Содержание

Дизельные двигатели Toyota 2.0 D-4D (1CD-FTV): надежность, проблемы и недостатки






 1/11/2019

Турбированные дизельные моторы концерн Toyota производит и устанавливает на свои автомобили с прошлого века. Первый силовой агрегат, оснащенный системой впрыска топлива Common Rail, был изготовлен в 1999 году. Данный двигатель имел индекс 1CD-FTV. Автомобили, оснащенные подобным агрегатом, маркировались как D-4D. За разработку топливной системы отвечала компания Denso.

 

Первые модификации мотора 1CD-FTV устанавливались на транспортные средства марки Toyota вплоть до 2006 года. В дальнейшем силовой агрегат был модернизирован и получил индекс 1AD-FTV. Мотор объемом 2 литра производился на протяжении нескольких лет, отличался надежностью и неприхотливостью.

 

Несмотря на отличные технические характеристики мотора D-4D объемом 2 литра, турбодизель имеет характерные недостатки и дефекты. Основные неприятности владельцам авто приносит топливная система. Оборудование Denso в целом обладает хорошими техническими параметрами и отлично работает в паре с турбодизелем. Но если топливная система вышла из строя, отремонтировать ее сложно и дорого из-за особенностей конструкции. Производитель не поставлял в свободную продажу запчасти к форсункам и ТНВД в течение длительного времени. Приобретение готовых комплектов выливалось в крупную сумму.

 

 

На нашем YouTube-канале вы можете посмотреть разборку двигателя Toyota 2.0 D-4D (1CD-FTV), снятого с Avensis с пробегом 190 000 км.

 

 

Выбрать и купить двигатель Toyota 2.0 дизель для Avensis, Corolla , Picnic, Previa, RAV4 вы можете на сайте компании «АвтоСтронг-М».

 

Конструктивные особенности силового агрегата и топливной системы Toyota 2.

0 D-4D

 

В зависимости от модификации, силовой агрегат 1CD-FTV развивает мощность от 90 до 116 лошадиных сил. Мотор комплектуется 16 клапанами на 4 цилиндра, головка блока цилиндров выполнена из алюминиевого сплава. В состав двигателя входят распредвалы в количестве 2 единиц без гидрокомпенсаторов. Корпус выполнен из чугуна, в котором расточены цилиндры, гильзы в моторе отсутствуют.

 

 

Существует возможность регулировки тепловых зазоров клапанов. Для этого необходимо заменить специальные шайбы. При этом не требуется демонтаж распредвала. Процедура регулировки проще, чем на других турбодизелях.

 

В состав мотора 1CD-FTV входит впускной коллектор. Для снижения показателей турбулентности воздушного потока система комплектуется ресивером и каналами одинаковой длины. Такая конструкция позволила добиться равномерного распределения входящего потока по цилиндрам. Для регулировки ремня ГРМ применяется натяжитель гидравлического типа. РС помощью ремня осуществляется управление работой топливного и маслонасоса, помпы.

 

 

Ременной привод клапанного блока отвечает за вращение распределительного вала выпускных клапанов. Распредвал впускных клапанов вращается от выпускного распределительного вала. Передача момента осуществляется зубчатой передачей. Для снижения коэффициента трения юбки поршней обработаны полимерными составами специального образца.

 

 

Двигатель 1CD-FTV не запускается – в чем причина?

 

Чаще всего проблемы с запуском турбодизеля Toyota D-4D возникают по вине топливной системы, а именно форсунок и ТНВД. Но есть другие причины, при которых силовой агрегат отказывается заводиться. В первую очередь проблемы могут быть связаны с износом стартера. В сервисных центрах на данный узел обращают внимание не сразу. Длительный ремонт связан с проверкой форсунок и ТНВД, после чего очередь доходит до стартера.

 

Еще реже проблемы запуска мотора связаны с неисправностями электропроводки. При длительной эксплуатации авто провода постепенно перетираются. Чаще всего страдают кабели до датчика давления впускного клапана. О таком дефекте говорит ошибка, индикация присутствует даже на незаведенном двигателе. В некоторых случаях перетираются провода до блока управления двигателем. Показания с датчиков при этом не видны на диагностике.

 

Проблемы в работе мотора– возможные причины

 

Одна из основных проблем, с которой может столкнуться владелец Toyota с двигателем 1CD-FTV, заключается в отсутствии тяги, потере мощности, увеличении задымленности, вибрациях. В некоторых случаях мотор глохнет на этапе прогрева. В первую очередь опытный мастер обращает внимание на состояние клапана EGR, который включается при достижении охлаждающей жидкости температуры 60-80 градусов.

 

Возможным решением проблемы является чистка клапана EGR, а также всей системы рециркуляции выхлопных газов. Если проблема повторяется, клапан EGR просто заглушают. Характеристики мотора при этом остаются неизменными.

 

 

Неисправности и сбои в работе турбины

 

 качестве турбокомпрессора на двухлитровых моторах 1CD-FTV используется агрегат марки Garrett с индексом GTA17V. Такие турбины устанавливаются в паре с двигателями мощностью 110 лошадиных сил. Модель GTA17V имеет изменяемую геометрию, отличается надежностью и износостойкостью. Выход из строя турбины связан с большим пробегом, а также использованием некачественной смазки. Основные симптомы выхода из строя – увеличение расхода масла, посторонний шум и скрежет, слабый отклик на нажатие педали газа.

