршневого двигателя внутреннего сгорания.
Для объяснения принципа работы двигателя возьмем цилиндр с поршнем. Поршень, в не рабочем состоянии, свободно перемещается внутри цилиндра. Соединим его с кривошипом вала при помощи шатуна. В цилиндр введем заряд горючей смеси. Воспламеним этот заряд (пары топлива смешанные с воздухом) электрической искрой. При быстром сгорании топлива, газы нагреваясь, расширяются, создают давление и перемещают поршень. Шатун, шарнирно связан одним концом с поршнем, другим концом шарнирно закреплен на шейке кривошипа коленчатого вала. При перемещении поршня, весь узел поворачивает коленчатый вал и закрепленный на его конце маховик. Прямолинейное перемещение поршня преобразуется во вращательное движение коленчатого вала и маховика. Чтобы поршень работал постоянно, необходимо постоянно впускать заряд. Для этой цели в верхней части цилиндра имеются два отверстия: впускное и выпускное. Эти отверстия перекрываются поочередно клапанами. Маховик очень тяжелый. Он помогает не останавливаться поршню до нового воспламенения смеси.
После расширения газов клапан выпускного отверстия при движении поршня вверх открывается, и отработавшие газы выталкиваются наружу. Коленчатый вал продолжает вращаться, перемещает поршень вниз. В освобождаемой части цилиндра создается разряжение. Открывается впускной клапан впускного отверстия и цилиндр заполняется новой порцией заряда горючей смеси. Полезная работа создается только при новом цикле, когда происходит сгорание горючей смеси, то есть, когда поршень в верхнем положении и сжимает пары горючей смеси.
Верхнее и нижнее положения поршня – это мертвые точки. Движение поршня вверх – вниз – это ход поршня. За один ход поршня коленчатый вал поворачивается на 180 градусов, то есть пол-оборота.
Процессы, происходившие внутри цилиндра за один ход поршня, называются тактом.
Пространство внутри цилиндра над поршнем, при положении поршня в верхней части цилиндра (мертвой точке), называется камерой сгорания.
Пространство, освобождаемое при движении поршня вниз (нижнюю мертвую точку) называется рабочим объемом цилиндра.
В многоцилиндровых двигателях сумма рабочих объемов всех цилиндров называется литражом двигателя и выражается в литрах.
Полным объемом цилиндра называется сумма рабочего объема плюс объем камеры сгорания.
Отношение полного объема цилиндра к объему камеры сгорания называется степенью сжатия.
Чем больше степень сжатия, тем выше экономичность и мощность двигателя вследствии уменьшения тепловых потерь и уменьшения давления на поршень.
Снижение тепловых потерь достигается уменьшением внутренней поверхности камеры сгорания.
Среднее давление на поршень повышается за счет увеличения температуры и скорости сгорания рабочей смеси при ее большом сжатии.
И так выяснили:
— что принцип работы одноцилиндрового двигателя состоит из выполнения одного такта рабочего хода, при котором происходит сгорание рабочей смеси и расширение газов
— что, для этого процесса необходимы три подготовительных такта: впуск, сжатие, расширение и выпуск — четыре такта
— что блок цилиндра или цилиндров, является основной деталью двигателя.
3. О блоке цилиндра, как основном узле двигателя.
Цилиндры в блоке могут быть расположены вертикально, в один ряд, в два ряда, V – образно под углом 90 градусов.
Блок цилиндров отливают из чугуна или алюминиевого сплава. В этой же отливке выполняются: картер, стенки рубашки охлаждения, окружающей цилиндры двигателя, впускные и выпускные каналы, заканчивающиеся гнездами клапанов, и клапанная коробка, где размещается часть деталей газораспределительного механизма. Внутренняя поверхность цилиндров служит направляющей для поршней.
Цилиндр растачивают под требуемый размер, а затем шлифуют. Эта поверхность называется зеркалом цилиндра. Цилиндры могут выполняться и в виде вставных гильз, омываемых охлаждающей жидкостью. Такие гильзы называются мокрыми. Нижняя часть гильз имеют уплотнительные кольца. Вверху уплотнение достигается за счет прокладки головки цилиндров. Для продления срока службы двигателей в верхнюю часть, наиболее изнашивающуюся часть цилиндров, запрессовываются короткие тонкостенные гильзы из кислотоупорного чугуна. Сверху блок закрыт головкой цилиндров, изготовленной из алюминиевого сплава.
