Содержание

404 Not found

А теперь подумаем, куда пойдем дальше?

Хиты продаж

Посмотреть все

  • Магнитное крепление с винтом С10 (М3)

    31.60

    Кол-во:

  • Крючок на неодимовом магните Е10 (М3)

    44.00

    Кол-во:

  • Неодимовый магнит пруток 3х4 мм

    3. 30

    Кол-во:

  • Ферритовый магнит кольцо 45х22х9 мм

    28.00

    Кол-во:

  • Неодимовый магнит прямоугольник 10х5х2 мм

    8.50

    Кол-во:

  • Магнитный держатель для телефона Car Kit, Forceberg

    495. 00

    Кол-во:

  • Неодимовый магнит диск 3х2 мм, 240 шт, Forceberg

    755.00

    Кол-во:

  • Магнитный уголок для сварки для 3 углов Forceberg, усилие до 11 кг

    240.00

    Кол-во:

  • Поисковый магнит односторонний Forceberg F120, сила сц. 140 кг

    1 990.00

    1 495.00

    Кол-во:

  • Напульсный магнитный держатель Forceberg

    255.00

    205.00

    Кол-во:

  • Веревка Forceberg полипропиленовая высокопрочная с сердечником 30 метров

    795. 00

    Кол-во:

  • Магнитное крепление для бейджей 45х13 мм, металл

    24.10

    Кол-во:

  • Forceberg Cube — куб из магнитных шариков 5 мм, стальной, 216 элементов

    995.00

    Кол-во:

  • Поисковый магнит двухсторонний Forceberg F200х2, сила сц. 220 кг

    3 990.00

    2 490.00

    Кол-во:

  • Неодимовый магнит диск 5х1 мм

    2.30

    1.95

    Кол-во:

404 Not found

А теперь подумаем, куда пойдем дальше?

Хиты продаж

Посмотреть все

  • Магнитное крепление с винтом С10 (М3)

    31. 60

    Кол-во:

  • Крючок на неодимовом магните Е10 (М3)

    44.00

    Кол-во:

  • Неодимовый магнит пруток 3х4 мм

    3.30

    Кол-во:

  • Ферритовый магнит кольцо 45х22х9 мм

    28. 00

    Кол-во:

  • Неодимовый магнит прямоугольник 10х5х2 мм

    8.50

    Кол-во:

  • Магнитный держатель для телефона Car Kit, Forceberg

    495.00

    Кол-во:

  • Неодимовый магнит диск 3х2 мм, 240 шт, Forceberg

    755. 00

    Кол-во:

  • Магнитный уголок для сварки для 3 углов Forceberg, усилие до 11 кг

    240.00

    Кол-во:

  • Поисковый магнит односторонний Forceberg F120, сила сц. 140 кг

    1 990.00

    1 495.00

    Кол-во:

  • Напульсный магнитный держатель Forceberg

    255. 00

    205.00

    Кол-во:

  • Веревка Forceberg полипропиленовая высокопрочная с сердечником 30 метров

    795.00

    Кол-во:

  • Магнитное крепление для бейджей 45х13 мм, металл

    24. 10

    Кол-во:

  • Forceberg Cube — куб из магнитных шариков 5 мм, стальной, 216 элементов

    995.00

    Кол-во:

  • Поисковый магнит двухсторонний Forceberg F200х2, сила сц. 220 кг

    3 990.00

    2 490.00

    Кол-во:

  • Неодимовый магнит диск 5х1 мм

    2. 30

    1.95

    Кол-во:

404 Not found

А теперь подумаем, куда пойдем дальше?

Хиты продаж

Посмотреть все

  • Магнитное крепление с винтом С10 (М3)

    31.60

    Кол-во:

  • Крючок на неодимовом магните Е10 (М3)

    44. 00

    Кол-во:

  • Неодимовый магнит пруток 3х4 мм

    3.30

    Кол-во:

  • Ферритовый магнит кольцо 45х22х9 мм

    28.00

    Кол-во:

  • Неодимовый магнит прямоугольник 10х5х2 мм

    8. 50

    Кол-во:

  • Магнитный держатель для телефона Car Kit, Forceberg

    495.00

    Кол-во:

  • Неодимовый магнит диск 3х2 мм, 240 шт, Forceberg

    755.00

    Кол-во:

  • Магнитный уголок для сварки для 3 углов Forceberg, усилие до 11 кг

    240. 00

    Кол-во:

  • Поисковый магнит односторонний Forceberg F120, сила сц. 140 кг

    1 990.00

    1 495.00

    Кол-во:

  • Напульсный магнитный держатель Forceberg

    255.00

    205.00

    Кол-во:

  • Веревка Forceberg полипропиленовая высокопрочная с сердечником 30 метров

    795. 00

    Кол-во:

  • Магнитное крепление для бейджей 45х13 мм, металл

    24.10

    Кол-во:

  • Forceberg Cube — куб из магнитных шариков 5 мм, стальной, 216 элементов

    995.00

    Кол-во:

  • Поисковый магнит двухсторонний Forceberg F200х2, сила сц. 220 кг

    3 990.00

    2 490.00

    Кол-во:

  • Неодимовый магнит диск 5х1 мм

    2.30

    1.95

    Кол-во:

Создание вечного двигателя на неодимовых магнитах

Неодимовый магнит — мощный постоянный магнит, состоящий из сплава редкоземельного элемента неодима, бора и железа.

Кто из нас в детстве не пытался или хотя бы не размышлял о том, чтобы построить вечный двигатель на постоянных магнитах? Казалось бы, если магниты отталкиваются друг от друга одноименными полюсами, то, наверное, можно найти такую конфигурацию магнитов, когда отталкивание станет действовать непрерывно, и сможет, например, вращать ротор «вечного» двигателя.

Однако, стоило нам попробовать реализовать эту идею практически, как тут же выяснялось, что в реальности ротор все равно находит такое положение, в котором останавливается. Словно ротор и вращался лишь для того, чтобы в конце концов найти эту точку и остановиться в ней. То есть неизбежно наступало устойчивое равновесие ротора.

Стремление термодинамических систем к равновесию

И это вовсе не удивительно, ведь ученым давно известно, что термодинамические системы стремятся к равновесию, и в конце концов пребывают в устойчивом равновесии (статическом или динамическом).

Из механики мы знаем, что тело покоится либо движется равномерно и прямолинейно, если на него не действуют никакие внешние силы, либо если действие этих внешних сил на тело скомпенсировано, то есть суммарная сила равна нулю (результирующее внешнее воздействие отсутствует).

Как вы понимаете, принцип стремления термодинамических систем к равновесию относится и к чисто механическим системам. Так, если система изначально пребывает в устойчивом равновесии (и конструкция с постоянными неодимовыми магнитами не является исключением), то при воздействии на такую конструкцию внешнего фактора, выводящего систему из равновесия, неизбежно возникнет реакция со стороны данной системы.

Это значит, что в системе начнут усиливаться процессы, стремящиеся уменьшить влияние внешнего фактора, который систему из равновесия вывел (Принцип Ле Шателье — Брауна).

Модель магнитного генератора индийского блогера с канала Creative Think:

Чтобы вызвать стремление к равновесию, необходимо создать условия не равновесия

Известный пример из электродинамики — правило Ленца. Если бы правило Ленца не работало, то электродвигатели не могли бы функционировать.

В электродвигателе электрический ток создает магнитное поле, которое заставляют ротор непрерывно искать равновесие, и чтобы ротор не останавливался, магнитное поле все время действует таким образом, что вынуждает ротор (даже под механической нагрузкой) постоянно догонять точку, в которой должно будет наступить равновесие.

Но при этом электрическим полем, действующим в проводниках, совершается работа, то есть расходуется энергия источника, ведь в двигателе есть как минимум трение вала о подшипники, на преодоление которого, даже если ротор не нагружен и двигатель работает вхолостую, требуется работа, то есть расход энергии.

Если бы трения (даже о воздух) не было, и вал не был бы нагружен, то ротор бы вращался очень долго, например в полном вакууме в отсутствие силы притяжения к Земле. Но тогда никакая работа этим ротором бы уже не совершалась, и это был бы уже не двигатель, а вращающийся без сопротивления кусок металла.

Вернемся теперь к постоянным магнитам. Для системы с постоянными магнитами предсказать направление протекания процесса уравновешивающей реакции несложно.

Так, еще в 90-е годы японский экспериментатор Кохеи Минато исследовал возможность создания непрерывного вращения используя постоянные магниты на роторе и статоре своего мотора. В конце концов он был вынужден также создавать изменяющееся магнитное поле, которое заставляло бы ротор искать равновесие.

Минато демонстрировал, как приближая или отдаляя постоянный магнит, можно вынудить ротор с постоянными магнитами вращаться. Но в итоге он просто дошел в экспериментах до двигателя с постоянными магнитами на роторе.

Никакого вечного двигателя не получилось. На изменение внешнего магнитного поля, от которого бы отталкивался ротор с магнитами, требуется энергия извне. То есть, для создания условий, в которых ротор с магнитами будет искать равновесие, необходимо параллельно совершать работу.

Еще одна модель магнитного генератора с Интернета:

Динамическое равновесие при низкотемпературной сверхпроводимости как частный случай

Рассмотрим крайний случай. Многие знают, что свинцовая катушка с током, помещенная в жидкий гелий, способна поддерживать ток (и магнитное поле тока) на протяжении многих лет, поскольку сопротивление проводника исчезает.

Почему сопротивление исчезает? Потому что колебания атомов в металле, обуславливающие электрическое сопротивление металла, прекращаются при критической температуре. Две такие катушки будут вести себя по отношению друг к другу как постоянные магниты. Но опять же, они найдут устойчивое равновесие и остановятся.

Движения под действием силы не будет, то есть двигателя совершающего работу не получится. Движущиеся в сверхпроводнике электроны также работы не совершают, хотя и пребывают в устойчивом динамическом равновесии.

Чтобы двигатель совершал работу — он обязан расходовать энергию, но откуда ей взяться?

Допустим, что двигатель на постоянных магнитах реально возможен. Тогда для совершения механической работы, то есть на перемещение какого-нибудь объекта под действием силы со стороны вала такого двигателя (даже на преодоление силы трения при вращении ротора вхолостую), необходимо преобразование некой энергии внутри двигателя.

А что это за энергия, если не энергия постоянных магнитов или не энергия подводимая извне? Раз по условию задачи энергия извне не подводится, значит остается энергия постоянных магнитов.

Однако, будучи просто расположены на роторе и статоре, магниты энергию не отдадут. Чтобы заставить магнит размагничиваться, необходимо совершить работу, то есть опять же подвести к устройству энергию извне. Остается делать выводы…

Ранее ЭлектроВести писали, что французский автопроизводитель Citroen официально представил обновленный кросс-хэтчбек C4, включая его электрическую версию Citroen ë-C4. Покупатель сможет выбрать бензиновый двигатель мощностью 100-155 л.с., дизельный двигатель мощностью 110-130 л.с. или электрическую установку мощностью 100 кВт (136 л.с.).

По материалам: electrik.info.

Электромотор на постоянных магнитах. Двигатель на неодимовых магнитах

Мечты о вечном двигателе не дают людям покоя уже сотни лет. Особенно остро этот вопрос стал сейчас, когда мир не на шутку обеспокоен надвигающимся энергетическим кризисом. Наступит он или нет — вопрос другой, но однозначно сказать можно лишь то, что вне зависимости от этого человечество нуждается в решениях энергетической проблемы и поиске альтернативных источников энергии.


Что такое магнитный двигатель

В научном мире вечные двигатели разделяют на две группы: первого и второго вида. И если с первыми относительно всё ясно — это скорее элемент фантастических произведений, то второй очень даже реален. Начнём с того, что двигатель первого вида — это своего рода утопичная штука, способная извлекать энергию из ничего. А вот второй тип основан на вполне реальных вещах. Это попытка извлечения и использования энергии всего, что нас окружает: солнце, вода, ветер и, безусловно, магнитное поле.

Многие учёные разных стран и в разные эпохи пытались не только объяснить возможности магнитных полей, но и реализовать некое подобие вечного двигателя, работающего за счёт этих самых полей. Интересно то, что многие из них добились вполне впечатляющих результатов в этой области. Такие имена, как Никола Тесла, Василий Шкондин, Николай Лазарев хорошо известны не только в узком кругу специалистов и приверженцев создания вечного двигателя.

Особый интерес для них составляли постоянные магниты, способные возобновлять энергию из мирового эфира. Безусловно, доказать что-либо значимое пока никому на Земле не удалось, но благодаря изучению природы постоянных магнитов человечество имеет реальный шанс приблизиться к использованию колоссального источника энергии в виде постоянных магнитов.

И хотя магнитная тема ещё далека от полного изучения, существует множество изобретений, теорий и научно обоснованных гипотез в отношении вечного двигателя. При этом есть немало впечатляющих устройств, выдаваемых за таковые. Сам же двигатель на магнитах уже вполне себе существует, хотя и не в том виде, в котором нам бы хотелось, ведь по прошествии некоторого времени магниты всё равно утрачивают свои магнитные свойства. Но, несмотря на законы физики, учёные мужи смогли-таки создать нечто надёжное, что работает за счёт энергии, вырабатываемой магнитными полями.

На сегодня существует несколько видов линейных двигателей, которые отличаются по своему строению и технологии, но работают на одних и тех же принципах
. К ним относятся:

  1. Работающие исключительно за счёт действия магнитных полей, без устройств управления и без потребления энергии извне;
  2. Импульсного действия, которые уже имеют и устройства управления, и дополнительный источник питания;
  3. Устройства, объединяющие в себе принципы работы обоих двигателей.

Устройство магнитного двигателя

Конечно, аппараты на постоянных магнитах не имеют ничего общего с привычным нам электродвигателем. Если во втором движение происходит
за счёт электротока, то магнитный, как понятно, работает исключительно за счёт постоянной энергии магнитов. Состоит он из трёх основных частей:

  • Сам двигатель;
  • Статор с электромагнитом;
  • Ротор с установленным постоянным магнитом.

На один вал с двигателем устанавливается электромеханический генератор. Статический электромагнит, выполненный в виде кольцевого магнитопровода с вырезанным сегментом или дугой, дополняет эту конструкцию. Сам электромагнит дополнительно оснащён катушкой индуктивности. К катушке подключён электронный коммутатор, за счёт чего подаётся реверсивный ток. Именно он и обеспечивает регулировку всех процессов.

Принцип работы

Так как модель вечного магнитного двигателя, работа которого основана на магнитных качествах материала, далеко не единственная в своем роде, то и принцип работы разных двигателей может отличаться. Хотя при этом используются, безусловно, свойства постоянных магнитов.

Из наиболее простых можно выделить антигравитационный агрегат Лоренца. Принцип его работы
заключается в двух разнозаряженных дисках, подключаемых к источнику питания. Диски помещены наполовину в экран полусферической формы. Далее их начинают вращать. Магнитное поле легко выталкивается подобным сверхпроводником.

Простейший же асинхронный двигатель на магнитном поле придуман Теслой. В основе его работы лежит вращение магнитного поля, которое производит из него электрическую энергию. Одна металлическая пластина помещается в землю, другая — повыше неё. К одной стороне конденсатора подключают провод, пропущенный через пластину, а ко второй — проводник от основания пластины. Противоположный полюс конденсатора подключается к массе и выполняет роль резервуара для отрицательно заряжённых зарядов.

Единственным рабочим вечным двигателем считают роторное кольцо Лазарева. Он крайне прост по своему строению и реализуем в домашних условиях своими руками
. Выглядит он как ёмкость, поделённая пористой перегородкой на две части. В саму перегородку строена трубка, а ёмкость заполняется жидкостью. Предпочтительнее использовать легколетучую жидкость наподобие бензина, но можно и простую воду.

С помощью перегородки жидкость попадает в нижнюю часть ёмкости и давлением выдавливается по трубке наверх. Само по себе устройство реализует лишь вечное движение. А вот для того, чтобы это стало уже вечным двигателем, необходимо под капающую из трубки жидкость установить колесо с лопастями, на которых будут располагаться магниты. В результате образовавшееся магнитное поле будет всё быстрее вращать колесо, в результате чего ускорится поток жидкости и магнитное поле станет постоянным.

А вот линейный двигатель Шкодина произвел действительно ощутимый рывок в прогрессе. Эта конструкция крайне проста технически, но одновременно имеет высокую мощность и производительность. Такой «движок» ещё называют «колесо в колесе»
. Уже сегодня оно используется в транспорте. Здесь имеют место две катушки, внутри которых находятся ещё две катушки. Таким образом, образуется двойная пара с разными магнитными полями. За счёт этого они отталкиваются в разные стороны. Подобное устройство можно купить уже сегодня. Они часто используются на велосипедах и инвалидных колясках.

Двигатель Перендева работает только лишь на магнитах. Здесь используются два круга, один из которых статичный, а второй динамичный. На них в равной последовательности расположены магниты. За счёт самоотталкивания внутреннее колесо может вращаться бесконечно.

Ещё одним из современных изобретений, нашедших применение, можно назвать колесо Минато. Это устройство на магнитном поле японского изобретателя Кохея Минато, который довольно широко используется в различных механизмах.

Основными из достоинств этого изобретения можно назвать экономичность и бесшумность. Он также и прост: на роторе располагаются под разными к оси углами магниты. Мощный импульс на статор создаёт так называемую точку «коллапса», а стабилизаторы уравновешивают вращение ротора. Магнитный двигатель японского изобретателя, схема которого крайне проста, работает без выработки тепла, что пророчит ему большое будущее
не только в механике, но и в электронике.

Существуют и другие устройства на постоянных магнитах, как колесо Минато. Их достаточно много и каждый из них по-своему уникален и интересен. Однако своё развитие они лишь начинают и находятся в постоянной стадии разработки и совершенствования.

Безусловно, столь увлекательная и загадочная сфера, как магнитные вечные двигатели, не может интересовать только учёных. Многие любители также вносят свою лепту в развитие этой отрасли. Но здесь вопрос скорее в том, можно ли сделать магнитный двигатель своими руками, не имея каких-то особых знаний.