 

Для турбин GTA17V характерна особая геометрия, управление которой осуществляется вакуумным актуатором. Если геометрия заклинивается, фиксируется передув турбины. При диагностике фиксируются соответствующие коды ошибок. Возможный вариант устранения проблемы – демонтаж, разборка и чистка турбины, а именно заклинивших лопаток. Обязательно проводится дефектовка и ремонт валов.

 

Для регулировки геометрии применяется упорный винт с контргайкой. При выполнении работ неквалифицированным ремонтником возможна неправильная регулировка. Максимального давления наддува не удается добиться. В некоторых случаях выходит и строя электровакуумный клапан управления геометрией. Другими негативными последствиями являются появление трещин и других дефектов шланга сервопривода.

 

Выбрать и купить турбину для Toyota 2.0 дизель для Авенсис, Королла, Пикник, Превия, РАВ4 вы можете на сайте компании «АвтоСтронг-М».

 

Неисправности ТНВД двигателей Toyota 2.0 D-4D

 

Топливная система марки Denso — основной источник проблем силового агрегата 1CD-FTV. Первое поколение моторов данного типа оснащалось двухкамерным ТНВД. Нагнетание обеспечивали радиальные плунжеры Denso HP2. Следующее поколение дизельных турбомоторов комплектовалось ТНВД с индексом Denso HP3. В состав узла входила уже одна плунжерная пара. Насос подкачки на обоих ТНВД был встроенного типа.

 

Преимуществом более поздней версии ТНВД являлось наличие двух перепускных клапанов электромагнитного типа. Данные элементы отвечали за подачу топлива в систему и своевременное наполнение ТНВД. На этапе всасывания электромагнитные клапаны открывали канал подачи топлива, при нагнетании блокировали.

 

 

Любая поломка перепускного клапана приводит к отсутствию подачи топливной смеси. В результате мотор просто не заводится. В некоторых ситуациях фиксируется потеря контакта в блоке клапанов. В таких случаях силовой агрегат также не запускается.

Надежность ТНВД Denso не вызывает нареканий. При своевременном техническом обслуживании и применении качественного топлива ресурс плунжерной пары достигает 300-400 тысяч километров. В противном случае наблюдается сокращение периода работы ТНВД. Последствие поломки – невозможность запустить двигатель в горячем режиме, после короткой остановки.

 

Выбрать и купить ТНВД для Toyota 2.0 дизель для Авенсис, Королла, Пикник, Превия, РАВ4 вы можете на сайте компании «АвтоСтронг-М».

 

Неисправности форсунок и сальников на двигателях 1CD-FTV

 

Клапанная крышка и форсунки разделены специальными сальниками, представляющими собой уплотнительные кольца. Износ прокладок приводит к постепенному пропусканию масла. В результате поверхность клапанной крышки запотевает. Кроме указанного дефекта, устранить который несложно, проблемы с запуском двигателя могут быть вызваны поломками форсунок

 

Дефекты двигателя Toyota 2.0 D-4D, связанные с работой форсунок

 

Одной из проблем моторов 1CD-FTV является проблема с сальниками форсунок. Тонкие уплотнительные колечки устанавливаются между форсунками и клапанной крышкой. При длительной эксплуатации данные элементы изнашиваются. Масло начинает подтекать и скапливаться на поверхности клапанной крышки. Замена сальников решает проблему.

 

Силовые агрегаты Toyota 2.0 D-4D комплектуются форсунками Denso, установленными на медные шайбы. Обязательно используются резиновые и пластиковые уплотнители. Если возникает необходимость замены форсунок, уплотнители меняются в полном комплекте.

 

В процессе интенсивной эксплуатации часто фиксируется прогорание медных шайб. Для дизельного мотора это означает попадание отработанных газов из камеры сгорания в колодец. В результате форсунка нагревается и происходит ее заклинивание. Чем выше температура мотора, тем быстрее глохнет мотор.

 

 

Срок эксплуатации форсунок двигателя 1CD-FTV достигает 200 тысяч километров и более. Такие показатели достижимы при правильной эксплуатации и использовании качественного топлива. В противном случае именно форсунки становятся слабым местом топливной системы. Их износ является причиной обратного хода топливной смеси. Для силового агрегата такой дефект оборачивается потерей мощности, появлением посторонних шумов, снижением тяговых характеристик.

 

Неисправности топливной системы проявляются и в кодах ошибок. Большой износ форсунок не обеспечивает нужного давления топлива. Мотор начинает глохнуть по мере прогрева или не заводится. В первую очередь проверяется состояние форсунок на цилиндрах №1 и №4.

 

При сложностях с запуском мотора 1CD-FTV можно отключить датчик температуры. Индикатор размещен на ТНВД и добраться до него не сложно. Если после этого удается завести мотор, необходимо обратиться в сервисный центр. В большинстве случаев проблема заключается в обратном сливе топлива в одной или нескольких форсунках.

 

 

До 2012 года форсунки Denso для двигателей Toyota практически невозможно было отремонтировать. Производитель не поставлял запчасти на рынок, вынуждая менять весь комплект целиком. Соответственно стоимость ремонта была очень высокой. Со временем форсунки Denso подешевели в несколько раз, на рынке появились ремонтные комплекты. Но в этом плане аналогичные элементы Bosch все равно выигрывают.

 

Выбрать и купить форсунки для Toyota 2.0 дизель для Авенсис, Королла, Пикник, Превия, РАВ4 вы можете на сайте компании «АвтоСтронг-М».