Крепятся головки цилиндров к блоку шпильками с гайками, а их герметичность, с помощью металлоасбестовой прокладки.
Поршни отливаются из алюминиевого сплава. Поршни имеют цилиндрическую форму. Состоит из головки с днищем и направляющих стенок (юбки). На цилиндрической части головки поршня выточены канавки для поршневых колец.
В головку залита чугунная кольцевая вставка с прорезью для верхнего компрессионного кольца. Над верхней канавкой сделана кольцевая вытачка для уменьшения передачи тепла от днища поршня к кольцам, для предохранения от их пригорания.
В направляющих стенках имеются два прилива – бобышки с отверстиями для установки поршневого пальца. Ось отверстия под поршневой палец смещена в сторону распределительного вала для уменьшения качания поршня в верхней мертвой точке и снижения шума при работе. В юбке, в нижней ее части, есть выемка для прохода противовесов коленчатого вала при вращении.
Для предотвращения заклинивания при нагреве между рабочей поверхностью цилиндра и поршнем есть зазор. Диаметр головки поршня делают меньшим, так как он нагревается больше, чем стенки поршня.
Для уменьшения зазора между поршнем и цилиндром в прогретом состоянии и предотвращения стука в холодном двигателе направляющие стенки поршней делаются овальной формы, или П – образные разрезы, или Т – образные, или косые разрезы. Большая ось овала ставится в плоскости действия боковых сил и меньшей осью в плоскости поршневого пальца. Для правильной установки поршней при сборке на днище выбита с надписью «вперед».
Для ускоренной приработки поршней к цилиндру их покрывают тонким слоем олова.
Поршневые кольца служат для предотвращения прорыва газов в картер двигателя и снятия излишек масла со стенок цилиндра. Изготовляются кольца из чугуна или стали и имеют замок (разрез). Они упругие, поэтому плотно прилегают к стенкам цилиндра. Кольца устанавливают на поршень разрезами в разные стороны.
Поршневой палец служит для шарнирного соединения поршня с шатуном. Палец – пустотелый, цилиндрической формы. Наружный слой пальца закален с нагревом токами высокой частоты для повышения износостойкости. Палец удерживается от осевого смещения стопорными пружинными кольцами, установленными в вытачках бобышек поршня. Такое крепление поршневого пальца называется плавающим и позволяет ему во время работы двигателя, поворачиваться вокруг оси в бобышках поршня и в верхней головке шатуна.
4. О неисправностях цилиндра, поршня, поршневых колец и пальцев, признаках неисправностей и их устранениях.
1. Двигатель не развивает полной мощности.
Причины:
— уменьшение компрессии в результате нарушения уплотнения прокладки головки цилиндров при слабой или неравномерной затяжке гаек крепления.
Устранение неисправности:
а) ключом раскрутить гайки на шпильках
б) вынуть шпильки
в) тщательно очистить поверхность разъема
г) прокладку натереть порошкообразным графитом
д) заменить металлоасбестовую прокладку
е) провести операцию сборки в обратном порядке с равномерной затяжкой гаек. Затяжку гаек производить от центра, постепенно перемещаясь к краям
— пригорание колец в канавках поршня из за отложения смолистых веществ, приводит к перерасходу топлива.
Устранение неисправности:
а) проверить рукой или компрессометром компрессию в цилиндрах:
Для проверки компрессии рукой, вывернуть свечи зажигания, кроме проверяемого цилиндра. Вращать коленчатый вал пусковой рукояткой. По сопротивлению проворачиванию во время такта сжатия, опытные проверяют, судят о компрессии.
Проверить компрессию с помощью компрессометра. Для этого, прогреть двигатель. Вывернуть свечи. Полностью открыть дроссель и воздушную заслонку карбюратора. Установить резиновый наконечник компрессометра в отверстие для свечи. Вращать коленчатый вал двигателя в течении 2 – 3 секунд. Компрессометр дает показания. В исправном двигателе величина давления конца сжатия в пределах 7,0 – 8,0 килограмм на один квадратный сантиметр.