Простейший экземпляр, который не раз был собран любителями, выглядит как три плотно соединённых между собой вала, один из которых (центральный) повёрнут прямо относительно двух других, располагаемых по бокам. К середине центрального вала прикрепляется диск из люцита (акрилового пластика) диаметром 4 дюйма. На два других вала
устанавливают аналогичные диски, но в два раза меньше. Сюда же устанавливают магниты: 4 по бокам и 8 посередине. Чтобы система лучше ускорялась, можно в качестве основания использовать алюминиевый брусок.

Плюсы и минусы магнитных двигателей

Плюсы:

  • Экономия и полная автономия;
  • Возможность собрать двигатель из подручных средств;
  • Прибор на неодимовых магнитах достаточно мощный, чтобы обеспечить энергией 10 кВт и выше жилой дом;
  • Способен на любой стадии износа выдавать максимальную мощность.

Минусы:

Магнитные линейные двигатели сегодня стали реальностью и имеют все шансы заменить привычные нам моторы других видов. Но сегодня это ещё не совсем доработанный и идеальный продукт, способный конкурировать на рынке, но имеющий довольно высокие тенденции.

Устройство и принцип работы двигателя на постоянных магнитах

Двигатели на протяжении многих лет используются для преобразования электрической энергии в механическую различного типа. Эта особенность определяет столь высокую его популярность: обрабатывающие станки, конвейеры, некоторые бытовые приборы – электродвигатели различного типа и мощности, габаритных размеров используются повсеместно.

Основные показатели работы определяют то, какой тип конструкции имеет двигатель. Существует несколько разновидностей, некоторые пользуются популярностью, другие не оправдывают сложность подключения, высокую стоимость.

Двигатель на постоянных магнитах используют реже, чем асинхронный вариант исполнения. Для того, чтобы оценить возможности этого варианта исполнения, следует рассмотреть особенности конструкции, эксплуатационные качества и многое другое.

Устройство

устройство

Электродвигатель на постоянных магнитах не сильно отличается по виду конструкции.

При этом, можно выделить следующие основные элементы:

  1. Снаружи используется электротехническая сталь, из которой изготавливается сердечник статора.
  2. Затем идет стержневая обмотка.
  3. Ступица ротора и за ней специальная пластина.
  4. Затем, изготовленные из электротехнической стали, секции редечника ротора.
  5. Постоянные магниты являются частью ротора.
  6. Конструкцию завершает опорный подшипник.

Как любой вращающийся электродвигатель, рассматриваемый вариант исполнения состоит из неподвижного статора и подвижного ротора, которые при подаче электроэнергии взаимодействую между собой. Отличие рассматриваемого варианта исполнения можно назвать наличие ротора, в конструкцию которого включены магниты постоянного типа.

При изготовлении статора, создается конструкция, состоящая из сердечника и обмотки. Остальные элементы являются вспомогательными и служат исключительно для обеспечения наилучших условий для вращения статора.

Принцип работы

Принцип работы рассматриваемого варианта исполнения основан на создании центробежной силы за счет магнитного поля, которое создается при помощи обмотки. Стоит отметить, что работа синхронного электродвигателя схожа с работой трехфазного асинхронного двигателя.

К основным моментам можно отнести:

  1. Создаваемое магнитное поле ротора вступает во взаимодействие с подаваемым током на обмотку статора.
  2. Закон Ампера определяет создание крутящего момента, который и заставляет выходной вал вращаться вместе с ротором.
  3. Магнитное поле создается установленными магнитами.
  4. Синхронная скорость вращения ротора с создаваемым полем статора определяет сцепление полюса магнитного поля статора с ротором. По этой причине, рассматриваемый двигатель нельзя использовать в трехфазной сети напрямую.

В данном случае, нужно в обязательном порядке устанавливать специальный блок управления.

Виды

В зависимости от особенностей конструкции, существует несколько типов синхронных двигателей. При этом, они обладают разными эксплуатационными качествами.

По типу установки ротора, можно выделить следующие типы конструкции:

  1. С внутренней установкой – наиболее распространенный тип расположения.
  2. С внешней установкой или электродвигатель обращенного типа.

Постоянные магниты включены в конструкцию ротора. Их изготавливают из материала с высокой коэрцитивной силой.

Эта особенность определяет наличие следующих конструкций ротора:

  1. Со слабо выраженным магнитным полюсом.
  2. С ярко выраженным полюсом.

Равная индуктивность по перечным и продольным осям – свойство ротора с неявно выраженным полюсом, а у варианта исполнения с ярко выраженным полюсом подобной равности нет.

Кроме этого, конструкция ротора может быть следующего типа:

  1. Поверхностная установка магнитов.
  2. Встроенное расположение магнитов.

Кроме ротора, также следует обратить внимание и на статор.

По типу конструкции статора, можно разделить электродвигатели на следующие категории:

  1. Распределенная обмотка.
  2. Сосредоточенная обмотка.

По форме обратной обмотке, можно провести нижеприведенную классификацию:

  1. Синусоида.
  2. Трапецеидальная.

Подобная классификация оказывает влияние на работу электродвигателя.

Преимущества и недостатки

Рассматриваемый вариант исполнения имеет следующие достоинства:

  1. Оптимальный режим работы можно получить при воздействии реактивной энергии, что возможно при автоматической регулировке тока. Эта особенность обуславливает возможность работы электродвигателя без потребления и отдачи реактивной энергии в сеть. В отличие от асинхронного двигателя, синхронный имеет небольшие габаритные размеры при той же мощности, но при этом КПД значительно выше.
  2. Колебания напряжения в сети в меньшей степени воздействую на синхронный двигатель. Максимальный момент пропорционален напряжению сети.
  3. Высокая перегрузочная способность. Путем повышения тока возбуждения, можно провести значительное повышение перегрузочной способности. Это происходит на момент резкого и кратковременного возникновения дополнительной нагрузки на выходном валу.
  4. Скорость вращения выходного вала остается неизменной при любой нагрузке, если она не превышает показатель перегрузочной способности.

К недостаткам рассматриваемой конструкции можно отнести более сложную конструкцию и вследствие этого более высокую стоимость, чем у асинхронных двигателей. Однако в некоторых случаях, обойтись без данного типа электродвигателя невозможно.

Как сделать своими руками?

Провести создание электродвигателя своими руками можно только при наличии знаний в области электротехнике и наличия определенного опыта. Конструкция синхронного варианта исполнения должна быть высокоточной для исключения возникновения потерь и правильности работы системы.

Зная то, как должна выглядеть конструкция, проводим следующую работу:

  1. Создается или подбирается выходной вал. Он не должен иметь отклонений или других дефектов. В противном случае, возникающая нагрузка может привести к искривлению вала.
  2. Наибольшей популярностью пользуются конструкции, когда обмотка находится снаружи. На посадочное место вала устанавливается статор, который имеет постоянные магниты. На валу должно быть предусмотрено место для шпонки для предотвращения прокручивания вала при возникновении серьезной нагрузки.
  3. Ротор представлен сердечником с обмоткой. Создать самостоятельно ротор достаточно сложно. Как правило, он неподвижен, крепится к корпусу.
  4. Механической связи между статором и ротором нет, так как в противном случае, при вращении будет создавать дополнительная нагрузка.
  5. Вал, на котором крепится статор, также имеет посадочные места для подшипников. В корпусе имеется посадочные места для подшипников.

Большая часть элементов конструкции создать своими руками практически невозможно, так как для этого нужно иметь специальное оборудование и большой опыт работы. Примером можно назвать как подшипники, так и корпус, статор или ротор. Они должны иметь точные размеры. Однако, при наличии необходимых элементов конструкции, сборку можно провести и самостоятельно.

Электродвигатели имеют сложную конструкцию, питание от сети 220 Вольт обуславливает соблюдение определенных норм при их создании. Именно поэтому, для того, чтобы быть уверенным в надежной работе подобного механизма, следует покупать варианты исполнения, созданные на заводах по выпуску подобного оборудования.

В научных целях, к примеру, в лаборатории для проведения испытаний по работе магнитного поля часто создают собственные двигатели. Однако они имеют небольшую мощность, питаются от незначительно напряжения и не могут быть применены в производстве.

Выбор рассматриваемого электродвигателя следует проводить с учетом следующих особенностей:

  1. Мощность – основной показатель, который влияет на срок службы. При возникновении нагрузки, которая превосходит возможности электродвигателя, он начинает перегреваться. При сильной нагрузке, возможно искривление вала и нарушение целостности других компонентов системы. Поэтому следует помнить о том, что диаметр вала и другие показатели выбираются в зависимости от мощности двигателя.
  2. Наличие системы охлаждения. Обычно особого внимания на то, как проводится охлаждение, никто не уделяет. Однако при постоянной работе оборудования, к примеру под солнцем, следует задуматься о том, что модель должна быть предназначена для продолжительной работы под нагрузкой при тяжелых условиях.
  3. Целостность корпуса и его вид, год выпуска – основные моменты, на которые уделяют внимание при покупке двигателя бывшего употребления. Если имеются дефекты корпуса, велика вероятность того, что конструкция имеет повреждения и внутри. Также, не стоит забывать о том, что подобное оборудование с годами теряет свой КПД.
  4. Особое внимание нужно уделять корпусу, так как в некоторых случаях можно провести крепление только в определенном положении. Самостоятельно создать посадочные отверстия, приварить уши для крепления практически невозможно, так как нарушение целостности корпуса не допускается.
  5. Вся информация об электродвигателе находится на пластине, которая прикрепляется к корпусу. В некоторых случаях, есть только маркировка, по расшифровке которой можно узнать основные показатели работы.

В заключение отметим, что многие двигатели, которые были произведены несколько десятилетий назад, зачастую проходили восстановительные работы. От качества проведенной восстановительной работы зависят показатели электродвигателя.

slarkenergy.ru

Двигатель на неодимовых магнитах

Содержание:

  1. Видео

Существует немало автономных устройств, способных вырабатывать электрическую энергию. Среди них следует особо отметить двигатель на неодимовых магнитах, который отличается оригинальной конструкцией и возможностью использования альтернативных источников энергии. Однако существует целый ряд факторов, препятствующих широкому распространению этих устройств в промышленности и в быту. Прежде всего, это негативное влияние магнитного поля на человека, а также сложности в создании необходимых условий для эксплуатации. Поэтому прежде чем пытаться изготовить такой двигатель для бытовых нужд, следует тщательно ознакомиться с его конструкцией и принципом работы.

Общее устройство и принцип работы

Работы над так называемым вечным двигателем ведутся уже очень давно и не прекращаются в настоящее время. В современных условиях этот вопрос становится все более актуальным, особенно в условиях надвигающегося энергетического кризиса. Поэтому одним из вариантов решения этой проблемы является двигатель свободной энергии на неодимовых магнитах, действие которого основано на энергии магнитного поля. Создание рабочей схемы такого двигателя позволит без каких-либо ограничений получать электрическую, механическую и другие виды энергий.

В настоящее время работы по созданию двигателя находятся в стадии теоретических изысканий, а на практике получены лишь отдельные положительные результаты, позволяющие более подробно изучить принцип действия этих устройств.

Конструкция двигателей на магнитах полностью отличается от обычных электрических моторов, использующих электрический ток в качестве главной движущей силы. В основе работы данной схемы лежит энергия постоянных магнитов, которая и приводит в движение весь механизм. Весь агрегат состоит из трех составных частей: сам двигатель, статор с электромагнитом и ротор с установленным постоянным магнитом.

На одном валу с двигателем устанавливается электромеханический генератор. Дополнительно на весь агрегат устанавливается статический электромагнит, представляющий собой кольцевой магнитопровод. В нем вырезается дуга или сегмент, устанавливается катушка индуктивности. К этой катушке подключается электронный коммутатор для регулировки реверсивного тока и других рабочих процессов.

Самые первые конструкции двигателей изготавливались с металлическими частями, которые должны были подвергаться влиянию магнита. Однако для возвращения такой детали в исходное положение затрачивается такое же количество энергии. То есть, теоретически использование такого двигателя нецелесообразно, поэтому данная проблема была решена путем использования медного проводника, по которому пропущен электрический ток. В результате, возникает притяжение этого проводника к магниту. Когда ток отключается, то прекращается и взаимодействие между магнитом и проводником.

Установлено, что сила воздействия магнита находится в прямой пропорциональной зависимости от ее мощности. Таким образом, постоянный электрический ток и рост силы магнита, увеличивают воздействие этой силы на проводник. Повышенная сила способствует вырабатыванию тока, который затем будет подан на проводник и пройдет через него. В результате, получается своеобразный вечный двигатель на неодимовых магнитах.

Этот принцип был положен в основу усовершенствованного двигателя на неодимовых магнитах. Для его запуска используется индуктивная катушка, в которую подается электрический ток. Полюса постоянного магнита должны быть расположены перпендикулярно зазору, вырезанному в электромагните. Под действием полярности постоянный магнит, установленный на роторе, начинает вращаться. Начинается притяжение его полюсов к электромагнитным полюсам, имеющим противоположное значение.

Когда разноименные полюса совпадают, ток в катушке выключается. Под собственным весом, ротор вместе с постоянным магнитом проходит по инерции данную точку совпадения. При этом, в катушке происходит изменение направления тока, и с наступлением очередного рабочего цикла полюса магнитов становятся одноименными. Это приводит к их отталкиванию друг от друга и дополнительному ускорению ротора.

Конструкция магнитного двигателя своими руками

Конструкция стандартного двигателя на неодимовых магнитах состоит из диска, кожуха и металлического обтекателя. Во многих схемах практикуется использование электрической катушки. Крепление магнитов осуществляется с помощью специальных проводников. Для обеспечения положительной обратной связи используется преобразователь. Некоторые конструкции могут быть дополнены ревербераторами, усиливающими магнитное поле.

В большинстве случаев для того, чтобы собственноручно изготовить магнитный двигатель на неодимовых магнитах, используется схема на подвеске. Основная конструкция состоит из двух дисков и медного кожуха, края которого должны быть тщательно обработаны. Большое значение имеет правильное подключение контактов по заранее составленной схеме. Четыре магнита располагаются с внешней стороны диска, а слой диэлектрика проходит вдоль обтекателя. Применение инерционных преобразователей позволяет избежать возникновения отрицательной энергии. В данной конструкции движение положительно заряженных ионов будет происходить вдоль кожуха. Иногда могут потребоваться магниты с повышенной мощностью.

Двигатель на неодимовых магнитах может быть самостоятельно изготовлен из кулера, установленного в персональном компьютере. В данной конструкции рекомендуется использовать диски с небольшим диаметром, а крепление кожуха выполнять с внешней стороны каждого из них. Для рамы может использоваться любая, наиболее подходящая конструкция. Толщина обтекателей составляет в среднем чуть более 2 мм. Подогретый агент выводится через преобразователь.

Кулоновские силы могут иметь разное значение, в зависимости от заряда ионов. Для повышения параметров охлажденного агента рекомендуется применение изолированной обмотки. Проводники, подключаемые к магнитам, должны быть медными, а толщина токопроводящего слоя выбирается в зависимости от типа обтекателя. Основной проблемой таких конструкций является невысокая отрицательная заряженность. Ее можно решить, используя диски с большим диаметром.

electric-220.ru

правда или миф, возможности и перспективы, линейный двигатель своими руками

Мечты о вечном двигателе не дают людям покоя уже сотни лет. Особенно остро этот вопрос стал сейчас, когда мир не на шутку обеспокоен надвигающимся энергетическим кризисом. Наступит он или нет — вопрос другой, но однозначно сказать можно лишь то, что вне зависимости от этого человечество нуждается в решениях энергетической проблемы и поиске альтернативных источников энергии.

Что такое магнитный двигатель

В научном мире вечные двигатели разделяют на две группы: первого и второго вида. И если с первыми относительно всё ясно — это скорее элемент фантастических произведений, то второй очень даже реален. Начнём с того, что двигатель первого вида — это своего рода утопичная штука, способная извлекать энергию из ничего. А вот второй тип основан на вполне реальных вещах. Это попытка извлечения и использования энергии всего, что нас окружает: солнце, вода, ветер и, безусловно, магнитное поле.

Многие учёные разных стран и в разные эпохи пытались не только объяснить возможности магнитных полей, но и реализовать некое подобие вечного двигателя, работающего за счёт этих самых полей. Интересно то, что многие из них добились вполне впечатляющих результатов в этой области. Такие имена, как Никола Тесла, Василий Шкондин, Николай Лазарев хорошо известны не только в узком кругу специалистов и приверженцев создания вечного двигателя.

Особый интерес для них составляли постоянные магниты, способные возобновлять энергию из мирового эфира. Безусловно, доказать что-либо значимое пока никому на Земле не удалось, но благодаря изучению природы постоянных магнитов человечество имеет реальный шанс приблизиться к использованию колоссального источника энергии в виде постоянных магнитов.

И хотя магнитная тема ещё далека от полного изучения, существует множество изобретений, теорий и научно обоснованных гипотез в отношении вечного двигателя. При этом есть немало впечатляющих устройств, выдаваемых за таковые. Сам же двигатель на магнитах уже вполне себе существует, хотя и не в том виде, в котором нам бы хотелось, ведь по прошествии некоторого времени магниты всё равно утрачивают свои магнитные свойства. Но, несмотря на законы физики, учёные мужи смогли-таки создать нечто надёжное, что работает за счёт энергии, вырабатываемой магнитными полями.

На сегодня существует несколько видов линейных двигателей, которые отличаются по своему строению и технологии, но работают на одних и тех же принципах. К ним относятся:

  1. Работающие исключительно за счёт действия магнитных полей, без устройств управления и без потребления энергии извне;
  2. Импульсного действия, которые уже имеют и устройства управления, и дополнительный источник питания;
  3. Устройства, объединяющие в себе принципы работы обоих двигателей.
Устройство магнитного двигателя

Конечно, аппараты на постоянных магнитах не имеют ничего общего с привычным нам электродвигателем. Если во втором движение происходит за счёт электротока, то магнитный, как понятно, работает исключительно за счёт постоянной энергии магнитов. Состоит он из трёх основных частей:

  • Сам двигатель;
  • Статор с электромагнитом;
  • Ротор с установленным постоянным магнитом.