 

Если требуется ремонт форсунок Denso с четырьмя контактами, изготовленными в период с 1999 по 2003 год, то их прописка не требуется. На таких устройствах имеется встроенный резистор, отвечающий за коррекцию впрыска топлива. 

 

Форсунки, установленные на авто после 2003 года, имеют по 2 контакта. На самих элементах имеются QR-коды с корректировочными поправками. При ремонте необходимо сгенерировать и прописать эти данные. В остальном ремонт форсунок различных годов выпуска идентичен.

 

Выбрать и купить двигатель Toyota 2.0 дизель для Авенсис, Королла, Пикник, Превия, РАВ4 вы можете на сайте компании «АвтоСтронг-М».

Двигатель Toyota 2.0 D4D дизель технические характеристики, масло, отзывы о поломках и обслуживании

Февраль 1999 года, для компании Toyota стал значимым. Был представлен первый дизельный двигатель с турбонаддувом, на который устанавливалась топливная система Common Rail. На моторе использовались форсунки от производителя DENSO. Речь идёт о двух литровом силовом агрегате Toyota 2.0 D4D, предназначенным для установки в средние легковые автомобили европейского потребителя. Этот мотор зарекомендовал себя, как простой надёжный силовой агрегат, без серьёзных просчётов в конструкции двигателя.

Содержание страницы

Список автомобилей с данным двигателем

Рассматриваемый мотор устанавливали на такие марки автомобилей:

Toyota Avensis

  • С июня 2006 по январь 2009 года на Toyota Avensis второго поколения, рестайлинг, универсал, кузов Т250.
  • С июня 2006 по январь 2009 года на Toyota Avensis второго поколения, рестайлинг, лифтбек, кузов Т250.
  • С июня 2006 по январь 2009 года на Toyota Avensis второго поколения, рестайлинг, седан, кузов Т250.
  • С февраля 2003 по декабрь 2006 на Toyota Avensis второго поколения, универсал, кузов Т250.
  • С февраля 2003 по декабрь 2006 на Toyota Avensis второго поколения, лифтбек, кузов Т250.
  • С февраля 2003 по декабрь 2006 на Toyota Avensis второго поколения, седан, кузов Т250.
  • С ноября 2000 по март 2003 года на Toyota Avensis первого поколения, рестайлинг, лифтбек, кузов Т220.
  • С ноября 2000 по март 2003 года на Toyota Avensis первого поколения, рестайлинг, универсал, кузов Т220.
  • С ноября 2000 по март 2003 года на Toyota Avensis первого поколения, рестайлинг, седан, кузов Т220.
  • С октября 1997 по январь 2001 года на Toyota Avensis первого поколения, лифтбек, кузов Т220.
  • С октября 1997 по январь 2001 года на Toyota Avensis первого поколения, универсал, кузов Т220.
  • С октября 1997 по январь 2001 года на Toyota Avensis первого поколения, седан, кузов Т220.
  • С октября 2003 по февраль 2009 года на Toyota Avensis Verso второго поколения, рестайлинг, минивэн.
  • С августа 2001 по сентябрь 2003 года на Toyota Avensis Verso второго поколения минивэн.

Toyota Corolla

  • С мая 2004 по февраль 2007 года на Toyota Corolla девятого поколения, три двери хэтчбек, кузов Е120.
  • С мая 2004 по февраль 2007 года на Toyota Corolla девятого поколения, рестайлинг, хэтчбек, кузов Е120.
  • С мая 2004 по февраль 2007 года на Toyota Corolla девятого поколения, рестайлинг, седан, кузов Е120.
  • С мая 2004 по февраль 2007 года на Toyota Corolla девятого поколения, рестайлинг, универсал, кузов Е120.
  • С августа 2000 по июнь 2004 года на Toyota Corolla девятого поколения, универсал, кузов Е120.
  • С августа 2000 по июнь 2004 года на Toyota Corolla девятого поколения, хэтчбек, кузов Е120.
  • С августа 2000 по июнь 2004 года на Toyota Corolla девятого поколения, три двери, хэтчбек, кузов Е120.
  • С августа 2000 по июнь 2004 года на Toyota Corolla девятого поколения, седан, кузов Е120.
  • С января 1999 по октябрь 2001 года на Toyota Corolla восьмого поколения, рестайлинг, универсал, кузов Е110.
  • С января 1999 по октябрь 2001 года на Toyota Corolla восьмого поколения, рестайлинг, хэтчбек, кузов Е110.

Toyota RAV4

  • С августа 2003 по декабрь 2005 года на Toyota RAV4 второго поколения, рестайлинг, три двери, suv, кузов ХА20,
  • С августа 2003 по декабрь 2005 года на Toyota RAV4 второго поколения, рестайлинг, suv, кузов ХА20.
  • С мая 2000 по декабрь 2005 года на Toyota RAV4 второго поколения, три двери, suv, кузов ХА20.
  • С мая 2000 по август 2003 года на Toyota RAV4 второго поколения, suv, кузов ХА20.