б) выпустить воду
в) отсоединить шланги
г) снять приборы, укрепленные на головке цилиндров, и, отвернув гайки, осторожно отделить головку цилиндров, используя металлическую полоску
д) удалить отложения смолистых веществ с помощью скребка из мягкого металла. Перед удалением смолистых веществ, чтобы не повредить поверхность поршня, смочить керосином
е) заменить кольца
ж) вновь собрать узел
з) проверить компрессию двигателя
и) пригорание колец можно устранить и без разборки двигателя. На ночь залить в каждый цилиндр смесь из 20 г, состоящей из равных частей денатурированного спирта и керосина
— износ, поломка, потеря упругости колец
Устранение неисправности:
а) проделать те же операции по определению компрессии двигателя
б) проделать те же операции по разборке узла, что и при удалении отложений смолистых веществ, без применения керосина
г) заменить поврежденные кольца.
— отложение нагара на днищах поршней и стенках камеры сгорания
Причины этой неисправности приводят к перегреву двигателя, увеличению расхода топлива, к потере мощности.
Устранение неисправности:
б) выпустить воду
в) отсоединить шланги
г) снять приборы, укрепленные на головке цилиндров, и, отвернув гайки, осторожно отделить головку цилиндров, используя металлическую полоску
д) удалить нагар:
Удаляется нагар с днищ поршней поочередно, когда поршни устанавливаются в цилиндрах в крайние верхние положения. Соседние цилиндры надо закрыть чистой ветошью. Нагар удалять скрепками из мягкого металла, чтоб не повредить поверхность очищаемых деталей. Для размягчения нагара смачивают керосином. Нагар в камере сгорания удаляют также.
е) вновь собрать узел
ж) проверить компрессию двигателя
— износ, поломка, потеря упругости колец
Устранение неисправности:
а) проделать те же операции по определению компрессии двигателя
б) проделать те же операции по разборке узла, что и при удалении отложений смолистых веществ или нагара, без смазки керосином, просто заменой исправными кольцами
— обрыв шпилек, повреждение резьбы шпилек, повреждение резьбы гаек
а) заменить шпильки и гайки
— износ рабочей поверхности цилиндра. Вызывает перерасход топлива, дымный выпуск отработавших газов.
Устранение неисправности:
а) разборка узла, выше указанным способом
б) отправка на восстановление до нужных размеров диаметра цилиндра в специализированные участки или замена новым.
2. Стуки в двигателе.
Причины:
— увеличение зазора в результате износа или повреждения поверхностей поршней, цилиндров, поршневых пальцев и втулок, коренных и шатунных подшипников, выплавление баббитового слоя вкладышей подшипников. Стук во время пуска и работе холодного двигателя, признак увеличения зазора между поршнем и цилиндром. Резкий металлический стук, который прослушивается на всех режимах работы двигателя, говорит об увеличении зазора между поршневыми пальцами и втулками. Увеличение стука при резком повышении оборотов коленчатого вала двигателя указывает на повышенный износ коренных и шатунных подшипников. Если более глухой стук – это износ коренных подшипников. Резкий, не прекращающийся стук в двигателе, который сопровождается падением давления, «говорит» о выплавлении или большом износе слоя баббита во вкладышах подшипников.
Устранение неисправности:
Прослушивание двигателя для определения причин стуков производится с помощью стетоскопа. Пользование этим прибором требует большого навыка.
История двигателя внутреннего сгорания
Автомобильная промышленность в настоящее время претерпевает довольно большие изменения. Альтернативные источники энергии, такие как электричество и водород, приобретают все большую популярность в отрасли как средство питания современных автомобилей, и многие производители планируют сделать все свои автомобили полностью электрическими в течение следующих нескольких десятилетий.
При этом старый двигатель внутреннего сгорания по-прежнему безраздельно правит. В то время как популярность электромобилей растет, бензиновые и дизельные автомобили по-прежнему доминируют на рынке; около 80% всех автомобилей, проданных в прошлом году, использовали двигатели внутреннего сгорания. Даже несмотря на то, что они могут быть на исходе, ясно, что двигатели внутреннего сгорания будут существовать, по крайней мере, еще некоторое время.
Сегодня мы поговорим об истории двигателя внутреннего сгорания и поговорим о первых днях этой технологии, а также о том, что именно сделало эти двигатели такими популярными.
Как работает внутреннее сгорание?
Во-первых, давайте на секунду объясним, как работает внутреннее сгорание. Мы предполагаем, что вы, вероятно, уже знаете, но в случае, если вы этого не сделаете, надеюсь, вы найдете это полезным.
Частями двигателя внутреннего сгорания, непосредственно ответственными за создание мощности, являются поршни и коленчатый вал. Топливо и воздух попадают в камеру сгорания, где сжимаются и воспламеняются. Сила зажигания давит на поршни, прикрепленные к коленчатому валу.