На один вал с двигателем устанавливается электромеханический генератор. Статический электромагнит, выполненный в виде кольцевого магнитопровода с вырезанным сегментом или дугой, дополняет эту конструкцию. Сам электромагнит дополнительно оснащён катушкой индуктивности. К катушке подключён электронный коммутатор, за счёт чего подаётся реверсивный ток. Именно он и обеспечивает регулировку всех процессов.

Принцип работы

Так как модель вечного магнитного двигателя, работа которого основана на магнитных качествах материала, далеко не единственная в своем роде, то и принцип работы разных двигателей может отличаться. Хотя при этом используются, безусловно, свойства постоянных магнитов.

Из наиболее простых можно выделить антигравитационный агрегат Лоренца. Принцип его работы заключается в двух разнозаряженных дисках, подключаемых к источнику питания. Диски помещены наполовину в экран полусферической формы. Далее их начинают вращать. Магнитное поле легко выталкивается подобным сверхпроводником.

Простейший же асинхронный двигатель на магнитном поле придуман Теслой. В основе его работы лежит вращение магнитного поля, которое производит из него электрическую энергию. Одна металлическая пластина помещается в землю, другая — повыше неё. К одной стороне конденсатора подключают провод, пропущенный через пластину, а ко второй — проводник от основания пластины. Противоположный полюс конденсатора подключается к массе и выполняет роль резервуара для отрицательно заряжённых зарядов.

Единственным рабочим вечным двигателем считают роторное кольцо Лазарева. Он крайне прост по своему строению и реализуем в домашних условиях своими руками. Выглядит он как ёмкость, поделённая пористой перегородкой на две части. В саму перегородку строена трубка, а ёмкость заполняется жидкостью. Предпочтительнее использовать легколетучую жидкость наподобие бензина, но можно и простую воду.

С помощью перегородки жидкость попадает в нижнюю часть ёмкости и давлением выдавливается по трубке наверх. Само по себе устройство реализует лишь вечное движение. А вот для того, чтобы это стало уже вечным двигателем, необходимо под капающую из трубки жидкость установить колесо с лопастями, на которых будут располагаться магниты. В результате образовавшееся магнитное поле будет всё быстрее вращать колесо, в результате чего ускорится поток жидкости и магнитное поле станет постоянным.

А вот линейный двигатель Шкодина произвел действительно ощутимый рывок в прогрессе. Эта конструкция крайне проста технически, но одновременно имеет высокую мощность и производительность. Такой «движок» ещё называют «колесо в колесе». Уже сегодня оно используется в транспорте. Здесь имеют место две катушки, внутри которых находятся ещё две катушки. Таким образом, образуется двойная пара с разными магнитными полями. За счёт этого они отталкиваются в разные стороны. Подобное устройство можно купить уже сегодня. Они часто используются на велосипедах и инвалидных колясках.

Двигатель Перендева работает только лишь на магнитах. Здесь используются два круга, один из которых статичный, а второй динамичный. На них в равной последовательности расположены магниты. За счёт самоотталкивания внутреннее колесо может вращаться бесконечно.

Ещё одним из современных изобретений, нашедших применение, можно назвать колесо Минато. Это устройство на магнитном поле японского изобретателя Кохея Минато, который довольно широко используется в различных механизмах.

Основными из достоинств этого изобретения можно назвать экономичность и бесшумность. Он также и прост: на роторе располагаются под разными к оси углами магниты. Мощный импульс на статор создаёт так называемую точку «коллапса», а стабилизаторы уравновешивают вращение ротора. Магнитный двигатель японского изобретателя, схема которого крайне проста, работает без выработки тепла, что пророчит ему большое будущее не только в механике, но и в электронике.

Существуют и другие устройства на постоянных магнитах, как колесо Минато. Их достаточно много и каждый из них по-своему уникален и интересен. Однако своё развитие они лишь начинают и находятся в постоянной стадии разработки и совершенствования.

Линейный двигатель своими руками

Безусловно, столь увлекательная и загадочная сфера, как магнитные вечные двигатели, не может интересовать только учёных. Многие любители также вносят свою лепту в развитие этой отрасли. Но здесь вопрос скорее в том, можно ли сделать магнитный двигатель своими руками, не имея каких-то особых знаний.

Простейший экземпляр, который не раз был собран любителями, выглядит как три плотно соединённых между собой вала, один из которых (центральный) повёрнут прямо относительно двух других, располагаемых по бокам. К середине центрального вала прикрепляется диск из люцита (акрилового пластика) диаметром 4 дюйма. На два других вала устанавливают аналогичные диски, но в два раза меньше. Сюда же устанавливают магниты: 4 по бокам и 8 посередине. Чтобы система лучше ускорялась, можно в качестве основания использовать алюминиевый брусок.

Плюсы и минусы магнитных двигателей

  • Экономия и полная автономия;
  • Возможность собрать двигатель из подручных средств;
  • Прибор на неодимовых магнитах достаточно мощный, чтобы обеспечить энергией 10 кВт и выше жилой дом;
  • Способен на любой стадии износа выдавать максимальную мощность.
  • Негативное влияние магнитных полей на человека;
  • Большинство экземпляров не могут пока что работать в нормальных условиях. Но это дело времени;
  • Сложности в подключении даже готовых образцов;
  • Современные магнитные импульсные моторы имеют довольно высокую цену.

Магнитные линейные двигатели сегодня стали реальностью и имеют все шансы заменить привычные нам моторы других видов. Но сегодня это ещё не совсем доработанный и идеальный продукт, способный конкурировать на рынке, но имеющий довольно высокие тенденции.

220v.guru

Нетрадиционные моторы на постоянных магнитах

Эта статья посвящена рассмотрению моторов, работающих на постоянных магнитах, с помощью которых предпринимаются попытки получить КПД>1 путем изменения конфигурации схемы соединений, схем электронных переключателей и магнитных конфигураций. Представлено несколько конструкций, которые можно рассматривать в качестве традиционных, а также несколько конструкций, которые представляются перспективными. Надеемся, что эта статья поможет читателю разобраться в сущности данных устройств перед началом инвестирования подобных изобретений или получением инвестиций на их производство. Информацию о патентах США можно найти на сайте http://www.uspto.gov.

Введение

Статья, посвященная моторам, работающим на постоянных магнитах, не может считаться полной без предварительного обзора основных конструкций, которые представлены на современном рынке. Промышленные моторы, работающие на постоянных магнитах, обязательно являются двигателями постоянного тока, так как используемые в них магниты постоянно поляризуются перед сборкой. Многие щеточные моторы, работающие на постоянных магнитах, подключаются к бесщеточным электродвигателям, что способно снизить силу трения и изнашиваемость механизма. Бесщеточные моторы включают в себя электронную коммутацию или шаговые электромоторы. Шаговый электромотор, часто применяемый в автомобильной промышленности, содержит более длительный рабочий вращающий момент на единицу объема, по сравнению с другими электромоторами. Однако обычно скорость подобных моторов значительно ниже. Конструкция электронного переключателя может быть использована в переключаемом реактивном синхронном электродвигателе. В наружном статоре подобного электродвигателя вместо дорогостоящих постоянных магнитов используется мягкий металл, в результате чего получается внутренний постоянный электромагнитный ротор.

По закону Фарадея, вращающий момент в основном возникает из-за тока в обкладках бесщеточных двигателей. В идеальном моторе, работающем на постоянных магнитах, линейный вращающий момент противопоставлен кривой частоты вращения. В моторе на постоянных магнитах конструкции как внешнего, так и внутреннего ротора являются стандартными.

Чтобы обратить внимание на многие проблемы, связанные с рассматриваемыми моторами, в справочнике говорится о существовании «очень важной взаимосвязи между моментом вращения и обратной электродвижущей силой (эдс), чему иногда не придается значения». Это явление связано с электродвижущей силой (эдс), которая создается путем применения изменяющегося магнитного поля (dB/dt). Пользуясь технической терминологией, можно сказать, что «постоянная вращающего момента» (N-m/amp) равняется «постоянной обратной эдс» (V/рад/сек). Напряжение на зажимах двигателя равняется разности обратной эдс и активного (омического) падения напряжения, что обусловлено наличием внутреннего сопротивления. (Например, V=8,3 V, обратная эдс=7,5V, активное (омическое) падение напряжения=0,8V). Этот физический принцип, заставляет нас обратиться к закону Ленца, который был открыт в 1834г., через три года после того, как Фарадеем был изобретен униполярный генератор. Противоречивая структура закона Ленца, также как используемое в нем понятие «обратной эдс», являются частью так называемого физического закона Фарадея, на основе которого действует вращающийся электропривод. Обратная эдс — это реакция переменного тока в цепи. Другими словами, изменяющееся магнитное поле естественно порождает обратную эдс, так как они эквивалентны.

Таким образом, прежде чем приступать к изготовлению подобных конструкций, необходимо тщательно проанализировать закон Фарадея. Многие научные статьи, такие как «Закон Фарадея — Количественные эксперименты» способны убедить экспериментатора, занимающегося новой энергетикой, в том, что изменение, происходящее в потоке и вызывающее обратную электродвижущую силу (эдс), по существу равно самой обратной эдс. Этого нельзя избежать при получении избыточной энергии, до тех пор, пока количество изменений магнитного потока во времени остается непостоянным. Это две стороны одной медали. Входная энергия, вырабатываемая в двигателе, конструкция которого содержит катушку индуктивности, естественным образом будет равна выходной энергии. Кроме того, по отношению к «электрической индукции» изменяемый поток «индуцирует» обратную эдс.

Двигатели с переключаемым магнитным сопротивлением

При исследовании альтернативного метода индуцированного движения в преобразователе постоянного магнитного движения Эклина (патент № 3,879,622) используются вращающиеся клапаны для переменного экранирования полюсов подковообразного магнита. В патенте Эклина №4,567,407 («Экранирующий унифицированный мотор- генератор переменного тока, обладающий постоянной обкладкой и полем») повторно высказывается идея о переключении магнитного поля путем «переключения магнитного потока». Эта идея является общей для моторов подобного рода. В качестве иллюстрации этого принципа Эклин приводит следующую мысль: «Роторы большинства современных генераторов отталкиваются по мере их приближения к статору и снова притягиваются статором, как только минуют его, в соответствии с законом Ленца. Таким образом, большинство роторов сталкиваются с постоянными неконсервативными рабочими силами, и поэтому современные генераторы требуют наличия постоянного входного вращающего момента». Однако «стальной ротор унифицированного генератора переменного тока с переключением потока фактически способствует входному вращающему моменту для половины каждого поворота, так как ротор всегда притягивается, но никогда не отталкивается. Подобная конструкция позволяет некоторой части тока, подведенного к обкладкам двигателя, подавать питание через сплошную линию магнитной индукции к выходным обмоткам переменного тока…» К сожалению, Эклину пока не удалось сконструировать самозапускающуюся машину.

В связи с рассматриваемой проблемой стоит упомянуть патент Ричардсона №4,077,001, в котором раскрывается сущность движения якоря с низким магнитным сопротивлением как в контакте, так и вне его на концах магнита (стр.8, строка 35). Наконец, можно привести патент Монро №3,670,189, где рассматривается схожий принцип, в котором, однако, пропускание магнитного потока игается с помощью прохождения полюсов ротора между постоянными магнитами полюсов статора. Требование 1, заявленное в этом патенте, по своему объему и детальности кажется удовлетворительным для доказательства патентоспособности, однако, его эффективность остается под вопросом.

Кажется неправдоподобным, что, являясь замкнутой системой, мотор с переключаемым магнитным сопротивлением способен стать самозапускающимся. Многие примеры доказывают, что небольшой электромагнит необходим для приведения работы якоря в синхронизированный ритм. Магнитный двигатель Ванкеля в своих общих чертах может быть приведен для сравнения с представленным типом изобретения. Патент Джаффе №3,567,979 также может использоваться для сравнения. Патент Минато №5,594,289, подобный магнитному двигателю Ванкеля, является достаточно интригующим для многих исследователей.

Изобретения, подобные мотору Ньюмана (патентная заявка США №06/179,474), позволили обнаружить тот факт, что нелинейный эффект, такой как импульсное напряжение, благоприятен для преодоления эффекта сохранения силы Лоренца по закону Ленца. Кроме того, сходным является механический аналог инерциального двигателя Торнсона, в котором используется нелинейная ударная сила для передачи импульса вдоль оси перпендикулярно плоскости вращения. Магнитное поле содержит момент импульса, который становится очевидным при определенных условиях, например, при парадоксе диска Фейнмана, где он сохраняется. Импульсный способ может быть выгодно использован в данном моторе с магнитным переключаемым сопротивлением, при условии, если переключение поля будет производиться достаточно быстро при стремительном нарастания мощности. Тем не менее, необходимы дополнительные исследования по этой проблеме.

Наиболее удачным вариантом переключаемого реактивного электромотора является устройство Гарольда Аспдена (патент №4,975,608), который оптимизирует пропускную способность входного устройства катушки и работу над изломом B-H кривой. Переключаемые реактивные двигатели также объясняются в .

Мотор Адамса получил широкое признание. Например, в журнале Nexus был опубликован одобрительный отзыв, в котором это изобретение называется первым из когда-либо наблюдавшихся двигателей свободной энергии. Однако работа этой машины может быть полностью объяснена законом Фарадея. Генерация импульсов в смежных катушках, приводящих в движение намагниченный ротор, фактически происходит по той же схеме, что и в стандартном переключаемом реактивном моторе.

Замедление, о котором Адамс говорит в одном из своих Интернет сообщений, посвященных обсуждению изобретения, может объясняться экспонентным напряжением (L di/dt) обратной эдс. Одним из последних добавлений к этой категории изобретений, которые подтверждают успешность работы мотора Адамса, является международная патентная заявка №00/28656, присужденная в мае 2000г. изобретателям Бритс и Кристи, (генератор LUTEC). Простота этого двигателя легко объясняется наличием переключаемых катушек и постоянного магнита на роторе. Кроме того, в патенте содержится пояснение о том, что «постоянный ток, подводимый к катушкам статора, производит силу магнитного отталкивания и является единственным током, подводимым снаружи ко всей системе для создания совокупного движения…» Хорошо известным является тот факт, что все моторы работают по этому принципу. На странице 21 указанного патента содержится объяснение конструкции, где изобретатели выражают желание «максимизировать воздействие обратной эдс, которое способствует поддержанию вращения ротора/якоря электромагнита в одном направлении». Работа всех моторов данной категории с переключаемым полем направлена на получение этого эффекта. Рисунок 4А, представленный в патенте Бритс и Кристи, раскрывает источники напряжения «VA, VB и VC». Затем на странице 10 приводится следующее утверждение: «В это время ток подводится от источника питания VA и продолжает подводиться, пока щетка 18 не перестает взаимодействовать с контактами с 14 по 17». Нет ничего необычного в том, что эту конструкцию можно сравнить с более сложными попытками, ранее упомянутыми в настоящей статье. Все эти моторы требуют наличия электрического источника питания, и ни один из них не является самозапускающимся.

Подтверждает заявление о том, что была получена свободна энергия то, что работающая катушка (в импульсном режиме) при прохождении мимо постоянного магнитного поля (магнита) не использует для создания тока аккумуляторную батарейку. Вместо этого было предложено использовать проводники Вейганда , а это вызовет колоссальный Баркгаузеновский скачок при выравнивании магнитного домена, а импульс приобретет очень четкую форму. Если применить к катушке проводник Вейганда, то он создаст для нее достаточно большой импульс в несколько вольт, когда она будет проходить изменяющееся внешнее магнитное поле порога определенной высоты. Таким образом, для этого импульсного генератора входная электрическая энергия не нужна вовсе.

Тороидальный мотор

По сравнению с существующими на современном рынке двигателями, необычную конструкцию тороидального мотора можно сравнить с устройством, описанным в патенте Лангли (№4,547,713). Данный мотор содержит двухполюсный ротор, расположенный в центре тороида. Если выбрана однополюсная конструкция (например, с северными полюсами на каждом конце ротора), то полученное устройство будет напоминать радиальное магнитное поле для ротора, использованного в патенте Ван Гила (№5,600,189). В патенте Брауна №4,438,362, права на который принадлежат компании Ротрон, для изготовления ротора в тороидальном разряднике используются разнообразные намагничивающиеся сегменты. Наиболее ярким примером вращающегося тороидального мотора является устройство, описанное в патенте Юинга (№5,625,241), который также напоминает уже упомянутое изобретение Лангли. На основе процесса магнитного отталкивания в изобретении Юинга используется поворотный механизм с микропроцессорным управлением в основном для того, чтобы воспользоваться преимуществом, предоставляемым законом Ленца, а также с тем, чтобы преодолеть обратную эдс. Демонстрацию работы изобретения Юинга можно увидеть на коммерческом видео «Free Energy: The Race to Zero Point». Является ли это изобретение наиболее высокоэффективным из всех двигателей, в настоящее время представленных на рынке, остается под вопросом. Как утверждается в патенте: «функционирование устройства в качестве двигателя также возможно при использовании импульсного источника постоянного тока». Конструкция также содержит программируемое логическое устройство управления и схему управления мощностью, которые по предположению изобретателей должны сделать его более эффективным, чем 100%.

Даже если модели мотора докажут свою эффективность в получении вращающегося момента или преобразования силы, то из-за движущихся внутри них магнитов эти устройства могут остаться без практического применения. Коммерческая реализация этих типов моторов может быть невыгодной, так как на современном рынке существует множество конкурентоспособных конструкций.

Линейные моторы

Тема линейных индукционных моторов широко освещена в литературе. В издании объясняется, что эти моторы являются подобными стандартным асинхронным двигателям, в которых ротор и статор демонтированы и помещены вне плоскости. Автор книги «Движение без колес» Лэйтвайт известен созданием монорельсовых конструкций, предназначенных для поездов Англии и разработанных на основе линейных асинхронных моторов.