Технические характеристики

Toyota 2.0 D4D — четырёхтактный, дизельный, силовой агрегат, четыре цилиндра которого размещены в один ряд. У двигателя, есть другая, заводская маркировка 1 CD FTV. Рассматриваемый двигатель обладает следующими техническими данными:

  • данный двигатель находился в серийном производстве с 1999 по 2007 годы;
  • блок цилиндров изготовлен из особо прочного сплава чугуна, как правило, для Тойоты, блок идёт без ремонтных размеров;
  • головка БЦ, имеющая шестнадцать клапанов, изготовлена из алюминиевого сплава;
  • механизм газораспределения имеет схему DOHC, с двумя распределительным валами верхнего расположение;
  • топливная система имеет прямой, непосредственный впрыск D4D, мотор оснащён турбонаддувом;
  • привод ГРМ осуществляется ремнём с зубцами, натяжка осуществляется автоматическим гидравлическим натяжителем ремня;
  • точный объём цилиндров данного силового агрегата 1995 куб. , см;
  • длина хода поршня больше диаметра цилиндров 94 и 82.2 мм., соответственно. У ДВС, с большей длиной хода поршня, нежели диаметр цилиндров, нагрузка на ЦПГ меньше. Поэтому моторы обладают повышенным ресурсом работы;
  • мощность силового агрегата при 3600 — 4000 оборотов мин., составляет от 90 до 116 л., сил. Пиковый момент при 2000 — 3000 оборотов мин., составляет 215 — 280 Нм.;
  • степень сжатия камер сгорания 17.8:1 — 18.6:1;
  • соответствие европейским требованиям по содержанию вредных веществ в выхлопных газах — Евро 4.

Расход топлива

Тип применяемого горючего дизель. Расход в городском цикле составляет 8 литров на 100 км., пробега. При езде по трассе 4.8 литров. Общий расход около 5.9 л., на 100 км., пробега. Замеры производились на Toyota Avensis с механической КПП 2002 г., выпуска.

Характеристики и расход масла

В отличие от 1.4 литрового D4D, двух литровый D4D не болеет повышенным расходом моторной смазки. Но производить её замену нужно так же через 10 тыс. , км., объём масла в моторе 6.7 литров. При замене нужно брать 5.9 литров. Виды масла по вязкости 5w30 и 5w40.

Ресурс двигателя

Ресурс работы ДВС 1CD FTV, по заявкам производителя равен 200 тыс., км. Реальный расход при щадящем режиме вождения и правильном обслуживании составляет не менее 300000 километров.

Расшифровка названия Toyota 2.0 D4D

Все производители ДВС, называя двигатель, закладывают в его название определённую информацию. Так Toyota 2.0 D4D, означает название марки двигателя Toyota. Объём данного двигателя 2 литра и систему непосредственного прямого впрыска D4D.

Однако, этот двигатель получил второе заводское название — 1CD FTV. Согласно формулировке японских двигателей, принятой в 1987 году, общий вид принятой формулы, выглядит так: X XX XXX. Где на первом месте всегда стоит цифра, обозначающая порядковый номер семейства силовых агрегатов. Далее идут символы, в виде латинских заглавных букв, обозначающих семейство моторов. Здесь это 1 CD, что значит первое поколение двигателей семейства CD. Из которых C, это линейка силовых агрегатов, а D тип используемого топлива.

Следующие три символа в виде больших латинских букв, несут информацию об особенностях силового агрегата, его исполнении. Буква F указывает на использование ГРМ — DOHC. T означает, что мотор обустроен турбо наддувом. Буква V применяется только для двигателей, использующих дизельное топливо и систему подачи топлива Common Rail известной компании Bosch.

Соединив в одно целое, всю полученную информацию, получим: дизельный силовой агрегат первого поколения семейства CD, с системой ГРМ типа DOHC, турбонаддувом, и системой подачи солярки Common Rail от Bosch.

Проблемы двигателя

Описание ДВС 1CD FTV

1CD FTV — дизельный, четырёхтактный, двигатель с одноразовым чугунным блоком цилиндров. Блок накрывает 16- ти клапанная головка БЦ, с двумя распределительным валами. Один вал предназначен для впуска воздуха, дозированные порции распылённой солярки впрыскиваются непосредственно в камеры сгорания. Другой распределительный вал предназначен для выпуска отработанных газов. Фазорегулятор и гидрокомпенсаторы здесь не предусмотрены. Регулировка тепловых зазоров в клапанах выполняется подбором шайб разной толщины.

Особенности конструкции привода ГРМ

Привод механизма газораспределения осуществляется через зубчатый ремень от шкива коленвала. Крутящий момент передаётся на выпускной распределительный вал, а от него, через шестерёнчатую передачу на впускной распредвал. На просторах интернета встречается информация о том, что данный двигатель, при обрыве ремня ГРМ, не гнёт клапана. Объясняется это выемкой в днище поршня. Выемка в конструкции поршней ДВС 1CD FTV действительно есть. Но она предназначена для создания факела, необходимой формы, при прямом впрыске D4D. Конструкция поршней, в полном объёме не может сохранить клапана ГРМ, при обрыве зубчатого ремня. Чтобы избежать неприятностей, нужно периодически осматривать ремень на предмет степени износа и своевременно выполнять его замену. В системе привода ремня ГРМ, для регулировки натяжения установлен гидравлический натяжитель. Особенностью привода ГРМ, является тот факт, что он перегружен. Ведь зубчатый ремень приводит в работу не только ГРМ, но и другое оборудование: масло насос, водяной насос.

Особенности конструкции впускного и выпускного коллектора

В состав силового агрегата 1CD FTV входит коллектор для впуска, оригинальной конструкции. Материал изготовления коллектора — алюминий. Чтобы снизить показания турбулентности, для входящего воздушного потока, установлен ресивер. Каналы имеют одинаковую длину. Данная конструкция впускного коллектора способствует равномерному распределению входящей воздушной массы по цилиндрам двигателя. В народе, такую конструкцию впускного коллектора называют пауком.