Когда поршни двигаются вперед и назад, это заставляет коленчатый вал вращаться, что обеспечивает вращательное усилие, необходимое для вращения колес. Когда воздушно-топливная смесь сгорает, поршень вытесняет ее из камеры сгорания через выпускные клапаны.
Дизельный двигатель работает точно так же, как бензиновый двигатель, за исключением того, что вместо использования свечей зажигания для воспламенения топливно-воздушной смеси он воспламеняет смесь, используя только сжатие.
Ранняя история двигателя внутреннего сгорания
Прежде чем кому-либо пришла в голову мысль установить двигатель внутреннего сгорания в движущееся транспортное средство, инженеры на протяжении всей истории уже экспериментировали с двигателем внутреннего сгорания для других целей. До того, как двигатели внутреннего сгорания стали использоваться в колесных транспортных средствах, большинство этих двигателей использовались в качестве стационарных генераторов.
Первым двигателем внутреннего сгорания, который когда-либо использовался в движущемся транспортном средстве, был двигатель Ленуара, изобретенный бельгийско-французским инженером Жаном Жозефом Этьеном Ленуаром в 1860 году. По сути, этот двигатель был просто паровым двигателем, переделанным для работы на горючем газе.
Транспортным средством, в котором использовался этот двигатель, был «Гиппомобиль» Ленуара, трехколесная повозка, которая представляла собой не что иное, как повозку, стоящую на трехколесном велосипеде. Сам двигатель объемом 2,5 литра развивал мощность 1,5 л.с. при 100 об/мин. В результате Гиппомобиль был невероятно медленным, его максимальная скорость составляла всего 6 км/ч.
Однако, несмотря на то, насколько медленным был гиппомобиль, он доказал, что внутреннее сгорание может быть жизнеспособным методом приведения в действие наземных транспортных средств. Следующий большой шаг в развитии двигателя внутреннего сгорания был сделан, когда Николаус Отто, немецкий инженер, сконструировал первый четырехтактный двигатель в 1875 году.0003
Четырехтактный двигатель был очень важен для автомобильной промышленности, потому что по сравнению с двухтактными двигателями четырехтактные двигатели были намного экономичнее, намного чище и, как правило, дольше работали. В наши дни каждый газовый автомобиль имеет четырехтактный двигатель.
Конечно, как вы, наверное, догадались, большой момент для двигателя внутреннего сгорания в автомобиле наступил с патентом Benz Motorwagen, построенным в 1885 году немецким инженером Карлом Бенцем. В Motorwagen использовался 1-литровый одноцилиндровый четырехтактный двигатель собственной конструкции Бенца, мощность которого составляла 2/3 лошадиных сил при 400 об/мин.
Однако более поздние версии Motorwagen были более мощными; Окончательная версия Motorwagen производила 2 лошадиные силы, что позволяло развивать максимальную скорость 16 км/ч. Несмотря на то, что это означало, что Motorwagen все еще был довольно плохой альтернативой лошади, это доказывало, что технология внутреннего сгорания однажды может оказаться очень пригодной для транспортных целей.
Влияние двигателя внутреннего сгорания
Трудно переоценить влияние двигателя внутреннего сгорания на мир в целом. Фактически, можно утверждать, что двигатель внутреннего сгорания был одним из самых значительных (если не самым значительным) изобретений с точки зрения создания действительно связанного мира.
До изобретения двигателя внутреннего сгорания люди не могли легко путешествовать. Конечно, у вас были лошади и парусные корабли, но они были медленными и могли доставить вас только в очень многие места.
Однако с изобретением двигателя внутреннего сгорания все изменилось. В то время как двигатель внутреннего сгорания был невероятно важен для автомобильной промышленности, он был еще более важен для авиационной промышленности. Технология внутреннего сгорания помогла двигателям производить большую мощность, оставаясь при этом достаточно легкими, что, очевидно, было необходимо для авиации.
Тракторы на паровой тяге уже существовали какое-то время, но благодаря внутреннему сгоранию тракторы оставались мощными, но при этом ими было еще проще управлять. Это означало, что фермеры могли выполнять больше работы за то же время, что позволяло им легче выращивать больше продуктов питания.
В результате это означало, что стоимость продуктов питания в развитых странах значительно снизилась, а изобилие продуктов питания означало, что странам было легче экспортировать свои собственные продукты питания в другие страны, где такие продукты пользовались большим спросом. Мощные и эффективные двигатели облегчили транспортировку еды и других ресурсов в другие места.