Патент Хартмана №4,215,330 представляет собой пример одного из устройств, в котором с помощью линейного мотора достигнуто перемещение стального шара вверх по намагниченной плоскости приблизительно на 10 уровней. Другое изобретение из этой категории описано в патенте Джонсона (№5,402,021), в котором использован постоянный дуговой магнит, установленный на четырехколесной тележке. Этот магнит подвергается воздействию со стороны параллельного конвейера с зафиксированными переменными магнитами. Еще одним не менее удивительным изобретением является устройство, описанное в другом патенте Джонсона (№4,877,983) и успешная работа которого наблюдалась в замкнутом контуре в течение нескольких часов. Необходимо отметить, что генераторная катушка может быть размещена в непосредственной близости от движущегося элемента, так чтобы каждый его пробег сопровождался электрическим импульсом для зарядки батареи. Устройство Хартмана также может быть сконструировано как круговой конвейер, что позволяет продемонстрировать вечное движение первого порядка.

Патент Хартмана основывается на том же принципе, что и известный эксперимент с электронным спином, который в физике принято называть экспериментом Стерна-Герлаха. В неоднородном магнитном поле воздействие на некий объект с помощью магнитного момента вращения происходит за счет градиента потенциальной энергии. В любом учебнике физики можно найти указание на то, что этот тип поля, сильный на одном конце и слабый на другом, способствует возникновению однонаправленной силы, обращенной в сторону магнитного объекта и равного dB/dx. Таким образом, сила, толкающая шар по намагниченной плоскости на 10 уровней вверх в направлении, полностью согласуется с законами физики.

Используя промышленые качественные магниты (включая сверхпроводящие магниты, при температуре окружающей среды, разработка которых в настоящее время находится на завершающей стадии), будет возможна демонстрация перевозки грузов, обладающих статочно большой массой, без затрат электричества на техническое обслуживание. Сверхпроводящие магниты обладают необычной способностью годами сохранять исходное намагниченное поле, не требуя периодической подачи питания для восстановления напряженности исходного поля. Примеры того положения, которое сложилось на современном рынке в области разработки сверхпроводниковых магнитов, приведены в патенте Охниши №5,350,958 (недостаток мощности, производимой криогенной техникой и системами освещения), а также в переизданной статье, посвященной магнитной левитации .

Статический электромагнитный момент импульса

В провокационном эксперименте с использованием цилиндрического конденсатора исследователи Грэм и Лахоз развивают идею, опубликованную Эйнштейном и Лаубом в 1908 году, в которой говорится о необходимости наличия дополнительного периода времени для сохранения принципа действия и противодействия. Цитируемая исследователями статья была переведена и опубликована в моей книге , представленной ниже. Грэм и Лахоз подчеркивают, что существует «реальная плотность момента импульса», и предлагают способ наблюдения этого энергетического эффекта в постоянных магнитах и электретах.

Эта работа является вдохновляющим и впечатляющим исследованием, использующим данные, основанные на работах Эйнштейна и Минковского. Это исследование может иметь непосредственное применение при создании, как униполярного генератора, так и магнитного преобразователя энергии, описанного ниже. Данная возможность обусловлена тем, что оба устройства обладают аксиальным магнитным и радиальным электрическим полями, подобно цилиндрическому конденсатору, использовавшемуся в эксперименте Грэма и Лахоза.

Униполярный мотор

В книге подробно описываются экспериментальные исследования и история изобретения, сделанного Фарадеем. Кроме того, уделяется внимание тому вкладу, которое привнес в данное исследование Тесла. Однако в недавнем времени был предложен ряд новых конструкторских решений униполярного двигателя с несколькими роторами, который можно сравнить с изобретением Дж. Р.Р. Серла.

Возобновление интереса к устройству Серла также должно привлечь внимание к униполярным двигателям. Предварительный анализ позволяет обнаружить существование двух различных явлений, происходящих одновременно в униполярном двигателе. Одно из явлений можно назвать эффектом «вращения» (№1), а второй — эффектом «свертывания» (№2). Первый эффект может быть представлен в качестве намагниченных сегментов некоего воображаемого сплошного кольца, которые вращаются вокруг общего центра. Примерные варианты конструкций, позволяющих произвести сегментацию ротора униполярного генератора, представлены в .

С учетом предложенной модели может быть рассчитан эффект №1 для силовых магнитов Тесла, которые намагничиваются по оси и распологаются вблизи одиночного кольца с диаметром 1 метр. При этом эдс, образующаяся вдоль каждого ролика, составляет более 2V (электрическое поле, направленное радиально из внешнего диаметра роликов к внешнему диаметру смежного кольца) при частоте вращения роликов 500 оборотов в минуту. Стоит отметить, что эффект №1 не зависит от вращения магнита. Магнитное поле в униполярном генераторе связано с пространством, а не с магнитом, поэтому вращение не будет оказывать влияния на эффект силы Лоренца, имеющий место при работе этого универсального униполярного генератора .

Эффект №2, имеющий место внутри каждого роликового магнита, описан в , где каждый ролик рассматривается как небольшой униполярный генератор. Этот эффект признается чем-то более слабым, так как электричество вырабатывается от центра каждого ролика к периферии. Эта конструкция напоминает униполярный генератор Тесла , в котором вращающийся приводной ремень связывает внешний край кольцевого магнита. При вращении роликов, имеющих диаметр, приблизительно равный одной десятой метра, которое осуществляется вокруг кольца с диаметром 1 метр и при отсутствии буксировки роликов, вырабатываемое напряжение будет равно 0,5 Вольт. Конструкция кольцевого магнетика, предложенная Серлом, будет способствовать усилению B-поля ролика.

Необходимо отметить, что принцип наложения применим к обоим этим эффектам. Эффект №1 представляет собой однородное электронное поле, существующее по диаметру ролика. Эффект №2 — это радиальный эффект, что уже было отмечено выше . Однако фактически только эдс, действующая в сегменте ролика между двумя контактами, то есть между центром ролика и его краем, который соприкасается с кольцом, будет способствовать возникновению электрического тока в любой внешней цепи. Понимание данного факта означает, что эффективное напряжение, возникающее при эффекте №1 составит половину существующей эдс, или чуть больше 1 Вольт, что примерно в два раза больше, чем вырабатываемое при эффекте №2. При применении наложения в ограниченном пространстве мы также обнаружим, что два эффекта противостоят друг другу, и две эдс должны вычитаться. Результатом этого анализа является то, что примерно 0,5 Вольт регулируемой эдс будет представлено для выработки электричества в отдельной установке, содержащей ролики и кольцо с диаметром 1 метр. При получении тока возникает эффект шарикоподшипникового двигателя , который фактически толкает ролики, допуская приобретение роликовыми магнитами значительной электропроводности. (Автор благодарит за данное замечание Пола Ла Виолетте).

В связанной с данной темой работе исследователями Рощиным и Годиным были опубликованы результаты экспериментов с изобретенным ими однокольцевым устройством, названным «Преобразователем магнитной энергии» и имеющим вращающиеся магниты на подшипниках. Устройство было сконструировано как усовершенствование изобретения Серла. Анализ автора этой статьи, приведенный выше, не зависит от того, какие металлы использовались для изготовления колец в конструкции Рощина и Година. Их открытия достаточно убедительны и детальны, что позволит возобновить интерес многих исследователей к этому типу моторов.

Заключение

Итак, существует несколько моторов на постоянных магнитах, которые могут способствовать появлению вечного двигателя с кпд, превышающим 100%. Естественно, необходимо принимать во внимание концепции сохранения энергии, а также должен исследоваться источник предполагаемой дополнительной энергии. Если градиенты постоянного магнитного поля претендуют на появление однонаправленной силы, как это утверждается в учебниках, то наступит момент, когда они будут приняты для выработки полезной энергии. Конфигурация роликового магнита, который в настоящее время принято называть «преобразователем магнитной энергии», также представляет собой уникальную конструкцию магнитного мотора. Проиллюстрированное Рощиным и Годиным в Российском патенте №2155435 устройство является магнитным электродвигателем-генератором, который демонстрирует возможность выработки дополнительной энергии. Так как работа устройства основана на циркулировании цилиндрических магнитов, вращающихся вокруг кольца, то конструкция фактически представляет собой скорее генератор, чем мотор. Однако это устройство является действующим мотором, так как для запуска отдельного электрогенератора используется вращающий момент, вырабатываемый самоподдерживающимся движением магнитов.

Литература

1. Motion Control Handbook (Designfax, May, 1989, p.33)

2. «Faraday’s Law — Quantitative Experiments», Amer. Jour. Phys.,

3. Popular Science, June, 1979

4. IEEE Spectrum 1/97

5. Popular Science (Популярная наука), May, 1979

6. Schaum’s Outline Series, Theory and Problems of Electric

Machines andElectromechanics (Теория и проблемы электрических

машин и электромеханики) (McGraw Hill, 1981)

7. IEEE Spectrum, July, 1997

9. Thomas Valone, The Homopolar Handbook

10. Ibidem, p. 10

11. Electric Spacecraft Journal, Issue 12, 1994

12. Thomas Valone, The Homopolar Handbook, p. 81

13. Ibidem, p. 81

14. Ibidem, p. 54

Tech. Phys. Lett., V. 26, #12, 2000, p.1105-07

Томас Валон Integrity Research Institute, www.integrityresearchinstitute.org

1220 L St. NW, Suite 100-232, Washington, DC 20005

zaryad.com

Вечный двигатель на постоянных магнитах

Проблемой вечного двигателя до сих пор занимаются очень многие энтузиасты из числа ученых и изобретателей. Эта тема особенно актуальна в свете возможного топливно- энергетического кризиса, с которым может столкнуться наша цивилизация.

Одним из наиболее перспективных вариантов считается вечный двигатель на постоянных магнитах, работающий, благодаря уникальным свойствам этого материала. Здесь скрывается большое количество энергии, которой обладает магнитное поле. Основная задача состоит в том, чтобы выделить и преобразовать ее в механическую, электрическую и другие виды энергии. Постепенно, магнит теряет свою силу, однако, она вполне восстанавливаться под действием сильного магнитного поля.

Общее устройство магнитного двигателя

В стандартную конструкцию устройства входят три основные составные части. Прежде всего, это сам двигатель, статор с установленным электромагнитом и ротор с постоянным магнитом. На один вал, совместно с двигателем, устанавливается электромеханический генератор.

В состав магнитного двигателя входит статический электромагнит, представляющий собой кольцевой магнитопроводс вырезанным сегментом или дугой. В электромагните имеется индуктивная катушка, к которой подключается электронный коммутатор, обеспечивающий реверс тока. Сюда же подключается и постоянный магнит. Для регулировки используется простой электронный коммутатор, схема которого представляет собой автономный инвертор.

Как работает магнитный двигатель

Запуск магнитного двигателя осуществляется с помощью электротока, подаваемого в катушку из блока питания. Магнитные полюса в постоянном магните располагаются перпендикулярно электромагнитному зазору. В результате возникающей полярности, постоянный магнит, установленный на роторе, начинает вращаться вокруг своей оси. Происходит притяжение магнитных полюсов к противоположным полюсам электромагнита.

Когда разноименные магнитные полюса и зазоры совпадают, в катушке выключается ток и тяжелый ротор проходит по инерции эту мертвую точку совпадения, вместе с постоянным магнитом. После этого, в катушке происходит изменение направления тока и в очередном рабочем зазоре значения полюсов на всех магнитах становятся одноименными. Дополнительное ускорение ротора, в этом случае, происходит за счет отталкивания, возникающего под действием полюсов одноименного значения. Получается так называемый вечный двигатель на магнитах, который обеспечивает постоянное вращение вала. Весь рабочий цикл повторяется после того, как ротор сделает полный круг вращения. Действие электромагнита на постоянный магнит, практически не прерывается, что и обеспечивает вращение ротора с необходимой скоростью.

electric-220.ru

АЛЬТЕРНАТИВНЫЕ РЕШЕНИЯ — RU: ИМПУЛЬСНЫЙ МАГНИТНЫЙ ДВИГАТЕЛЬ СВОИМИ РУКАМИ

ИМПУЛЬСНЫЙ МАГНИТНЫЙ ДВИГАТЕЛЬ — RU,
НОВЫЙ ВАРИАНТ

Действующий макет магнитного двигателя МД-500-RU со скоростью

вращения до 500 об/мин.

Ивестны седующие варианты магнитных двигателей (ДМ):

1. Магнитные двигатели, работающий только за счет сил взаимодействия магнитных полей, без устройства управления (синхронизации), т.е. без потребления энергии от внешнего источника.«Perendev», Wankel и др.

2. Имнульсные магнитные двигатели, работающие за счет сил взаимодействия магнитных полей, с устройством управления (УУ) или синхронизации, для работы которых требуется внешний источник питания.

Применение устройств управления позволяет получить на валу МД повышенную величину мощности, в сравнении с МД, указанными выше. Этот вид МД легче в изготовлении и настройке на режим максимальной скорости вращения.3. Манитные двигатели использующие 1 и 2 варианты, например МД Нarry Paul Sprain, Минато и другие.

***

Макет доработанного варианта работающего импульсного магнитного двигателя (МД-RU)

с устройством управления (синхронизации),обеспечивающий скорость вращения до 500 об/мин.

1. Технические параметры двигателя МД_RU:.

Число магнитов 8, 600Гс.Электромагнит 1 шт.Радиус R диска 0,08м.Масса m диска 0,75 кг.

Скорость вращения диска 500 об/мин.

Число оборотов в секунду 8,333 об/сек.. Период вращения диска 0.12 сек. (60сек/500 об/мин= 0,12сек).Угловая скорость диска ω = 6,28/0,12 = 6,28/(60/500) = 52,35 рад./sec.Линейная скорость диска V = R* ω = 0,08*52,35 = 4,188 m/сек.2.Вычисление основных энергетических показателей МД.Полный момент инерции диска:Jпми = 0,5 * mкг *R2 = 0,5*0,75*(0,08) 2 = 0,0024[кг *m2]. Кенетическая энергия Wke на валу двигателя:Wke = 0,5*Jпми* ω2 = 0,5*0,0024*(52,35) 2 = 3,288 дж/сек= 3,288 Вт*сек. При вычислениях использовался «Справочник по физике», Б.М.Яворский и А.А. Детлаф, и БСЭ.

3. Получив результат вычисления кинетической энергии на валу диска (ротора) в

Ваттах (3,288), для вычисления энергетической эффективности этого вида МД,

необходимо вычислить мощность, потребляемую устройством управления (синхронизации). Мощность потребляемая устройством управления (синхронизации) в ваттах, приведенная к 1 секунде:

в течение одной секунды устройство управления потребляет ток напротяжении 0,333 сек, т.к. за проход одного магнита электромагнит потребляет ток в течении 0,005 сек., магнитов 8, за одну секунду происходит 8,33 оборота, поэтому время потреблен ия тока устройством управления равно произведению:

0,005*8*8,33 об/сек = 0,333сек.-Напряжения питания устройства управления 12В.-Ток, потребляемый устройством 0,13 А.-Время потребления тока на протяжении 1 секунды равно — 0,333 сек. Следовательно мощность Руу, потребляемая устройством за 1 секунду непрерывного вращения диска составит:Pуу = U* A = 12 * 0,13А * 0,333 сек. = 0,519 Вт*сек.Это в (3,288 Вт*сек) /(0,519 Вт *сек) = 6,33 раз больше энергии потребляемой устройством управления. Фрагмент конструкции МД.

4. ВЫВОДЫ: Очевидно, что магнитный двигатель, работающий за счет сил взаимодействия магнитных полей, с устройством управления (УУ) или синхронизации, для работы которого требуется внешний источник питания, потребляемая мощность от которого значительно меньше мощности на валу МД.

5. Признаком нормальной работы магнитного двигателя является то, что если его, после подготовке к работе, слегка подтолкнуть, — он, далее, сам начнет раскручиваться до своей максимальной скорости. 6. Надо иметь в виду, этот вид двигателя вращался со скоростью 500 об/мин. без нагрузки на валу. Для получения на его основе генератора электрического напряжения на его ось вращения следует насадить генератор постоянного или переменного тока. При этом скорость вращения, естественно, уменьшится в зависимости от силы магнитного сцепления в зазоре стотор — ротор используемого генератора.

7. Изготовление магнитного двигателя требует наличие материально – технической и инструментальной базы, без которой, практически, не возможно изготовление устройств подобного рода. Это видно из описания патентов и других источников информации порассматриваемой теме.

При этом, наиболее походящие виды NdFeB — магнитов можно найти на сайте http://www.magnitos.ru/.Для подобного вида МД наиболее подходящими являются магниты «средний квадрат»К-40-04-02-N (длиной до 40 x 4 x 2 mm) с намагничиванием N40 и сцеплением 1 — 2 kg. ***

8. Рассмотренный вид магнитного двигаеля с устройством синхронизации

(управления включением электромагнита) отностися к наиболее доступному в изготовленении вида МД, которые называют импульсными магнитнами двигателями. На рисунке приведен один из известных вариантов импульсных МД с электромагнитом, «выполняющим роль поршня», похожий на игрушку. В реальной полезной модели диаметр колеса (маховика), например, велосипедного колеса, должен быть не менее метра и, соответственно, длинее путь перемещения сердечника электромагнита.

Создание импульсного МД — это только 50% пути до достижения цели — изготовления источника электрической энергии с повышенным кпд. Скорость и момент вращения на оси МД должены быть достаточными для вращения генератора постоянного или переменного тока и получения максимального значения получаемой мощности на выходе, которая так же зависит и от скорости вращения.

8. Аналогичные МД:1. Magnetic Wankel Motor,http://www.syscoil.org/index.php?cmd=nav&cid=116Мощность этой модели достаточна только для того, чтобы колыхать воздух, тем не менее, она подсказывает путь к достижению цели. 2. НARRY PAUL SPRAIN http://www.youtube.com/watch?v=mCANbMBujjQ&mode=related&search;

Это двигатель, аналогичный Magnetic Wankel Motor, но значительно большего размера и с устройством управления (синхронизации) с мощностью на валу 6 Вт*сек.