На выпускной системе, для снижения выбросов вредных соединений азота, используется система EGR. В функции рециркуляции отработанных газов, входит перепуск небольшой части выхлопных газов на впускной коллектор. Что способствует снижению максимальной температуры в цилиндрах и соответствию требованиям Евро 4.

Особенности прямого впрыска D4D

Рассматриваемый двигатель, стал первым мотором компании Тойота, на который была установлена система Common Rail с прямым впрыском горючего в цилиндры. В отличие от этой системы, свеча накаливания и форсунка устанавливались в вихревой камере, а сейчас форсунка впрыскивает солярку непосредственно в цилиндры.

Такая схема питания, значительно улучшает технические характеристики дизельного двигателя и сокращает выброс вредных веществ в атмосферу. На Тойота D4D устанавливалась топливная система Common Rail от Denso. Это отличная система, но как у любой техники имеются свои недостатки. Это сложность конструкции и дефицит запасных частей.

Дело в том, что длительный период времени, компания Denso вообще не выпускала запасных деталей. Если что-то сломалось, то приходилось менять систему целиком. Мероприятие это не дешёвое, да и за работу по замене системы придётся хорошо заплатить. Из-за сложности конструкции, самостоятельно, без наличия необходимого оборудования такую задачу не решить.

Особенности системы смазки

Система смазки Toyota D4D классическая, разбрызгиванием и особо нагруженные детали смазывается под давлением. Она обустроена жидкостным маслоохладителем. Здесь установлены форсунки, выполняющие функцию охлаждения поршней, а так же датчик, информирующий об уровне моторного масла.

Эксплуатационное обслуживание

От замены изношенных деталей и рабочих жидкостей зависит длительность и надёжность работы любого силового агрегата. Не является исключением этого правила, рассматриваемый ДВС 1CD FTV.

Порядок основных мероприятий по его обслуживанию выглядит так:

  • одним из важных и часто повторяющихся процедур является замена масла. Из-за установленного турбонаддува двигатель очень требователен к качеству моторной смазки, поэтому использовать его нужно только от проверенных поставщиков. Вязкость должна соответствовать 5w30 или 5w40. Замену нужно производить вместе с масляным фильтром не позже чем через 10 тыс., км.;
  • воздушный фильтр подлежит замене через 20 тыс., км., пробега, топливный через 40 тысяч;
  • основные детали системы охлаждения имеют малый ресурс работы. Это касается помпы и термостата. Их ресурс не более 60 тыс., км. При выходе из строя этих механизмов, двигатель перегреется. Перегрев мотора может привести к разрушению прокладки ГБЦ, попаданию жидкости охлаждения в моторное масло и в итоге к задирам шеек клапанов. Чтобы предотвратить дорогостоящий ремонт, нужно через 50 тыс., км., пробега устанавливать новую помпу и термостат;
  • фильтр грубой очистки горючего, находящейся в топливном баке подлежит замене через 80 тыс., км., пробега;
  • конструкция ГРМ не предусматривает использование гидрокомпенсаторов, поэтому каждые 100 тыс., нужно проводить регулировку тепловых зазоров в клапанах. Процедура осуществляется заменой шайб, расположенных над толкателями. Распределительные валы для регулировки снимать не нужно. Необходимый зазор для впускных клапанов составляет от 0.3 до 0.4 мм., для выпускных от 0.35 до 0.45 миллиметров;
  • свечи накаливания и антифриз подлежат замене через 100 тыс., км.;
  • особого внимания заслуживает привод ГРМ. Всё дело в том, что зубчатый ремень механизма газораспределения приводит в работу дополнительное оборудование: помпу и масло насос. А следовательно подвержен повышенным нагрузкам. При обрыве или перескоке ремня, происходит деформация клапанов. Заявленный производителем ресурс работы зубчатого ремня 150 тыс., км. Однако, известны единичные случаи, когда он выходил из строя через 90 тыс., км. Чтобы не произошла неприятность, нужно после 60 тыс., км., пробега периодически осматривать ремень привода ГРМ, на предмет износа и механических повреждений. А через 100 тыс., производить его замену.

Характерные неисправности и пути их устранения

Неисправности форсунок

Среди возможных неполадок данного двигателя, стоят неисправности форсунок. Особенно это актуально для отечественных владельцев. Всё дело в низком качестве российской солярки. Из-за посторонних примесей в ней образуется абразивный износ конструкции форсунок. Подобную проблему можно исправить заменой неисправных деталей. Испорченные форсунки ремонту не подлежат. Данную проблему проще и дешевле предотвратить. Для этого достаточно заправляться только качественной соляркой, на проверенных заправочных станциях.

Очистка форсунок и клапанов

Клапан подачи топлива

Неисправности клапанов подачи топлива, возникают в процессе длительной эксплуатации. Эти клапаны имеют маркировку SCV. Через какой-то период пробега могут появиться течи. Признаками этого могут быть плавающие обороты, а позже, отказ двигателя от пуска. Вопрос решается заменой клапанов SCV.

Ошибка датчика давления масла

Распространённая неполадка — глюки датчика, указывающего давление масла. Внезапно ЭБУ начинает выдавать низкий уровень моторной смазки в движке, но после проверки становится ясно, что уровень в норме.