Конечно, влияние двигателей внутреннего сгорания на наш мир не было полностью положительным. Во многом благодаря выбросам, создаваемым двигателями внутреннего сгорания, наша планета в настоящее время претерпевает довольно значительные изменения климата, большинство из которых неблагоприятны.
Кроме того, нефть, которую мы используем для производства бензина и дизельного топлива, становится все более дефицитной, что в конечном итоге может привести к усилению конкуренции между странами мира за контроль над любыми невостребованными источниками. Поскольку топливные ресурсы истощаются, кажется логичным и вероятным, что в результате возникнет какой-то конфликт.
Почему двигатели внутреннего сгорания так популярны?
В наши дни вы много слышите о том, насколько грязной является технология внутреннего сгорания и что нам нужно начать думать о переходе на другие, более чистые методы производства энергии. Гибриды и электромобили занимают довольно солидную долю рынка, и новые технологии, такие как водородная энергетика, также начинают набирать популярность.
Даже на заре двигателей внутреннего сгорания у вас были альтернативы, такие как паровая энергия, которые можно было использовать для личного транспорта. Нам нравится думать об электромобиле как о современном изобретении, но даже в начале 20-го века все еще было несколько коммерчески доступных электромобилей.
Так почему двигатели внутреннего сгорания доминировали в отрасли? Что ж, ответ был почти таким же с тех пор, как двигатель внутреннего сгорания впервые стал королем; они, безусловно, являются наиболее эффективным средством выработки электроэнергии для движущихся транспортных средств. Бензин и дизельное топливо гораздо более энергоемкие, чем аккумуляторы.
По сравнению с электромобилями прошлого и даже с современными, двигатели внутреннего сгорания намного лучше подходят для поездок на большие расстояния. У электромобилей никогда не было такого запаса хода, как у автомобилей с двигателем внутреннего сгорания, и они также требуют гораздо больше времени для перезарядки, чем обычный автомобиль.
Пар почти так же эффективен, как газ или дизель, но основная проблема старых паровых двигателей заключалась в том, что их было очень сложно эксплуатировать. Ранние газовые двигатели были намного проще, чем старые паровые силовые установки, а также лучше обеспечивали мощность для высокоскоростных приложений.
Будущее двигателей внутреннего сгорания
Мы долго говорили о прошлом двигателей внутреннего сгорания, но что ждет эту технологию в будущем? Вполне вероятно, что после определенного момента двигатель внутреннего сгорания исчезнет навсегда, но до тех пор производители продолжают внедрять инновации.
В последние несколько лет турбонаддув становится все более популярным и, вероятно, станет еще более популярным в ближайшем будущем. Помимо того, что турбонаддув помогает двигателям производить больше мощности, он также может помочь двигателю работать более эффективно. За счет турбонаддува небольшого двигателя вы можете получить от него такое же количество энергии, как и от более крупного безнаддувного двигателя, используя при этом меньше топлива.
Другим примером технологии, которую вы можете увидеть в двигателях внутреннего сгорания в ближайшее время, является воспламенение от сжатия гомогенного заряда (HCCI). Эта технология берет лучшее из обоих миров от бензина и дизельного топлива; он использует бензин, который чище дизельного топлива, но зажигает его только от сжатия, что более эффективно, чем зажигание от свечи зажигания.
Возможно, вскоре на рынке появятся бескулачковые двигатели. В обычном двигателе внутреннего сгорания впускные и выпускные клапаны приводятся в действие распределительным валом, который использует кулачки для открытия или закрытия клапанов в нужное время. Распределительные валы просты, но они не обеспечивают большого контроля над продолжительностью подъема клапанов.
Однако в бескулачковом двигателе каждый клапан приводится в действие индивидуально с помощью гидравлического или электронного привода. Это помогает компьютеру двигателя иметь гораздо больший контроль над процессом сгорания, что может помочь сделать двигатель более мощным и более эффективным.
Путешествие во времени: как родился двигатель внутреннего сгорания
В этой первой из серии статей, посвященных истории двигателя внутреннего сгорания, мы совершим короткое и неисчерпывающее путешествие через тысячелетия и около мир, чтобы показать происхождение очень важных частей текущих и будущих технологий.