3. Вечный двигатель «PERENDEV»Многие не верят, а он работает! См: http://www.perendev-power.ru/ Патент МД «PERENDEV»:http://v3.espacenet.com/textdoc?DB=EPODOC&IDX=WO2006045333&F=0 Двигатель — генератор на 100 кВт стоит 24 000 евро. Дорого, поэтому некоторые умельцы изготавливают его своими руками в масшабе 1/4(фото приведено выше).

Рисунок действущего макета разработанного импульсного магнитного двигателя МД-500-RU, дополненного асинхронным генераторм переменного тока.

Новые конструкции вечных магнитных двигателей: 1. http://www.youtube.com/watch?v=9qF3v9LZmfQ&feature=related

К выводам каждой катушки подключен транзистор. Катушки содержат магнитный сердечник. Магниты колеса, проскакивая мимо катушек с магнитами, наводит в них эдс, достаточную для возникновения генерации в цепи катушка-транзистор, далее напряжение генератора через, предположительно, согласующее устройство поступает на обмотки двигателя, вращающего колесо и т. д.

Магнитный двигатель LEGO (perpetuum).

Он выполнен на базе элементов из набора для конструирования LEGO.

При медленной прокрутки видео – становится понятным почему эта штуковина вращается непрерывно.

3. «Запрещённая конструкция» вечного двигателя с двумя поршнями. Вопреки известному «не может быть», медленно, — но вращается.

В нем одновременное использование гравитации и взаимодействия магнитов.

4.Гравитационно-магнитный двигатель.

На вид очень простое устройство, но не известно, потянет ли оно генератор

постоянного или переменного тока? Ведь простого вращения колеса не достаточно.

Приведенные виды магнитных двигателей (с пометкой: perpetuum), если даже они работают, — очень маломощны. Поэтому, чтобы они стали эффективными для практического применения их размеры неизбежно придется увеличивать, при этом, они не должны потерять свое важное свойство: непрерывно вращаться.

Страная «качалка» сербского изобретателя В.Милковича, которая, как ни странно, — работает. http://www.veljkomilkovic.com/OscilacijeEng.html

Краткий перевод:Простой механизм с новыми механическими эффектами, представляющим собой источник энергии. Машина имеет только две основных части: огромный рычаг на оси и маятник. Взаимодействие двухступенчатого рычага умножает входную энергию удобную для полезной работы (механический молот, пресса, насос, электрический генератор…). Для полного ознакомления с научными исследованиями смотрите видио.

1 — «Наковальня», 2 — Механический молот с маятником, 3 – Ось рычага молота, 4 — Физический маятник. Наилучшие результаты были достигнуты, когда ось рычага и маятника находятся на одной и той же высоте, но немного выше центра массы, как показано на рисунке. В машине используется различие в потенциальной энергии между состоянием невесомости в положении (вверху) и состоянием максимальной силы (усилия) (внизу) в течение процесса генерации энергии маятником. Это истина для центробежной силы, для которой сила равна нулю в верхней позиции и достигает наибольшего значения в нижней позиции, в которой скорость максимальна. Физический маятник использован как главное звено генератора с рычагом и маятником. После многих лет испытаний, консультаций и общественных презентаций, много было сказано об этой машине. Простота конструкции для самостоятельного изготовления в домашних условиях. Эффективность модели может быть за счет повышения массы, как отношение веса (массы) рычага к поверхности молота, ударяющего по «наковальне». Согласно теории генерации, колебательные перемещения «качалки» трудно поддаются анализу. *** Испытания указали на важное значение процесса синхронизации частоты в каждой модели. Генерация физического маятника должна происходить с первого запуска и далее поддерживаться самостоятельно, но только при определенной скорости, в противном случае входная энергия будет затухать и исчезнет. Молот более эффективно работает с коротким маятником (в насосе), но длительно (наиболее долго) работают с удлиненным маятником. Дополнительное ускорение маятника является следствием силы тяжести. Если обратиться

к формуле: Ек = М(V1 +V 2)/2

и провести вычисления избытока энергии становится понятным, что он обусловлен потенциальной энергией гравитации. Кинетическая энергия может быть повышена путем увеличения тяжести (массы).

Демонстрация работы устройства. ***

РУССКАЯ КАЧАЛКА (резонансная качалка RU)

http://www.001-lab.com/001lab/index.php?topic=140.0 Cм.RE Магнитогравитационные установки Reply #14: Март 02, 2010, 05:27:22Видео: Работа в резонансе.rar (2955.44 Кб — загружено 185 раз.)Работает!!!

ГЕНЕРАТОРЫ С ИЗБЫТОЧНОЙ ЭНЕРГИЕЙ (TORS TT) НОВОЕ НАПРАВЛЕНИЕ В СОЗДАНИИ ГЕНЕРАТОРОВ СВОБОДНЙ ЭНЕРГИИ

1. Известная схема устройства на базе изобретения Эдвина Грея, которое заряжает аккумулятор Е1 от которого оно и питается или внешний акккумулятор Е2, переключением элемента S2а — S2б. Т1,Т2 — мультивибратор (можно выполнить на ИМС), запускающий гнератор высоковольтных колбений на Т3, Т4 и Т5. L2, L3 — понижающий трансформатор, далее выпрямитель на D3, D4. и трансформатр L2 — L3 можно вставит ферритовый сердечник (600 -1000 мп). Элементы, заключенные в зеленый прямоугольник похожи на так называемую «конверсионную элементную трубку». В качестве искрового разрядника можно использовать обычную автомобильную свечу, а в качестве автотрансформатора (L1) – автомобильную катушку зажигания.Другие схемные решения можно найти на youtube.com в видеоматериалах по генераторам «свободной энергии», т.н. TROS, amplifier и др. со схемами этого вида генераторов энергии. Схемы генераторов избыточной энергии TORS TT, это когда потребляемая генератором мощность, предположительно, значительно меньше энергии выделяемой в нагрузке.

2. Очень интересный генератор Joule Thief избыточной энергии, работает от 1,5В, а питает лампы накаливания.

http://4.bp.blogspot.com/_iB7zWfiuCPc/TCw8_UQgJII/AAAAAAAAAf8/xs7eZ4680SY/s1600/Joule+Thief+Circuit+-2___.JPG

3. Наибольший интерес представляет генератор свободной энергии, работающий от источника постоянного тока 12 — 15В, который на выходе «тянет» несколько ламп накаливания на 220В. http://www.youtube.com/watch?v=Y_kCVhG-jl0&feature=player_embeddedОднако, автор не раскрывает технические особенности изготовления этого вида генератора электрической энергии, с так называемой самозапиткой. Кадр из этого видео ролика.

Для кого создают талантливые искатели «свободной энергии» подобные устройства?

Для себя, для потенциального инвестора или для кого — то еще? Работа, как правило, закачивается известной формулировкой: получил «техническое чудо», но никому не скажу как. Тем не менее над этим видом герератора с самозапиткой стоит поработать. Он содержит источник постоянного тока на 15-20 В, конденсатор 4700мкФ, включенный параллельно источнику питания, транзисторный генератор высокого напряжения (2-5кВ), резрядник и катушку, содержащую несколько обмоток, намотанных на сердачник собранный из ферритовых колец (D~ 40мм). С ней придется разбираться, искать аналогичную конструкцию из множества подобных. Естественно, если будет желание. Катушку, аналогичную используемой можно посмотреть на: http://jnaudin.free.fr/kapagen/replications.htmhttp://www.001-lab.com/001lab/index.php?topic=24.0УСПЕХОВ!

4. Достоверная схема генератора КапанадзеПодробности на http://www.youtube. com/watch?v=tyy4ZpZKBmw&feature=related

5. Ниже набросок СхЭ генератора Naudin. Анализ схемы вызывает некоторые сомнения. Возникает естественный вопрос: какую мощность потребляет транс, например, от микроволновой печи (220/2300В), вставленный в генератор «свободной энергии» и какую мощность получаем на выходе в виде свечения ламп накаливания? Если транс от микроволновки, то его входная потребляемая мощность 1400 Вт, а выходная по СВЧ 800 — 900 Вт, при кпд магнетрона порядка 0.65. Поэтому, подключенные ко вторичной обмотке (2300В) через разрядник и небольшую индуктивность — лампы могут полыхать и не только от выходного напряжения вторичной обмотки и весьма прилично.

С этим варианотом схемы могут быть затруднения с достижением положительного эффекта. Элемент, обозначаемый буквами МОТ — это сетевой трансформатор 220/2000 … 2300В, в большинстве сучаев от микроволновой печи, Рвхода до 1400Вт, Рпо выходу (СВЧ) 800Вт.

ПОЛУЧЕНИЕ ВОДОРОДА C ИСПОЛЬЗОВАНИЕМ ЧАСТОТЫ РЕЗОНАНСА ВОДЫ

ВОДОРОД МОЖНО ПОЛУЧАТЬ ОБЛУЧЕНИЕМ ВОДЫ ВЧ КОЛЕБАНИЕМ.

http://peswiki.com/index.php/Directory:John_Kanzius_Produces_Hydrogen_from_Salt_Water_Using_Radio_WavesJohn KanziusThe authors have shown that NaCl-h4O solutions of concentrations ranging from 1 to 30%, when exposed to a polarised RF radiofrequency beam at at room temperature, generate an intimate mixture of hydrogen and oxygen which can be ignited and burned with a steady flamePatent of John Kanzius…

Преревод:John_Kanzius показал, что раствор NaCl-h4O с концентрацией, колеблющейся от 1 до 30%, когда его облучают направленным поляризованным (polarised radiofrequency) ВЧ излучением с частотой, равной резонансной частоте раствора, порядка 13,56 МГц, при комнатной температуре начинает выделять водород, который в смеси с кислородом, начинает устойчиво гореть. При наличии искры водород воспламеняется и горит ровным пламенем, температура которого, как показывают эксперименты, может превышать 1600 градусов Цельсия.Удельная теплота сгорания водорода: 120 Мдж/кг или 28000 ккал/кг.

Пример схемы ВЧ генератора:

Катушка диаметром 30-40 мм изготавливается из одножильного изолированного провода диаметром 1 мм, число витков 4-5 (подбирается экспериментально). Питание 15 – 20В подключить у правому концу дросселя 200 мкГ. Настойка в резонанс производится переменным конденсатором. Катушка наматывается поверх сосуда с соленой водой цилиндрической формы. Сосуд на 75-80% заливается соленой водой и плотно закрывается крышкой с патрубком для отвода водорода, у выхода, трубка заполняется ватой для предотвращения свободного проникновения кислорода в сосуд.

*** Подробнее можно посмотреть на:http://www.scribd.com/doc/36600371/Kanzius-Hydrogen-by-RF Observations of polarised RF radiation catalysis of dissociation of h4O–NaCl solutions R. Roy, M. L. Rao and J. Kanzius. The authors have shown that NaCl–h4O solutions of concentrations ranging from 1 to 30%, when exposed to a polarised radiofrequency beam at 13,56 MHz…

Ответ на вопрос читателя:Я получал водород, заливая водным раствором едкого натра (Na2CO3) пластину алюминия (100 х100 х 1мм). В воде кальцинированная сода реагирует с водой 2CO3− + h4O ↔ HCO3− + OH− и образует гидроксил ОН, который очищает алюминий от пленки. Далее начинается известная реакция: 2Аl + 3Н2О = A12О3 + 3h4 с выделением тепла и интенсивным выделением водорода, схожая с кипением воды. Реакция проходит без электролиза!

Эксперимент следует проводить осторожно, чтобы не произошло возгорание и взрыв водорода. Или сразу предусмотреть отвод водорода из накрытого крышкой сосуда с рабочими компонентами. В процессе реакции выделения водорода, через некоторое время, алюминиевая пластина начинает покрывается отходами реакции хлоридом кальция CaCl2 и окисью алюминия A12О3. Интенсивность химической реакции через некоторое время начнет снижаться. Для поддержания её интенсивности следует удалить отходы, заменить раствор едкого натра и алюминиевую пластину на другую. Использованную, после очистки можно, применять снова и т.д. до полного их разрушения. Если применять дюраль, реакция протекает с выделением тепла. ***Аналогичная разработка:Your house can be warmed up this way. (Ваш дом может быть обогрет этим способом) Изобретатель Mr. Francois P. Cornish. Европейский патент №0055134А1 от 30.06.1982, применительно к бензиновому двигателю, он позволяет машине нормально двигаться, используя вместо бензина, воду и небольшое количество алюминия. Mr. Francois P. в своем устройстве, использовал электролиз (при 5-10 кВ) в воде с алюминиевой проволокой, которую предварительно очищал от окиси до введения её в камеру, из которой по трубке отводил водород и подавал его в велосипедный двигатель.

Здесь отходом реакции является A12О3. Конструкция этой штуковины Возник вопрос, что дороже на 100 км пути — бензин или алюминий с высоковольтным источником и аккумулятором? Если «люмнь» со свалки или из отходов куханной посуды, то будет дешево. *** Дополнительно, можете посмотреть подобное устройство здесь: http://macmep.h32.ru/main_gaz.htm и здесь: «Простой народный способ получения водорода»http://new-energy21.ru/content/view/710/179/, а здесь http://www.vodorod.net/ — информация о генераторе водорода за 100 баксов. Я бы не покупал, т.к. на видео не видно явного возгорания водорода на выходе бидона с компонентами для электролиза.

magnets-motor.blogspot.com

Магнитный двигатель: миф или реальность.

Магнитный двигатель – один из наиболее вероятных вариантов «вечного двигателя». Идея его создания была высказана ещё очень давно, однако до сих пор он не был создан. Существует множество устройств, которые на шаг или несколько шагов приближают ученых к созданию этого двигателя, однако ни одно из них не доведено до логического завершения, следовательно, о практическом применении еще нет речи. Существует и множество мифов, связанных с этими устройствами.

Магнитный двигатель – это не обычный агрегат, так как он не потребляет никакой энергии. Движущей силой являются только магнитные свойства элементов. Конечно, электромоторы тоже используют магнитные вещества ферромагнетиков, однако в движение магниты приводятся под действием электрического тока, что уже противоречит главному принципу вечного двигателя. В магнитном двигателе задействуется влияние магнитов на другие объекты, под воздействием которых они начинают двигаться, вращая турбину. Прообразом такого двигателя могут стать многие офисные аксессуары, в которых непрерывно двигаются различные шарики или плоскости. Однако для движения там тоже используются батарейки (источник постоянного тока).

Никола Тесла был одним из первых ученых, серьезно занявшихся созданием магнитного двигателя. Его двигатель содержал турбину, катушку, провода, соединяющие данные объекты. В катушку вкладывался небольшой магнит таким образом, чтобы он захватывал как минимум два её витка. После придания турбине небольшого толчка (раскручивания) она начинала двигаться с неимоверной скоростью. Это движение будет вечным. Магнитный двигатель Теслы является практически идеальным вариантом. Единственным его недостатком является то, что турбине необходимо придать первоначальную скорость.

Магнитный двигатель Перендева – другой возможный вариант, однако он гораздо более сложный. Он представляет собой кольцо из диэлектрического материала (чаще всего древесина) с вмонтированными в него магнитами, наклоненными под определенным углом. В центре располагался ещё один магнит. Такая схема тоже является неидеальной, ведь для запуска двигателя нужен толчок.

Основной проблемой создания такого вечного двигателя является склонность магнитов к постоянному механическому движению. Два сильных магнита будут двигаться до тех пор, пока их противоположные полюса не соприкоснутся. Из-за этого магнитный двигатель не может правильно работать. Эту проблему невозможно решить при современных возможностях человечества.

Создание идеального магнитного двигателя привело бы человечество к источнику вечной энергии. В таком случае все существующие виды электростанций можно было бы с легкостью упразднить, так как магнитный двигатель стал бы не только вечным, но и самым дешевым и безопасным вариантом получения энергии. Но нельзя определенно сказать, будет ли магнитный двигатель лишь источником энергии или его можно будет использовать не только в мирных целях. Этот вопрос существенно меняет положение дел и заставляет задуматься.

Карикатура вечного двигателя

Наука давно не стоит на месте и развивается все больше и больше. Благодаря науке было изобретено множество предметов, которыми мы пользуемся в повседневной жизни. Однако, на протяжении многих столетий перед наукой всегда стоял вопрос изобретения такого устройства, которое бы могло работать не потребляя никакой энергии извне, работая вечно. Такого результата добивались многие. Однако кому это удалось? Создан ли такой двигатель? Об этом и о многом другом мы и поговорим в нашей статье.

Двигатель Стирлинга простейшей конструкции. Свободнопоршневой. Игорь Белецкий

Что такое вечный двигатель?

Трудно представить современную человеческую жизнь без использования специальных машин, которые в разы облегчают жизнь людям. С помощью таких машин люди занимаются обработкой земли, добычей нефти, руды, а также просто передвигается. То есть, главной задачей таких машин является совершать работу. В любых машинах и механизмах перед тем, как совершить какую-либо работу, любая энергия переходит их одного вида в другой. Но существует один нюанс: нельзя получить энергии одного вида больше, чем иного при самых любых превращениях, поскольку это противоречит законам физики. Таким образом, вечный двигатель создать нельзя.

Но что же означает словосочетание «вечный двигатель»? Вечный двигатель – это такой двигатель, в котором в конечном результате превращения энергии вида получается больше, чем было в начале процесса. Данный вопрос о вечном двигателе занимает особое место в науке, в то время, как существовать не может. Это достаточно парадоксальный факт оправдывается тем, что все искания ученых в надежде изобрести вечный двигатель насчитывают уже более 8 веков. Эти поиски связаны прежде всего с тем, что существуют определенные представления о самом распространенном понятии физики энергии.

История возникновения вечного двигателя

Прежде чем описывать вечный двигатель, стоит обратиться к истории. Откуда же взялась ? Впервые идея о создании такого двигателя, которое бы приводило в работу машины, не используя специальную силу, появилась в Индии в седьмом веке. Но уже практический интерес к данной идее появился позже, уже в Европе в восьмом веке. Создание такого двигателя позволило бы существенно ускорить развитие науки энергетики, а также развить производительные силы.