Засорение EGR

При падении мощности мотора, часто виноватым в этом оказывается клапан EGR. Проблема решается его чисткой. Но чаще клапан просто глушат, а электронику настраивают на работу без клапана EGR.

Вот и все основные неисправности ДВС Toyota D4D. Как видно серьёзных неисправностей не много, за исключением выхода из строя форсунок. Ну а в общих чертах, это надёжный, экономичный и экологичный силовой агрегат. Что было очень востребованным на рубеже 20 и 21 веков.

Toyota разрабатывает новый экономичный бензиновый двигатель высокой мощности с непосредственным впрыском D-4

05 августа 1996 г. инжекторный, 4-тактный бензиновый двигатель. Продажи автомобилей с двигателем Toyota D-4 начнутся в течение этого года.

Toyota уже давно успешно внедряет экологически безопасные автомобили, особенно те, в которых используются технологии с низким уровнем выбросов и топливной экономичностью. В 1984, TMC первой в мире начала серийное производство двигателя, работающего на обедненной смеси.

2,0-литровый двигатель D-4 является результатом усилий Toyota по развитию технологии двигателей с непосредственным впрыском топлива, сгоранием, точным управлением двигателем, катализаторами и повышением производительности. Это первый в мире двигатель, способный работать с очень обедненной смесью (соотношение воздух-топливо: 50:1) на обычном неэтилированном бензине, и он разработан для достижения значительно более низкого расхода топлива, более высокой мощности и более чистых выбросов, чем это было возможно ранее.

Бензиновые двигатели с непосредственным впрыском топлива обеспечивают сжигание сверхбедной смеси топлива, поскольку топливо впрыскивается непосредственно в цилиндры в непосредственной близости от свечей зажигания. Однако формирование оптимальной топливно-воздушной смеси — очень бедной, но стабильной — требует высокого уровня технологий. Для этого Toyota разработала вихревые топливные форсунки высокого давления, спиральные впускные каналы, электронные вихревые регулирующие клапаны (E-SCV), камеры сгорания с кромками, установленные в верхней части поршней, и различные другие технологии, обеспечивающие стабильное сгорание на сверхбедной смеси. . Объединив эти разработки с VVT-i * и трехкомпонентный катализатор хранения/восстановления NOx, низкий расход топлива, низкий уровень NOx и более высокая производительность.

* VVT-i (интеллектуальная система изменения фаз газораспределения)
механизм бесступенчатой ​​регулировки фаз газораспределения

Toyota будет устанавливать 2,0-литровый двигатель D-4 на автомобили с автоматической коробкой передач, выбросы выхлопных газов которых обычно труднее контролировать. Собственные испытания в режимах 10-15 показали, что по сравнению с обычными двигателями Д-4 обеспечивает снижение расхода топлива не менее чем на 30% и увеличение крутящего момента на 10% для лучшего ускорения в диапазоне низких и средних оборотов.

В течение года Toyota планирует вывести на рынок модель с очень низким расходом топлива, оснащенную двигателем D-4.

Обзор двигателя Toyota D-4

  1. Характеристики

    Toyota D-4 впрыскивает топливо непосредственно в цилиндры, обеспечивая сверхбедное сгорание для сверхнизкого расхода топлива, высокой производительности и быстрого отклика. Двигатель имеет следующие нововведения

    1. СВЕРХНИЗКИЙ РАСХОД ТОПЛИВА ЗА СТРАТИФИКАЦИЮ ТОПЛИВНО-ВОЗДУШНОЙ СМЕСИ

      При использовании вихревой топливной форсунки высокого давления топливо, впрыскиваемое непосредственно перед воспламенением в конце такта сжатия, испаряется, а диффузия контролируется завихрением воздуха из спирального впускного отверстия и камеры сгорания с выступом в верхней части поршня. Таким образом, воздушно-топливная смесь расслаивается, испарившееся топливо концентрируется вокруг свечи зажигания и окружает ее гораздо более обедненной смесью.

      Эти слои воздушно-топливной смеси обеспечивают стабильное сгорание и позволяют осуществлять сверхобедненное сгорание с соотношением воздух-топливо (весовое соотношение воздуха и топлива) более 50:1 во всех цилиндрах. Расход топлива двигателя на 30% ниже, чем у обычных двигателей.

    2. ВЫСОКАЯ ПРОИЗВОДИТЕЛЬНОСТЬ, ВЫСОКАЯ ЧУВСТВИТЕЛЬНОСТЬ

      За счет испарения непосредственно впрыскиваемого топлива создается эффект охлаждения воздухозаборника. В сочетании с VVT-i, который подает воздух в оптимальный момент, более холодный воздух позволяет повысить объемную эффективность. В результате, хотя двигатель работает на обычном бензине, его степень сжатия составляет 10:1, что обеспечивает увеличение крутящего момента в диапазоне низких и средних оборотов на 10% по сравнению с обычными двигателями. Кроме того, поскольку непосредственный впрыск топлива обеспечивает быструю подачу топлива, двигатель D-4 обеспечивает лучшую отзывчивость педали акселератора.

    3. ЧИСТЫЙ ВЫХЛОП

      Двигатели с непосредственным впрыском топлива, как правило, производят большое количество выбросов NOx. D-4 контролирует образование NOx с помощью системы рециркуляции отработавших газов (EGR) для большого объема и точного контроля. Технология VVT-i с ее внутренним эффектом рециркуляции отработавших газов еще больше снижает выбросы NOx. Двигатель обеспечивает чистые выбросы за счет использования трехкомпонентного катализатора накопления/восстановления NOx, который нейтрализует NOx, образующийся при сгорании на сверхбедной смеси, а также очищает углеводороды и CO.