Опубликовано 15 сентября 2020 г., Жан-Франсуа Тиссо
История двигателей часто рассматривается как начинающаяся с эпохи Просвещения на Западе с линейным и логическим развитием. Хотя отчасти это правда, многие кусочки этой невероятной головоломки на самом деле можно найти гораздо раньше, а идеи и концепции распространились гораздо дальше, чем обычно обсуждается.
Это огромная тема, но в этой первой из серии статей, посвященных истории двигателя внутреннего сгорания, мы совершим короткое и неисчерпывающее путешествие через тысячелетия и по всему миру, чтобы показать происхождение очень важных частей текущих и будущих технологий.
Например, как австронезийцы до 100 г. н.э. могли обнаружить ценное недостающее звено между теорией Сади Карно и не менее гениальным изобретением Рудольфа Дизеля? И почему эти гениальные изобретения никогда не служили отправной точкой для более ранней промышленной революции? На это мы постараемся ответить в наших разных статьях…
Начало чего-то большого
Китай — хорошее место для начала, где, как считается, в древности были изобретены воздушные меха, дающие возможность увеличить тепловую мощность в плавильных печах. По сути, родился наддув.
Окружающий воздух, подаваемый мехами в печь, работающую на древесном угле, позволял развивать более высокие температуры, необходимые для плавки железной руды, и затем один человек мог генерировать тепло примерно в 70 раз быстрее, чем это было возможно с помощью паяльной трубки (паяльная трубка против мехов в Древней Греции). Металлургия – Дж. Э. Редер, Торонто, Канада 1994).
Сотни лет спустя, в конце XVIII века, физик А. Л. де Лавуазье обнаружил, что горение невозможно без кислорода.
Другая часть головоломки, огненный поршень, была изобретена в Юго-Восточной Азии, скорее всего, австронезийцами до 100 г. н.э. Пожарные поршни использовались для зажигания огня путем быстрого сжатия воздуха с помощью ручного поршня внутри небольшого цилиндра, сделанного из различных материалов, включая бамбук, дерево или рога животных.
Небольшая загрузка трута помещается в материал, и благодаря его адиабатичности температура быстрого сжатия рукой может достигать 260°C, чего достаточно для воспламенения трута и возгорания. Именно это открытие позже заложило основу концепции дизельного двигателя.
В то время как некоторые из наших предков были заняты изучением воспламенения от сжатия, другие искали более взрывные методы. Самое раннее подтвержденное упоминание о порохе произошло в Китае в 9 веке нашей эры, во времена династии Тан. Эта концепция сыграет большую роль в двигателе Гюйгенса, пороховом двигателе, который впервые был исследован в 1678 году и послужил источником вдохновения для современных бензиновых двигателей внутреннего сгорания.
Соединяем части вместе
Однако современные двигатели представляют собой сложные механизмы, и открытие процесса сгорания — это еще одна часть головоломки. Другие части двигателя внутреннего сгорания уходят корнями в столь же глубокую историю.
Первым известным кривошипом, например, была система шатунов, использовавшаяся римлянами в 3 веке нашей эры. Система преобразовывала мощность вращающейся водяной мельницы в альтернативную линейную мощность, что позволяло управлять двумя пилами по камню.
Даже сегодня, после испытаний многих других систем, шатун остается предпочтительным решением для преобразования альтернативного движения поршня в полезное вращательное движение во всех двигателях внутреннего сгорания.
Изучение силы пара
Пар также играет большую роль в истории двигателя внутреннего сгорания, являясь одним из первых известных способов преобразования силы огня в движение.
Первая зарегистрированная паровая машина была описана Героем Александрийским в римском Египте в I веке нашей эры.
Эолипил представляет собой вращающийся сосуд, в который подается пар из котла, а затем выбрасывается через два тангенциальных сопла, создавая вращающий момент. Полученной механической мощности вращения было достаточно только для компенсации потерь на трение и сопротивление, однако дополнительной мощности не производилось. И, похоже, древние греки рассматривали эолипил не как изобретение, способное изменить мир, а просто как диковинку.
Энергия пара будет продолжать играть роль на протяжении следующих столетий, хотя и с широким применением. Согласно Уильяму Малмсберийскому, например, в 1125 году в Реймсе находился церковный орган, приводимый в действие воздухом, выходящим из сжатия «нагретой водой», по-видимому, спроектированный и построенный профессором Гербертом.
А в 1543 году Бласко де Гарай, ученый и капитан испанского флота, возможно, предложил систему, основанную на эолипиле, для приведения в движение больших кораблей с помощью гребных колес без использования энергии ветра.