Такой двигатель был необычайно полезен в то время. Двигатель был способен приводить в движение различные водяные насосы, крутить мельницы, а также поднимать различные грузы. Но средневековая наука была развита не настолько, чтобы делать такие большие открытия. Люди, которые мечтали создать вечный двигатель. Прежде всего они опирались на то, что движется всегда, то есть вечно. Примером тому служит движение солнца, луны, различных планет, течение рек и так далее. Однако, наука не стоит на своем. Именно поэтому, развиваясь, человечество пришло к созданию настоящего двигателя, который опирался не только на естественное стечение обстоятельств.

Вечный двигатель на магнитах

Первые аналоги современного вечного магнитного двигателя

В 20 веке произошло величайшее открытие – появление постоянного и изучение его свойств. К тому же, в том же веке появилась идея о создании магнитного двигателя. Такой двигатель должен был работать неограниченное количество времени, то есть бесконечно. Такой двигатель назвали вечным. Однако, слово «вечно» тут не совсем подходит. Вечного нет ничего, поскольку в любую минуту какая-либо часть такого магнита может отвалиться, либо какая-нибудь деталь отколется. Именно поэтому под словом «вечно» следует принимать такой механизм, который работает беспрерывно, не требуя при этом каких-либо затрат. К примеру, на топливо и так далее.

Но существует мнение, что вечного ничего нет, вечный магнит не может существовать по законам физики. Однако стоит подметить, что постоянный магнит излучает энергию постоянно, при этом совершенно не теряет своих магнитных свойств. Каждый магнит совершает работу беспрерывно. Во время данного процесса, магнит вовлекает в данное движения все молекулы, которые содержатся в окружающей среде специальным потоком, который называется эфир.

Американский БТГ выдвинут на Нобелевскую премию

A Brief Tour of the IEC Factory Floor

Это единственное и самое верное объяснение механизму действия такого магнитного двигателя. На данный момент трудно установить, кто создал первый двигатель, работающий на магнитах. Он сильно отличался от нашего современного. Однако существует мнение, что в трактате величайшего индийского математика Бхскара Ачарья есть упоминание о двигателе, работающем на магните.

В Европе первые сведения о создании вечного магнитного двигателя возникли также от важной персоны. Данное известие поступило в 13 веке, от Виллара д’Оннекура. Это был величайший французский архитектор и инженер. Он, как и многие деятели того века занимался различными делами, которые соответствовали профилю его профессии. А именно: строительство различных соборов, создание сооружений по подъему грузов. Кроме того, деятель занимался созданием пил с водным приводом и так далее. Кроме того, он оставил после себя альбом, в котором оставил чертежи и рисунки потомкам. Данная книга хранится в Париже, в национальной библиотеке.

Двигатель Перендева основанный на взаимодействии магнитов

Создание вечного магнитного двигателя

Когда же был создан первый вечный магнитный двигатель? В 1969 году был изготовлен первый современный рабочий проект магнитного двигателя. Сам корпус такого двигателя был полностью выполнен из дерева, сам двигатель находился вполне в рабочем состоянии. Но существовала одна проблема. Самой энергии хватало исключительно на вращение ротора, поскольку все магниты были достаточно слабыми, а других в то время просто не изобрели. Создателем такой конструкции был Майкл Брэди. Всю жизнь он посвятил на разработку двигателей и наконец в 90-х годах прошлого века он создал абсолютно новую модель вечного двигателя на магните, за что и получил патент.

На основе данного магнитного двигателя был сделан электрогенератор, который имел мощность 6 кВт. Силовым устройством являлся тот магнитный мотор, который использовал исключительно постоянные магниты. Однако, такой вид электрогенератора не обходился без своих определенных минусов. К примеру, обороты и мощность двигателя не зависели ни от каких факторов, к примеру, нагрузки, которая подключалась к электрогенератору.

Далее, шла подготовка к изготовлению электромагнитного мотора, в котором, кроме всех постоянных магнитов также использовались специальные катушки, которые называются электромагнитами. Такой мотор, работающий на электромагнит, мог успешно управлять силой момента вращения, а также самой скоростью вращения ротора. На основе двигателя нового поколения были созданы две мини электростанции. Генератор весит 350 килограмма.

Группы вечных двигателей

Магнитные двигатели и иные другие подразделяются на два вида. Первая группа вечных двигателей совершенно не извлекают энергию из окружающей среды (к примеру, тепло) Однако, при этом, физические и химические свойства двигателя по-прежнему остаются неизменными, не используя при этом энергии, кроме собственной. Как было сказано выше, именно такие машины просто не могут существовать, исходя из первого закона термодинамики. Вечные двигатели второго вида делают все с точностью наоборот. То есть их работа полностью зависит от внешних факторов. При работе они извлекают энергию из окружающей среды. Поглощая, допустим, тепло, они превращают такую энергию в механическую. Однако такие механизмы не могут существовать исходя из второго закона термодинамики. Проще говоря, первая группа относится к так называемым естественным двигателям. А вторая к физическим или искусственным двигателям.

Но к какой же группе отнести вечный магнитный двигатель? Конечно, к первой. При работе данного механизма энергия внешней среды совершенно не используется, напротив, механизм сам вырабатывает то количество энергии, которое ему необходимо.

Тейн Хайнс — презентация двигателя

Создание современного вечного магнитного двигателя

Каким же должен быть настоящий вечный магнитный двигатель нового поколения? Так, в 1985 году над этим задумался будущий изобретатель механизма Тейн Хайнс (Thane Heins). Он задумался над тем, как с помощью магнитов значительно улучшить генератор мощности. Таким образом, к 2006 году он все-таки изобрел то, о чем так долго мечтал. Именно в этом году произошло, то, что он никак не ожидал. Работая над своим изобретением, Хайнс соединил приодной вал обычного мотора вместе с ротором, на котором находились маленькие круглые магниты.

Они располагались на внешнем ободе ротора. Хайнс надеялся на то, что в период, когда ротор будет вращаться, магниты будут проходить через катушку, материалом которой служила обычная проволка. Данный процесс, по мнению Хайнса, должен был вызвать протекание тока. Таким образом, используя все вышесказанное, должен был получиться настоящий генератор. Однако, ротор, который работал на нагрузку, постепенно должен был замедляться. И, конечно, в конце ротор должен был остановиться.

Но Хайнс что-то не рассчитал. Таким образом, вместо того, чтобы остановиться, ротор начал ускорять свое движение до невероятной скорости, что привело к тому, что магниты разлетелись во все стороны. Удар магнитами был действительно огромной силы, что повредило стены лаборатории.

Проводя данный эксперимент, Хайнс надеялся на то, что при данном действии должно быть установлено специальное силовое магнитное поле, в котором и должен был появиться эффект, совершенно обратной ЭДС. Такой исход эксперимента является теоретически правильный. Данный исход опирается на закон Ленца. Данный закон проявляет себя физически как обычнейший закон трения в механике.

Но, увы, предполагаемый исход эксперимента вышел из-под контроля ученого-испытателя. Дело в том, что вместо результата, который хотел получить Хайнс, обычнейшее магнитное трение превратилось в самое, что ни на есть магнитное ускорение! Таким образом возник первый современный вечный магнитный двигатель. Хайнс считает, что, вращающиеся магниты, которые формируют поле с помощью стальных проводящих ротора, а также вала действуют на электрический мотор таким образом, что происходит превращение электрической энергии в совершенно иную, кинетическую.

Варианты разработок вечных двигателей

То есть, обратная ЭДС в нашем конкретном случае еще больше ускоряет мотор, которая соответственно заставляет вращаться ротор. То есть, таким образом, возникает процесс, имеющий положительную обратную связь. Сам изобретатель подтвердил данный процесс, заменив лишь одну деталь. Стальной вал Хайнс заменил непроводящей пластиковой трубкой. Это дополнение он сделал для того, чтобы ускорение в данном примере установки не было возможным.

И, наконец, 28 января 2008 года Хайнс испытал свой прибор Технологическом Институте Массачусетса. Что самое удивительное, прибор действительно функционировал! Однако, дальнейших новостей о создании вечного двигателя не поступало. У некоторых ученых существует мнение, что это лишь блеф. Однако сколько людей, столько и мнений.

Стоит отметить, что настоящие вечные двигатели можно обнаружить и во Вселенной, не изобретая ничего самостоятельно. Дело в том, что такие явления в астрономии называют белыми дырами. Данные белые дыры являются антиподами черных дыр, тем самым они могут быть источниками бесконечной энергии. К сожалению, данное утверждение не проверено, а существует оно лишь теоретически. Что уж говорить, если существует высказывание, что и сама Вселенная- это один большой и вечный двигатель.

Таким образом, в статье мы отразили все основные мысли по поводу магнитного двигателя, который может работать без остановки. К тому же, мы узнали о его создании, о существовании его современного аналога. К тому же, в статье можно найти имена различных изобретателей разных времен, которые трудились над созданием вечного двигателя, работающего на магните. Надеемся, что вы нашли что-то полезное для себя. Удачи!

Как разоряют и убивают изобретателей двигателей на воде. Почему беЗтопливные технологии под запретом

Со времен обнаружения магнетизма идея создать вечный двигатель на магнитах не покидает самые светлые умы человечества. До сих пор так и не удалось создать механизм с коэффициентом полезного действия больше единицы, для стабильной работы которого не требовалось бы внешнего источника энергии. На самом деле концепция вечного двигателя в современном виде вовсе и не требует нарушения основных постулатов физики. Главная задача изобретателей состоит в том, чтобы максимально приблизится к стопроцентному КПД и обеспечить продолжительную работу устройства при минимальных затратах.

Реальные перспективы создания вечного двигателя на магнитах

Противники теории создания вечного двигателя говорят о невозможности нарушения закона о сохранении энергии. Действительно, нет совершенно никаких предпосылок к тому, чтобы получить энергию из ничего. С другой стороны, магнитное поле — это вовсе не пустота, а особый вид материи, плотность которого может достигать 280 кДж/м³. Именно это значение и является потенциальной энергией, которую теоретически может использовать вечный двигатель на постоянных магнитах. Несмотря на отсутствие готовых образцов в общем доступе, о возможности существования подобных устройств говорят многочисленные патенты, а также факт наличия перспективных разработок, которые остаются засекреченными еще с советских времен.

Норвежский художник Рейдар Финсруд создал свой вариант вечного двигателя на магнитах

К созданию подобных электрогенераторов приложили силы знаменитые физики-ученые: Никола Тесла, Минато, Василий Шкондин, Говард Джонсон и Николай Лазарев. Следует сразу оговориться, что создаваемые с помощью магнитов двигатели называются «вечными» условно — магнит теряет свои свойства через пару сотен лет, а вместе с ним прекратит работу и генератор.

Самые известные аналоги вечного двигателя магнитах

Многочисленные энтузиасты стараются создать вечный двигатель на магнитах своими руками по схеме, в которой вращательное движение обеспечивается взаимодействием магнитных полей. Как известно, одноименные полюса отталкиваются друг от друга. Именно этот эффект и лежит в основе практически всех подобных разработок. Грамотное использование энергии отталкивания одинаковых полюсов магнита и притяжения разноименных полюсов в замкнутом контуре позволяет обеспечить длительное безостановочное вращение установки без приложения внешней силы.

Антигравитационный магнитный двигатель Лоренца

Двигатель Лоренца можно сделать самостоятельно с использованием простых материалов

Если вы хотите собрать вечный двигатель на магнитах своими руками, то обратите внимание на разработки Лоренца. Антигравитационный магнитный двигатель его авторства считается наиболее простым в реализации. В основе этого устройства лежит использование двух дисков с разными зарядами. Их наполовину помещают в полусферический магнитный экран из сверхпроводника, который полностью выталкивает из себя магнитные поля. Такое устройство необходимо для изоляции половин дисков от внешнего магнитного поля. Запуск этого двигателя выполняется путем принудительного вращения дисков навстречу друг другу. По сути, диски в получившейся система являются парой полувитков с током, на открытые части которых будут воздействовать силы Лоренца.

Асинхронный магнитный двигатель Николы Тесла

Асинхронный «вечный» двигатель на постоянных магнитах, созданный Никола Тесла, вырабатывает электричество за счет постоянно вращающегося магнитного поля. Конструкция довольно сложная и трудно воспроизводимая в домашних условиях.

Вечный двигатель на постоянных магнитах Николы Тесла

«Тестатика» Пауля Баумана


Одна из самых известных разработок – это «тестатика» Баумана. Устройство напоминает своей конструкцией простейшую электростатическую машину с лейденскими банками. «Тестатик» состоит из пары акриловых дисков (для первых экспериментов использовались обычные музыкальные пластинки), на которые наклеены 36 узких и тонких полосок алюминия.

Кадр из документального фильма: к Тестатике подключили 1000-ваттную лампу. Слева — изобретатель Пауль Бауман

После того, как диски толкали пальцами в противоположные стороны, запущенный двигатель продолжал работать неограниченно долгое время со стабильной скоростью вращения дисков на уровне 50-70 оборотов в минуту. В электроцепи генератора Пауля Баумана удается развить напряжение до 350 вольт с силой тока до 30 Ампер. Из-за небольшой механической мощности это скорее не вечный двигатель, а генератор на магнитах.

Вакуумный триодный усилитель Свита Флойда

Сложность воспроизведения устройства Свита Флойда заключается не в его конструкции, а в технологии изготовления магнитов. В основе этого двигателя используются два ферритовых магнита с габаритами 10х15х2,5 см, а также катушки без сердечников, из которых одна является рабочей с несколькими сотнями витков, а еще две – возбуждающие. Для запуска триодного усилителя необходима простая карманная батарейка 9В. После включения устройство может работать очень долго, самостоятельно питая себя по аналогии с автогенератором. По утверждениям Свита Флойда, от работающей установки удалось получить выходное напряжение в 120 вольт с частотой 60 Гц, мощность которого достигала 1 кВт.

Роторный кольцар Лазарева

Большой популярностью пользуется схема вечного двигателя на магнитах на основе проекта Лазарева. На сегодняшний день его роторный кольцар считается устройством, реализация которая максимально близка к концепции вечного двигателя. Важное преимущество разработки Лазарева состоит в том, что даже без профильных знаний и серьезный затрат можно собрать подобный вечный двигатель на неодимовых магнитах своими руками. Такое устройство представляет собой емкость, разделенную пористой перегородкой на две части. Автор разработки использовал в качестве перегородки специальный керамический диск. В него устанавливается трубка, а в емкость заливается жидкость. Для этого оптимально подходят улетучивающиеся растворы (например, бензин), но можно использовать и простую водопроводную воду.



Механизм работы двигателя Лазарева очень просто. Сначала жидкость подается через перегородку вниз емкости. Под давлением раствор начинает подниматься по трубке. Под получившейся капельницей размещают колесо с лопастями, на которых устанавливают магниты. Под силой падающих капель колесо вращается, образуя постоянное магнитное поле. На основе этой разработки успешно создан самовращающийся магнитный электродвигатель, на которой зарегистрировало патент одно отечественное предприятие.

Мотор-колесо Шкондина

Если вы ищете интересные варианты, как сделать вечный двигатель из магнитов, то обязательно обратите внимание на разработку Шкондина. Конструкцию его линейного двигателя можно охарактеризовать как «колесо в колесе». Это простое, но в то же время производительное устройство успешно используется для велосипедов, скутеров и другого транспорта. Импульсно-инерционное мотор-колесо представляет собой объединение магнитных дорожек, параметры которых динамично изменяются путем переключения обмоток электромагнитов.

Общая схема линейного двигателя Василия Шкондина

Ключевыми элементами устройства Шкондина являются внешний ротор и статор особой конструкции: расположение 11 пар неодимовых магнитов в вечном двигателе выполнено по кругу, что образует в общей сложности 22 полюса. На роторе установлены 6 электромагнитов в форме подков, которые установлены попарно и смещены друг к другу на 120°. Между полюсами электромагнитов на роторе и между магнитами на статоре одинаковое расстояние. Изменение положения полюсов магнитов относительно друг друга приводит к созданию градиента напряженности магнитного поля, образуя крутящий момент.

Неодимовый магнит в вечном двигателе на основе конструкции проекта Шкондина имеет ключевое значение. Когда электромагнит проходит через оси неодимовых магнитов, то образуется магнитный полюс, который является одноименным по отношению к преодоленному полюсу и противоположным по отношению к полюсу следующего магнита. Получается, что электромагнит всегда отталкивается от предыдущего магнита и притягивается к следующему. Такие воздействия и обеспечивают вращение обода. Обесточивание элетромагнита при достижении оси магнита на статоре обеспечивается размещением в этой точке токосъемника.

Житель г.Пущино Василий Шкондин изобрел не вечный двигатель, а высокоэффективные мотор-колёса для транспорта и генераторы электроэнергии.

Коэффициент полезного действия двигателя Шкондина составляет 83%. Конечно, это пока еще не полностью энергонезависимый вечный двигатель на неодимовых магнитах, но очень серьезный и убедительный шаг в правильном направлении. Благодаря особенностям конструкции устройства на холостом ходу удается вернуть часть энергии батареям (функция рекуперации).

Вечный двигатель Перендева

Альтернативный движок высокого качества, производящий энергию исключительно за счет магнитов. База — статичный и динамичный круги, на которых в задуманном порядке располагается несколько магнитов. Между ними возникает самооталкивающая сила, из-за которой и возникает вращение подвижного круга. Такой вечный двигатель считают очень выгодным в эксплуатации.



Вечный магнитный двигатель Перендева

Существует и множество других ЭМД, схожих по принципу действия и конструкции. Все они еще несовершенны, поскольку не способны долгое время функционировать без каких-либо внешних импульсов. Поэтому работа над созданием вечных генераторов не прекращается.

Как сделать вечный двигатель с помощью магнитов своими руками

Понадобится:

  • 3 вала
  • Диск из люцита диаметром 4 дюйма
  • 2 люцитовых диска диаметром 2 дюйма
  • 12 магнитов
  • Алюминиевый брусок

Валы прочно соединяются между собой. Причем один лежит горизонтально, а два другие расположены по краям. К центральному валу крепится большой диск. Остальные присоединяются к боковым. На дисках располагаются — 8 в середине и по 4 по бокам. Алюминиевый брусок служит основанием для конструкции. Он же обеспечивает и ускорение устройства.