Сравнение двигателей D-4, двигателей с обедненной смесью и обычных двигателей *

  Двигатель Д-4 Toyota
двигатель на обедненной смеси
Обычный двигатель
Соотношение воздух-топливо О 50:1 Около 24:1 Около 15:1
Топливно-воздушная смесь Расслоенная топливно-воздушная смесь Топливно-воздушная смесь гомогенная Топливно-воздушная смесь гомогенная
Впрыск топлива Впрыск высокого давления в цилиндр Впрыск низкого давления в порт Впрыск низкого давления в порт
Форма воздухозаборного отверстия Спиральный Спиральный Прямой
Катализатор Трехходовой +
Трехходовой Хранение/снижение NOx
Трехстороннее хранение/снижение содержания NOx Трехсторонняя

* Работа с низкой нагрузкой

  1. Конфигурация системы
    1. Вихревой инжектор высокого давления
      Быстрый впрыск топлива и сверхтонкое распыление топлива.
    2. Кромка камеры сгорания в головке поршня
      Контролирует образование воздушно-топливной смеси и распространение горения.
    3. Спиральное впускное отверстие и E-SCV
      E-SCV определяет, сколько воздуха проходит через спиральное впускное отверстие, тем самым контролируя силу горизонтального завихрения воздуха.
    4. Компьютер управления двигателем
      Точно регулирует время и объем впрыска топлива в соответствии с нагрузкой двигателя и частотой вращения.
    5. Электронный дроссельный клапан
      Автоматически открывается и закрывается точно в зависимости от условий движения, обеспечивая плавное ускорение для всех типов сгорания.
    6. ВВТ-и
      Постоянно регулирует синхронизацию впускных клапанов в соответствии с частотой вращения двигателя и использует эффект инерционной наддува, тем самым максимально повышая эффективность впуска. Улучшает крутящий момент, мощность и расход топлива, а также снижает выбросы NOx и углеводородов.
    7. Трехкомпонентный катализатор для хранения/восстановления NOx
      Очищает окклюзированные NOx при стехиометрическом соотношении воздух-топливо после временного хранения NOx при сжигании обедненной смеси.
  1. Новые технологии
    1. Сверхнизкий расход топлива за счет расслоения топливно-воздушной смеси Воздушно-топливная смесь с различной концентрацией расслаивается внутри цилиндра, при этом богатая топливом смесь находится в области вокруг свечи зажигания, а в основном воздушная смесь у стенок цилиндра. . Таким образом, хотя общая топливно-воздушная смесь в цилиндре чрезвычайно обеднена, многослойный слой вокруг свечи зажигания обогащен топливом, что обеспечивает стабильное сгорание.
      Кроме того, большое количество воздуха, которое возможно благодаря расслоению, помогает снизить насосные потери и свести к минимуму потери теплового КПД, дополнительно повышая эффективность использования топлива.
  1. Форма камеры сгорания для образования воздушно-топливной смеси Кромки, обращенные к стороне впрыска, препятствуют выходу топливной струи из камеры сгорания в днище поршня. Камера имеет такую ​​форму, что выбрасываемые обратно пары топлива направляются к свечам зажигания.
  2. Стабильный впускной поток в цилиндрах через спиральные отверстия
    Двигатель Д-4 создает горизонтальные завихрения в цилиндрах, чтобы помочь стабилизировать сгорание за счет расслоения топлива и воздуха, направляя топливо к свечам зажигания. Расход топлива и мощность оптимизируются за счет точного изменения силы завихрения в зависимости от условий движения.
  3. Очень мелкий спрей
    Топливо впрыскивается быстро под давлением, примерно в 40 раз превышающим давление обычных клапанов впрыска топлива, и почти мгновенно испаряется для облегчения сгорания, что приводит к меньшей диффузии топлива и улучшению расслоения.
  1. Регулятор точного впрыска топлива
    Чтобы расположить богатые топливом слои вблизи свечей зажигания, топливо впрыскивается в верхней части такта сжатия до того, как оно успеет рассеяться, но после достижения стабильного соотношения воздух-топливо.

Когда требуется большое количество топлива, например, при разгоне, топливо впрыскивается в начале такта впуска, и топливно-воздушная смесь в камере сгорания становится однородной.

В точках перехода между однородной и расслоенной смесями создается полурасслоенная смесь для плавного перехода крутящего момента. Точный контроль подачи топлива необходим для достижения стабильности этих различных оптимальных уровней сгорания.