Недостатки ЭМД

Планируя активно использовать подобные генераторы, следует соблюдать осторожность. Дело в том, что постоянная близость магнитного поля приводит к ухудшению самочувствия. К тому же для нормального функционирования устройства необходимо обеспечить ему специальные условия работы. Например, защитить от воздействия внешних факторов. Итоговая стоимость готовых конструкций получается высокой, а вырабатываемая энергия слишком мала. Поэтому и выгода от использования подобных конструкций сомнительна.

Экспериментируйте и создавайте собственные версии вечного двигателя. Все варианты разработок вечных двигателей продолжают совершенствоваться энтузиастами, а в сети можно обнаружить множество примеров реально достигнутых успехов. Интернет-магазин «Мир Магнитов» предлагает вам выгодно купить неодимовые магниты и своими руками собрать различные устройства, в которых бы шестеренки безостановочно крутились благодаря воздействиям сил отталкивания и притяжения магнитных полей. Выбирайте в представленном каталоге изделия с подходящими характеристиками (размеры, форма, мощность) и оформляйте заказ.

С давних пор многие ученые и изобретатели мечтали построить так называемый . Работа над этим вопросом не прекращается и в настоящее время. Основным толчком к исследованиям в данной области послужил надвигающийся топливный и энергетический кризис, который вполне может стать реальностью. Поэтому, уже в течение длительного времени разрабатывается такой вариант, как магнитный двигатель, схема которого основана на индивидуальных свойствах постоянных магнитов. Здесь главной движущей силой выступает энергия магнитного поля. Все ученые, инженеры и конструкторы, занимающиеся этой проблемой, видят основную цель в получении электрической, механической и прочих видов энергии за счет использования магнитных свойств.

Следует отметить, что все подобные изыскания проводятся, в основном, теоретически. На практике такой двигатель еще не создан, хотя определенные результаты уже имеются. Уже разработаны общие направления, позволяющие понять принцип работы этого устройства.

Из чего состоит магнитный двигатель

Конструкция магнитного двигателя коренным образом отличается от обыкновенного электрического мотора, где главной движущей силой является электрический ток.

Магнитный двигатель функционирует исключительно за счет постоянной энергии магнитов, приводящей в движение все части и детали механизма. Стандартная конструкция агрегата состоит из трех основных деталей. Кроме самого двигателя, здесь имеется статор, на который устанавливается электромагнит, а также, ротор, на котором размещается постоянный магнит.

Вместе с двигателем, на один и тот же вал, производится установка электромеханического генератора. Кроме того, весь агрегат оборудован статическим электромагнитом. Он выполнен в виде кольцевого магнитопровода, в котором вырезается сегмент или дуга. Электромагнит дополнительно оборудован . К ней производится подключение электронного коммутатора, с помощью которого обеспечивается реверсивный ток. Регулировка всех процессов осуществляется электронным коммутатором.

Принцип работы магнитного двигателя

В первых моделях применялись железные части, на которые должен был оказывать влияние магнит. Однако, чтобы вернуть такую деталь в исходное положение, нужно затратить столько же энергии.

Для решения этой проблемы был использован медный проводник с пропущенным по нему электрическим током, который мог притягиваться к магниту. При отключении тока, взаимодействие между проводником и магнитом прекращалось. В результате проведенных исследований была обнаружена прямая пропорциональная зависимость силы воздействия магнита от его мощности. Поэтому, при постоянном электрическом токе в проводнике и увеличивающейся силе магнита, воздействие этой силы на проводник также будет расти. С помощью повышенной силы будет вырабатываться ток, который, в свою очередь, будет проходить через проводник.

На этом принципе был разработан более совершенный магнитный двигатель, схема которого включает все основные этапы его работы. Его пуск производится электротоком, поступающим в индуктивную катушку. При этом, расположение полюсов постоянного магнита перпендикулярно к вырезанному зазору в электромагните. Возникает полярность, в результате которой начинается вращение постоянного магнита, установленного на роторе. Его полюса начинают притягиваться к электромагнитным полюсам с противоположным значением.

При совпадении разноименных полюсов, происходит выключение тока в катушке. Ротор, под действием собственного веса, вместе с проходит за счет инерции эту точку совпадения. Одновременно, в катушке изменяется направление тока, и полюса в очередном рабочем цикле принимают одноименное значение. Происходит отталкивание полюсов, заставляющее ротор дополнительно ускоряться.

Вечный двигатель на магнитах своими руками (схема)

Что такое вечный двигатель

Если говорить о том, что такое вообще вечный двигатель, то все основные определения сводятся к тому, что это воображаемое устройство, которое работает неограниченно долго. А самое главное, у него должен быть КПД более 100%. То есть количество выдаваемой им энергии должно быть больше, чем та, которую он потребляет для работы. Это вечный двигатель первого рода.

На латыни вечный двигатель будет Perpetuum Mobile


Есть еще понятие вечного двигатель второго рода. Такой механизм должен получать тепло от одного резервуара и полностью превращать его в работу. Такой тип вечного двигателя невозможен по определению, так как это противоречит первому и второму закону термодинамики.

Может показаться, что космос в некотором роде можно назвать системой вечного двигателя, но это тоже не так. Светила рано или поздно погаснут, а планеты, спутники и галактики, которые движутся в пространстве, только кажутся вечными. На самом деле они постепенно рассеивают свою кинетическую энергию за счет сопротивления солнечного ветра, притяжения других объектов, теплового излучения и даже гравитационных волн.

Эта штука миллиарды лет крутится сама по себе, но она не может считаться вечным двигателем.

В космосе это почти незаметно, так как расстояние и размеры тел огромны, а силы сопротивления минимальны, но потеря энергии все равно есть. Проще говоря, если дать нашей планете бесконечное количество времени вращения, исключив изменения остальных факторов, рано или поздно она просто остановится. На самом деле все немного сложнее и в реальности ее притянет к Солнцу, но суть вы поняли.

Рев двигателей и комендантский час: как SpaceX вынудила жителей Техаса продать свои дома

Можно сказать, что двигатель тоже рано или поздно остановится, если дать ему бесконечно много времени (все равно мы не проверим), но именно для этого и есть требование, что вечный двигатель должен производить больше энергии, чем потреблять. Даже если он будет вырабатывать на ничтожную долю процента больше энергии, чем заберет, он сам сможет обеспечить себя ”топливом”.

Немного юмора на тему вечного двигателя. Вот он!

«Магнитный двигатель» № 34826

Генератор на неодимовых магнитах. вечный двигатель на неодимовых магнитах

Я тоже являюсь автором одного из патентов с постоянными магнитами,
идея зародилась ещё в детстве, но воплощение произошло только в 2003
году. При оформлении своего двигателя я использовал прототип «Двигатель
на постоянных магнитах» (патент России № 2177201), но есть более схожий
прототип «Постоянное устройство преобразования движения магнита» патента
Джона Эклина (патент США № 3879622 от 22.04.75 г.). Мой патент
называется «Магнитный двигатель» № 34826.

В отличие от большинства других изобретателей, я пошёл немного другим
путём — применил ферромагнитный экран между магнитами. В данном
двигателе используется способность магнитного поля быть изолированным с
помощью ферромагнитного экрана.

Элементарный детский опыт: если к магниту прислонить стальную
пластинку, то за пластинкой уже отсутствует магнитное поле. Только
пластинка должна быть достаточно толстой, чтобы экранировать поле.
Вторая хитрость: из физики мы знаем, да и из жизни тоже, что если сила,
приложенная к телу, перпендикулярна перемещению тела, то эта сила не
производит работы при данном перемещении.

Отсюда
следует вывод: если мы будем перемещать в магнитном поле ферромагнитный
экран, перпендикулярно силовым линиям магнитного поля, то магнитное
поле не производит работу сопротивления перемещению экрана. В то же
время, экран, перекрыв всю поперечную площадь магнита, позволит поднести
второй отталкивающийся магнит без преодоления сил магнитного
отталкивания. Даже наоборот, второй магнит ещё и притянется к экрану.
Если же вывести экран между магнитами, то магниты разлетаются в стороны.

Осталось придумать такую схему конструкции, чтобы перемещения узлов
могли влиять друг на друга. Если измерить вредную работу на перемещение
экрана и полезную работу перемещения магнитов, то образуется
положительная разница работ, которую и можно использовать как постоянный
источник дополнительной энергии.

Сейчас стали появляться новые материалы с выдающимися
характеристиками (пиролитический углерод, оксид кобальта), которые
позволят в будущем заменить ферромагнитный экран на антиферромагнитный
или диамагнитный, что сильно снизит вредную работу и повысит
производительность этого двигателя.

Генератор Перендева

Генератор Перендева

Еще одним неоднозначным примером действия магнитных сил является самовращающийся магнитный двигатель Перендев. Его создатель Майк Брэди, до того, как в его отношении начали уголовное производство, даже успел обзавестись патентом, создать одноименную фирму (Перендев) и поставить дело на поток. Если анализировать представленную в патенте схему и принцип, или чертежи самодельных эл. двигателей, то ротор и статор имеют форму диска и внешнего кольца. На них по кольцевой траектории размещают отдельные магниты, соблюдая определенный угол относительно центральной оси. За счет взаимодействия поля отдельных магнитов статора и ротора Перендев, возникает момент и происходит их взаимное перемещение (вращение). Расчет цепи магнитов сводится к определению угла расхождения.

Вторичные двигатели

Электродвигатели

Схема стабилизатора напряжения 220в своими руками

В 1834 году русский учёный Борис Семёнович Якоби (так писалось его имя в русской транскрипции) создал первый пригодный для практического использования электродвигатель постоянного тока.

В 1888 году сербский студент и будущий великий изобретатель Никола Тесла высказал принцип построения двухфазных двигателей переменного тока, а год спустя русский инженер Михаил Осипович Доливо-Добровольский создал первый в мире 3-фазный асинхронный электродвигатель, ставший наиболее распространённой электрической машиной.

Пневмодвигатели и гидромашины

Пневмодвигатели и гидромашины, соответственно, работают от сетей (баллонов) высокого давления воздуха или жидкости преобразуя гидравлическую (пневматическую) энергию насосов. Их широко применяют в качестве исполнительных механизмов в различных устройствах и системах. Так, созданы пневмолокомотивы (особенно пригодны для работ во взрывоопасных условиях, например в шахтах, где тепловые двигатели не применимы из-за температурных условий, а электрические — из-за искр при коммутации), с помощью гидромашин осуществляется привод гусениц в некоторых типах тракторов и танков, перемещение рабочих органов бульдозеров и экскаваторов. Всё разнообразнее конструкции экологически чистых городских автомобилях на пневмоприводах, предлагаемых инженерами разных стран. Вторичные двигатели играют большую роль в технике, однако их мощность относительно невелика. Их также широко применяют и в миниатюрных и сверхминиатюрных устройствах.

Экологичные японские мотоциклы

Схема шим-регулятора яркости светодиодов для сборки своими руками

Самым старым магнитным двигателем, о котором известно широкому кругу,
является магнитный двигатель «Perendev». Он, как всё гениальное, имеет
простую и понятную конструкцию. Используя внешнее качественное
изготовление и своё первенство, авторы умудрились даже найти покупателей
на свои двигатели. Используемый в Японии магнитный двигатель Минато изначально
номинировался как экономичный электрический двигатель с постоянными
магнитами, он не входит в число автономных («вечных») двигателей. Сейчас
на его базе в Японии производят экологичные гибридные мотоциклы.

Вариации
магнитных двигателей так многообразны, что это отдельная тема,
требующая большего объёма и времени для рассмотрения. Следует отметить,
что магнитные двигатели в России имеют патенты не на «Изобретение», а на
«Полезную модель».

Соответственно, запатентованы просто идеи, не
имеющие возможности практической реализации, которые, может быть,
никогда не смогут осуществиться по техническим или научным причинам.

Что такое магнитный двигатель

Все вечные двигатели можно разделить на 2 вида:

  1. Первые;
  2. Вторые.

Что касается первых, они представляют собой по большей мере плод фантазий писателей фантастов, но вторые – вполне реальные. Первый вид подобных двигателей извлекает энергию из пустого места, но второй, получает ее из магнитного поля, ветра, воды, солнца и т.д.

Магнитные поля не только активно изучают, но и пытаются использовать их в качестве «топлива» для вечного силового агрегата. Причем многие из ученых разных эпох добивались значительных успехов. Среди известных фамилий, можно отметить следующие:

  • Николай Лазарев;
  • Майк Брэди;
  • Говард Джонсон;
  • Кохеи Минато;
  • Никола Тесла.

Особенное внимание уделялось именно постоянным магнитам, которые могут восстанавливать энергию в прямом смысле из воздуха (мирового эфира). Несмотря на то, что каких-то полноценных объяснений природы постоянных магнитов на данный момент нет, человечество двигается в правильном направлении

На данный момент, есть несколько вариантов линейных силовых агрегатов, что имеют отличия по своей технологии и схеме сборки, но работают на основе одинаковых принципов:

  1. Работают благодаря энергии магнитных полей.
  2. Импульсного действия с возможностью контроля и дополнительного источника питания.
  3. Технологии, которые совмещают в себе принципы обоих силовых агрегатов.

Мнение учёных: создание бестопливного генератора невозможно

Новые разработки инновационных бестопливных двигателей получили оригинальные наименования и стали обещанием революционных перспектив в будущем. Создатели генераторов сообщали о первых успехах на ранних этапах тестирования. Несмотря на это, в научной среде до сих пор скептически относятся к идее бестопливных двигателей, и многие учёные высказывают свои сомнения на этот счёт. Одним из противников и главных скептиков является учёный из Калифорнийского университета, физик и математик Фил Плейт.

Учёные из противоборствующего лагеря придерживаются мнения о том, что сама концепция двигателя, не требующего для работы топлива, противоречит классическим законам физики. Баланс сил внутри двигателя должен сохраняться всё то время, что создаётся тяга внутри него, а согласно закону импульса, такое невозможно без использования горючего. Фил Плейт не раз отмечал, что для ведения разговоров о создании подобного генератора придётся опровергнуть весь закон сохранения импульса, что нереально сделать. Проще говоря, для создания бестопливного двигателя требуется революционный прорыв в фундаментальной науке, а уровень современных технологий не оставляет и шанса на то, чтобы сама концепция генератора такого типа рассматривалась всерьёз.

На аналогичное мнение наводит и общая ситуация, касающаяся подобного типа двигателя. Рабочей модели генератора на сегодняшний день не существует, а теоретические выкладки и характеристики экспериментального устройства не несут никакой существенной информации. Проведённые замеры показали, что тяга составляет порядка 16 миллиньютонов. При следующих измерениях данный показатель увеличился до 50 миллиньютонов.

Британец Роджер Шоер ещё в 2003 году представил экспериментальную модель бестопливного двигателя EmDrive, разработчиком которой он и являлся. Для создания микроволн генератору требовалось электричество, добываемое посредством использования солнечной энергии. Данная разработка вновь всколыхнула в научной среде разговоры о вечном двигателе.

Разработка учёных была неоднозначно оценена в NASA. Специалисты отметили уникальность, инновационность и оригинальность конструкции двигателя, но при этом утверждали, что добиться значимых результатов и эффективной работы можно только в том случае, если генератор будет эксплуатироваться в условиях квантового вакуума.

Принцип работы магнитного двигателя

Сейчас существует понятие, что вечные двигатели могут быть первого и второго вида. К первому относятся устройства, производящие самостоятельно энергию – как бы из воздуха, а вот второй вариант – двигатели, получающие эту энергию извне, в ее качестве выступает вода, солнечные лучи, ветер, а затем устройство преобразовывает полученную энергию в электричество. Если рассматривать законы термодинамики, то каждая из этих теорий практически неосуществима, однако с подобным утверждением совершенно не согласны некоторые ученые. Именно они начали разрабатывать вечные двигатели, относящиеся ко второму типу, работающие на получаемой от магнитного поля энергии.

Разрабатывали подобный «вечный двигатель» множество ученых, причем во разное время. Если рассматривать конкретнее, то наибольший вклад в такое дело, как развитие теории создания магнитного двигателя совершили Василий Шкондин, Николай Лазарев, Никола Тесла. Помимо них хорошо известны разработки Перендева, Минато, Говарда Джонсона, Лоренца.

Все они доказывали, что силы, заключенные в постоянных магнитах, имеют огромную, постоянно возобновляемую энергию, которая пополняется из мирового эфира. Тем не менее, суть работы постоянных магнитов, а также их действительно аномальную энергетику никто на планете до сих пор не изучил. Именно поэтому так никто не смог пока достаточно эффективно применить магнитное поле для того, чтобы получить действительно полезную энергию.

Сейчас еще никто не смог создать полноценного магнитного двигателя, однако существует достаточное количество весьма правдоподобных устройств, мифов и теорий, даже вполне обоснованных научных работ, которые посвящены разработке магнитного двигателя. Всем известно, что для сдвига притянутых постоянных магнитов требуется значительно меньше усилий, нежели для того, чтобы их оторвать один от другого. Именно это явление чаще всего используется, чтобы создать настоящий «вечный» линейный двигатель на основе магнитной энергии.

Как самостоятельно собрать подобный двигатель

Подобные самоделки пользуются неизменным спросом, о чем свидетельствуют практически все форумы электриков. Из-за этого следует подробнее рассмотреть, каким же образом можно самостоятельно собрать дома работающий магнитный двигатель.

То приспособление, которое сейчас мы вместе попробуем сконструировать, будет состоять из соединенных трех валов, причем они должны скрепляться так, чтобы центральный вал был прямо повернут к боковым. По центру среднего вала необходимо прикрепить диск, изготовленный из люцита и имеющий диаметр около десяти сантиметров, а его толщина составляет немногим больше одного сантиметра. Наружные валы также должны оснащаться дисками, но уже вдвое меньшего диаметра. На этих дисках закрепляются небольшие магниты. Из них восемь штук крепят на диск большего диаметра, а на маленькие — по четыре.