  1. Высокая производительность и быстродействие
    1. Высокий выход
      При впрыске топлива непосредственно в цилиндры всасываемый воздух охлаждается за счет испарения топлива, что повышает объемный КПД и улучшает антидетонационные характеристики, необходимые для более высокой степени сжатия. VVT-i в сочетании с управлением впускным клапаном повышает крутящий момент в диапазоне низких и средних оборотов на 10% по сравнению с обычными двигателями.
    2. Высокая скорость отклика
      Непосредственный впрыск топлива обеспечивает быструю подачу топлива, повышая приемистость двигателя. Кроме того, электронный дроссельный клапан обеспечивает плавное ускорение, обеспечивая точный объем всасываемого воздуха для плавного ускорения, даже когда воздушно-топливная смесь меняется между расслоенной и однородной.
  1. Чистый выхлоп
    В зоне обедненного сгорания осуществляется до 40% рециркуляции отработавших газов (EGR) в зависимости от нагрузки двигателя. Это и трехкомпонентный катализатор накопления/восстановления NOx сокращают содержание NOx примерно на 95%.
  1. Эффекты
    1. Топливная эффективность
      Автомобили с автоматической коробкой передач с двигателем Toyota D-4 обеспечивают снижение расхода топлива не менее чем на 30% по сравнению с автомобилями с обычными двигателями (внутреннее испытание в режиме 10・15).
  1. Ускорение
    Разгонные характеристики автомобилей с двигателем Д-4 примерно на 10 % выше, чем у автомобилей с обычными двигателями, как при трогании с места, так и при разгоне (собственное испытание).
  1. Основные характеристики

Поперечное сечение двигателя

Загрузки (изображения)

  • Поперечное сечение двигателя

Почему механики не любят двигатели Д-4, Toyota Voxy?

Скрип двигателя вашей Toyota, скорее всего, исходит от вспомогательных клиновых ремней.

1) А что не так с двигателями Д-4?
2) И что не так с Toyota Voxy?
Эти двое крайне обескуражены механиками в Уганде.

Двигатель Toyota D4 (Direct Four) и сопутствующая ему технология VVTi (интеллектуальное регулирование фаз газораспределения) были демонизированы и объявлены некоторыми водителями и механиками запретной зоной, когда он выходит из строя. Это технология автомобильных двигателей сегодняшнего дня, и она не собирается уходить.

Чтобы понять, почему эта технология проблематична, вам нужно понять, что это такое. Эволюция технологии автомобильных двигателей была обусловлена ​​стремлением к лучшей экономии топлива, мощности двигателя и уменьшению вредных для окружающей среды выбросов. Первым шагом был переход от карбюраторных двигателей, которые механически смешивали и доставляли топливо в камеру сгорания.

Карбюратор считался расточительным, поскольку он подавал неточное количество топлива, а его эффективность зависела от состояния его механических компонентов или стиля вождения. Затем последовал более эффективный и традиционный многоточечный электронный впрыск топлива (MPFI). Система MPFI опирается на компьютер двигателя и датчики для впрыска топлива во впускной коллектор (порты/нагнетательные пути), где оно смешивается с воздухом перед подачей в каждый цилиндр для сгорания.

К недостаткам системы MPFI относятся перерасход некоторого количества топлива, которое остается в портах подачи, особенно при холодном запуске, и не сгорает, а также ограниченная точность времени подачи топлива. Автомобильные инженеры и производители автомобилей пытались преодолеть вышеуказанную неэффективность MPFi, внедрив технологию прямого впрыска топлива.

Toyota называет это D4 (прямой впрыск четыре), Mitsubishi называет это GDi (прямой впрыск бензина), Mercedes называет это CGI (заряженный бензиновый впрыск), а Volkswagen/Audi называет это FSI (распределенный впрыск топлива). В двигателе D4 используется компьютер двигателя для регулирования впрыска бензина под высоким давлением (повышенное распыление топлива / давление наддува) через топливную магистраль Common Rail непосредственно в камеру сгорания каждого цилиндра.

Время подачи топлива на D4 более точное, в результате чего двигатель работает с меньшей топливной смесью (использует меньше топлива), снижает вредные выбросы при более высокой выходной мощности. Чтобы повысить эффективность и производительность двигателя, автомобильные инженеры Toyota объединили MPFi и D4 с другой технологией VVTi (интеллектуальное регулирование фаз газораспределения). Это технология Voxy, RAV4 и других автомобилей Toyota с двигателями 1AZ-FSE.

Другие производители автомобилей, такие как BMW, Honda и Mercedes, объединили технологии многоточечного и прямого впрыска топлива с интеллектуальным регулированием фаз газораспределения в своих автомобилях. Гидромеханическая система VVTI регулирует соотношение между цепью или ремнем привода распределительного вала и впускным распределительным валом. Положение распределительного вала регулируется приводом с использованием давления моторного масла для достижения оптимальной точки фаз газораспределения. Результатом этих усилий является повышение эффективности и производительности.

Однако некоторые двигатели Toyota с системами D4 и VVTi, такие как 1AZ-FSE в Voxy или в RAV4 после 2000 г., имели проблемы с производительностью. Проблемы варьируются от трудностей с холодным запуском, неустойчивой работы на холостом ходу, потери мощности двигателя до полного отказа. Потенциальной причиной отказа системы D4 и VVTi является накопление нагара на впускных клапанах двигателя, что влияет на подачу воздуха в цилиндры и снижает мощность двигателя.

Это результат использования фальсифицированного или этилированного топлива, которое не сгорает полностью и образует отложения вокруг горловин и седел клапанов. Этого можно избежать, заправляясь неэтилированным топливом у надежных дилеров топлива. Поможет периодическая замена топливных фильтров и свечей зажигания на оригинальные детали Toyota. Заправка неэтилированным бензином Shell Fuel Save с химическими присадками позволяет поддерживать чистоту впускных клапанов, предотвращая накопление отложений.

Скопление грязи и сажи вдоль стенок воздухозаборника и корпуса дроссельной заслонки повлияет на работу двигателя или повредит внутренние движущиеся части.