При этом ось, где расположены отдельные магниты, должна располагаться параллельно плоскости валов. Их устанавливают так, чтобы концы магнитов проходили с минутным проблеском возле колес. Когда эти колеса приводятся руками в движение, то полюсы магнитной оси станут синхронизироваться. Чтобы получить ускорение настоятельно рекомендуется в основании системы установить брусок из алюминия так, чтобы конец его немного соприкасался с магнитными деталями. Выполнив подобные манипуляции, можно будет получить конструкцию, которая будет вращаться, выполняя полный оборот за две секунды.

При этом приводы необходимо устанавливать определенным образом, когда все валы будут вращать относительно других аналогично. Естественно, когда выполнить на систему сторонним предметом тормозящее воздействие, то она прекратит вращение. Именно такой вечный двигатель на магнитной основе впервые изобрел Бауман, однако у него не получилось запатентовать изобретение, поскольку в то время устройство относилось к той категории разработок, на которые патент не выдавался.

Этот магнитный двигатель интересен тем, что совершенно не нуждается во внешних энергетических затратах. Только магнитное поле вызывает вращение механизма. Из-за этого стоит попробовать самостоятельно соорудить вариант подобного устройства.

Для выполнения эксперимента потребуется заготовить:

  • диск, изготовленный из оргстекла;
  • двухсторонний скотч;
  • заготовку, выточенную из шпинделя, а затем закрепленную на стальном корпусе;
  • магниты.

На заготовку из оргстекла в виде диска по всему периметру требуется наклеить с помощью двухстороннего скотча кусочки магнита. Располагать их необходимо наружу сточенными краями. При этом следует обязательно проследить, чтобы все сточенные края каждого магнита обязательно имели одностороннее направление.

В результате полученный диск, на котором расположены магниты, необходимо закрепить на шпинделе, а затем проверить, насколько свободно он будет вращаться, чтобы не допустить ни малейшего цепляния. Когда к выполненной конструкции поднести маленький магнит, аналогичный тем, которые уже наклеены на оргстекло, то ничего не должно измениться. Хотя если попробовать сам диск немного покрутить, то станет заметен небольшой эффект, хотя и весьма незначительный.

Теперь следует поднести больший размерами магнит и понаблюдать, как изменится ситуация. При подкручивании рукой диска механизм останавливается все равно в промежутке, имеющемся между магнитами.

Когда взять только половинку магнита, который поднести к изготовленному механизму, зрительно видно, что после легкого подкручивания он немного продолжает движение из-за воздействия слабого магнитного поля. Осталось проверить, каким будет наблюдаться вращение, если поочередно убирать магнитики с диска, делая между ними большие промежутки. И этот эксперимент обречен на фиаско — диск неизменно будет останавливаться точно в магнитных промежутках.

Проведя длительные исследования, каждый сможет воочию убедиться, что подобным образом не получится изготовить магнитный двигатель. Следует поэкспериментировать с иными вариантами.

Применение низкочастотных преобразователей

Низкочастотные преобразователи в двигателях способны эксплуатироваться только вместе с хроматическими резисторами. Приобрести их можно в любом магазине электроники. Пластину для них следует подбирать толщиной не более 1,2 мм

Также важно учитывать, что низкочастотные преобразователи довольно требовательны к температуре окружающей среды

Увеличить кулоновские силы в сложившейся ситуации получится за счет установки стабилитрона. Крепить его следует за диском, чтобы не произошла волновая индукция

Дополнительно важно позаботиться об изоляции преобразователя. В некоторых случаях он приводит к инерционным сбоям

Все это происходит за счет изменения внешней холодной среды.

Принцип действия вечного магнитного движителя

Большинство современных эл. двигателей используют принцип трансформации эл. тока в механическое вращение ротора, а вместе с ним и приводного вала. Это значит, что любой расчет покажет КПД меньше 100%, а сам агрегат является зависимым, а не автономным. Та же ситуация наблюдается в случае генерирующего устройства. Здесь уже момент вращения вала, которое происходит за счет тепловой, ядерной, кинетической или потенциальной энергии движения среды, приводит к выработке электрического тока на коллекторных пластинах.

Статор представляет собой условно пластину из экранируемого материала, на которую по кольцевой траектории крепят постоянные магниты, например, неодимовые. Их полюса расположены перпендикулярно по отношению к полюсам дискового магнита и ротора. В результате, когда статор приближается к ротору на определенное расстояние, возникает поочередное притяжение, отталкивание в магнитном поле, которое формирует момент затем перерастает во вращение шарика по кольцевой траектории (дорожке). Пуск и остановка происходят за счет приближения или отдаления статора с магнитами. Этот вечный двигатель на постоянных магнитах будет работать до тех пор, пока они не размагнитятся. Расчет ведется относительно размера коридора, диаметров шарика, пластины статора, а также цепи управления на реле или катушках индуктивности.

На подобном принципе действия было разработано немало моделей действующих образцов, например, синхронных двигателей, генераторов. Наиболее известными среди них являются двигатели на магнитной тяге Тесла, Минато, Перендев, Говарда Джонсона, Лазарева, а также линейные, униполярные, роторные, цилиндровые и т. д.

Рассмотрим каждый из примеров подробнее.

Заключение

Магнитомеханическое явление, заключающееся в необходимости применять действительно незначительные усилия, чтобы сдвигать магниты, если сравнивать с попыткой их отрыва, использовано повсеместно для создания, так называемого, «вечного» линейного магнитного мотора-генератора.

Многие верят, что очень скоро наступит время, когда мощную энергию человечество сможет получать без использования газа и нефтепродуктов. На самом деле гигаватты электроэнергии, которая будет совершенно бесплатной, можно получать, если руководствоваться только магнетизмом, законами электростатики, силы тяготения и постулатами Архимеда. опубликовано econet.ru 

Оцените статью:

электродвигатель | Определение, типы и факты

трехфазный асинхронный двигатель

Посмотреть все СМИ

Ключевые сотрудники:
Никола Тесла
Томас Давенпорт
Ипполит Фонтейн
Майкл Фарадей
Похожие темы:
синхронный двигатель
линейный двигатель
коммутатор
ротор
статор

См. всю связанную информацию →

электродвигатель , любой из классов устройств, преобразующих электрическую энергию в механическую, обычно с использованием электромагнитных явлений.

Большинство электродвигателей развивают свой механический крутящий момент за счет взаимодействия проводников, несущих ток, в направлении, перпендикулярном магнитному полю. Различные типы электродвигателей различаются способами расположения проводников и поля, а также управлением, которое может осуществляться над механическим выходным крутящим моментом, скоростью и положением. Большинство основных видов описаны ниже.

Простейший тип асинхронного двигателя показан в поперечном сечении на рисунке. Трехфазный набор обмоток статора вставлен в пазы в железе статора. Эти обмотки могут быть соединены либо по схеме «звезда», обычно без внешнего соединения с нейтральной точкой, либо по схеме «треугольник». Ротор состоит из цилиндрического железного сердечника с проводниками, размещенными в пазах по всей поверхности. В наиболее обычной форме эти проводники ротора соединены друг с другом на каждом конце ротора проводящим концевым кольцом.

Основу работы асинхронного двигателя можно разработать, если сначала предположить, что обмотки статора подключены к трехфазному источнику электропитания и что в обмотках статора протекает набор из трех синусоидальных токов формы, показанной на рисунке. На этом рисунке показано влияние этих токов на создание магнитного поля в воздушном зазоре машины в течение шести мгновений цикла. Для простоты показана только центральная петля проводника для каждой фазной обмотки. В данный момент t 1 на рисунке ток в фазе a является максимальным положительным, а в фазах b и c вдвое меньше отрицательного значения. Результатом является магнитное поле с примерно синусоидальным распределением вокруг воздушного зазора с максимальным значением наружу вверху и максимальным значением внутрь внизу. В момент времени t 2 на рисунке (т. е. на одну шестую цикла позже) ток в фазе c максимален, а в обеих фазах b и фазы a имеют положительное значение половины значения. Результат, как показано для t 2 на рисунке, снова представляет собой синусоидально распределенное магнитное поле, но повернутое на 60° против часовой стрелки. Изучение распределения тока для t 3 , t 4 , t 5 и t 5 и t 6 показывает, что магнитное поле продолжает вращаться во времени. Поле совершает один оборот за один цикл токов статора. Таким образом, совместное действие трех равных синусоидальных токов, равномерно смещенных во времени и протекающих по трем равномерно смещенным по угловому положению статорным обмоткам, должно создавать вращающееся магнитное поле с постоянной величиной и механической угловой скоростью, зависящей от частоты электроснабжение.

Викторина «Британника»

Электричество: короткие замыкания и постоянные токи

В чем разница между электрическим проводником и изолятором? Кто изобрел аккумулятор? Почувствуйте, как ваши клетки горят, пока вы перезаряжаете свою умственную батарею, отвечая на вопросы этой викторины.

Вращательное движение магнитного поля по отношению к проводникам ротора вызывает индуцирование в каждом из них напряжения, пропорционального величине и скорости поля относительно проводников. Поскольку проводники ротора замкнуты накоротко друг с другом на каждом конце, эффект будет заключаться в том, что в этих проводниках будут протекать токи. В простейшем режиме работы эти токи будут примерно равны наведенному напряжению, деленному на сопротивление проводника. Картина токов ротора на момент t 1 рисунка показан на этом рисунке. Видно, что токи примерно синусоидально распределены по периферии ротора и расположены так, чтобы создавать крутящий момент против часовой стрелки на роторе (т. е. крутящий момент в том же направлении, что и вращение поля). Этот крутящий момент ускоряет ротор и вращает механическую нагрузку. По мере увеличения скорости вращения ротора его скорость относительно скорости вращающегося поля уменьшается. Таким образом, индуцированное напряжение уменьшается, что приводит к пропорциональному уменьшению тока проводника ротора и крутящего момента. Скорость ротора достигает устойчивого значения, когда крутящий момент, создаваемый токами ротора, равен крутящему моменту, требуемому при этой скорости нагрузкой, без избыточного крутящего момента, доступного для ускорения объединенной инерции нагрузки и двигателя.

Механическая выходная мощность должна обеспечиваться входной электрической мощностью. Первоначальных токов статора, показанных на рисунке, как раз достаточно для создания вращающегося магнитного поля. Чтобы поддерживать это вращающееся поле при наличии токов ротора на рисунке, необходимо, чтобы обмотки статора несли дополнительную составляющую синусоидального тока такой величины и фазы, чтобы нейтрализовать влияние магнитного поля, которое в противном случае возникло бы. токами ротора на рисунке. Тогда общий ток статора в каждой фазной обмотке представляет собой сумму синусоидальной составляющей, создающей магнитное поле, и другой синусоиды, опережающей первую на четверть цикла, или 90°, чтобы обеспечить требуемую электрическую мощность. Вторая, или силовая, составляющая тока находится в фазе с напряжением, приложенным к статору, в то время как первая, или намагничивающая, составляющая отстает от приложенного напряжения на четверть периода или 90°. При номинальной нагрузке эта составляющая намагничивания обычно находится в диапазоне от 0,4 до 0,6 величины составляющей мощности.

Оформите подписку Britannica Premium и получите доступ к эксклюзивному контенту.
Подпишитесь сейчас

Большинство трехфазных асинхронных двигателей работают с обмотками статора, подключенными непосредственно к трехфазной сети постоянного напряжения и постоянной частоты. Типичное линейное напряжение питания находится в диапазоне от 230 вольт между фазами для двигателей относительно малой мощности (например, от 0,5 до 50 киловатт) до около 15 киловольт между фазами для мощных двигателей мощностью до 10 мегаватт.

За исключением небольшого падения напряжения на сопротивлении обмотки статора, напряжение питания согласовано со скоростью изменения во времени магнитного потока в статоре машины. Таким образом, при питании с постоянной частотой и постоянным напряжением величина вращающегося магнитного поля поддерживается постоянной, а крутящий момент примерно пропорционален силовой составляющей тока питания.

В асинхронном двигателе, показанном на предыдущих рисунках, магнитное поле совершает один оборот за каждый цикл частоты питания. При частоте питания 60 Гц скорость поля составляет 60 оборотов в секунду или 3600 оборотов в минуту. Скорость ротора меньше скорости поля на величину, достаточную, чтобы индуцировать требуемое напряжение в проводниках ротора для создания тока ротора, необходимого для крутящего момента нагрузки. При полной нагрузке скорость обычно на 0,5–5 % ниже рабочей скорости (часто называемой синхронной скоростью), при этом более высокий процент применяется к двигателям меньшего размера. Эту разницу в скорости часто называют скольжением.

Другие синхронные скорости можно получить с источником постоянной частоты, создав машину с большим количеством пар магнитных полюсов, в отличие от двухполюсной конструкции, показанной на рисунке. Возможные значения скорости магнитного поля в оборотах в минуту: 120 f / p , где f — частота в герцах (циклов в секунду), а p — число полюсов (которое должно быть четное число). Данную железную раму можно намотать для любого из нескольких возможных чисел пар полюсов, используя катушки, которые охватывают угол приблизительно (360/ р )°. Крутящий момент, доступный от корпуса машины, останется неизменным, так как он пропорционален произведению магнитного поля и допустимого тока катушки. Таким образом, номинальная мощность рамы, являющаяся произведением крутящего момента и скорости, будет примерно обратно пропорциональна количеству пар полюсов. Наиболее распространенные синхронные скорости для 60-герцовых двигателей составляют 1800 и 1200 оборотов в минуту.

Как работают электродвигатели?

Щелкни выключателем и получи мгновенную силу — как бы это понравилось нашим предкам
электродвигатели! Вы можете найти их во всем, от
электропоезда на дистанционном управлении
автомобили — и вы можете быть удивлены, насколько они распространены. Сколько электрических
моторы сейчас с тобой в комнате? Есть, наверное, два
в компе для начала крутится один твой хард
ездить и еще один питание вентилятора охлаждения. Если
вы сидите в спальне, вы найдете моторы в фенах и многих
игрушки; в ванной — в вытяжках и электробритвах;
на кухне моторы есть практически в каждом приборе, от стиральных и посудомоечных машин до кофемолок, микроволновых печей и электрических консервных ножей.
Электродвигатели зарекомендовали себя как одни из лучших
изобретения всех времен. Давайте разберем некоторые и узнаем, как они
Работа!

Фото: Даже маленькие электродвигатели на удивление тяжелые.
Это потому, что они набиты плотно намотанной медью и тяжелыми магнитами.
Это двигатель от старой электрической газонокосилки. Медно-красная штука в сторону
Перед осью с прорезями в ней находится коллектор, удерживающий двигатель.
вращение в том же направлении (как описано ниже).

Содержание

  1. Как электромагнетизм заставляет двигатель двигаться?
  2. Правило левой руки Флеминга
  3. Как работает электродвигатель — теория
  4. Как работает электродвигатель на практике
  5. Универсальные двигатели
  6. Электродвигатели прочие
  7. Узнать больше

Как электромагнетизм заставляет двигатель двигаться?

Основная идея электродвигателя очень проста: вы подаете в него электричество с одного конца, а
ось
(металлический стержень) вращается на другом конце, давая вам возможность управлять
машина какая-то. Как это работает на практике? Как именно
ваш
преобразовать электричество в движение? Чтобы найти ответ на этот вопрос, мы
вернуться в прошлое почти на 200 лет.

Предположим, вы берете отрезок обычной проволоки, делаете из нее большую петлю,
и положить его между полюсами мощной, постоянной подковы
магнит.
Теперь, если вы подключите два конца провода к батарее,
провод будет прыгать
кратко. Удивительно, когда ты видишь это впервые. Это
прямо как по волшебству! Но есть совершенно научная
объяснение. Когда
электрический ток начинает ползти по проводу, он создает
магнитное поле вокруг него. Если разместить провод рядом с постоянным
магнит, это временное магнитное поле взаимодействует с постоянным
поле магнита. Вы узнаете, что два магнита, расположенные рядом друг с другом
либо притягивать, либо отталкивать. Точно так же временный магнетизм
вокруг провода притягивает или отталкивает постоянный магнетизм от
магнит, и это то, что заставляет провод прыгать.

Правило левой руки Флеминга

Вы можете определить направление, в котором будет прыгать провод, используя
удобная мнемоника (помощь памяти), называемая правилом левой руки Флеминга (иногда
называется моторным правилом).

Вытяните большой, указательный и указательный пальцы левой
стороны, так что все три находятся под прямым углом. Если ты укажешь вторым пальцем
в направлении Течения
(который течет от положительного к
отрицательный полюс аккумулятора), и первый
палец в
направление поля (которое
течет от северного к южному полюсу
магнит), ваш большой палец будет
показать направление, в котором провод
Движения.

Это…

  • Первый палец = Поле
  • Второй палец = Текущий
  • ThuMb = Движение

Несколько слов о токе

Если вас смущает то, что я говорю, что ток течет от плюса к минусу,
это просто историческая условность. Такие люди, как Бенджамин Франклин, который помог выяснить
тайну электричества еще в 18 веке считали потоком положительных зарядов,
так что это перетекло от положительного к отрицательному. Мы называем эту идею обычным током.
и до сих пор используют его в таких вещах, как правило левой руки Флеминга. Теперь у нас есть лучшие идеи о том, как
электричество работает, мы склонны говорить о токе как о потоке электронов, от отрицательного к положительному, в противоположное направление условного тока. Когда вы пытаетесь вычислить вращение двигателя или генератора,
обязательно помните, что ток означает обычный ток , а не поток электронов.

Принцип работы электродвигателя — теория

Связь между электричеством, магнетизмом и движением была первоначально
открыт в 1820 году французским физиком Андре-Мари.
Ампер
(1775–1867), и это фундаментальная наука, лежащая в основе электродвигателя. Но если
мы хотим превратить это удивительное научное открытие в более практическое
немного технологии для питания наших электрических косилок и зубных щеток, мы должны пойти немного дальше. Изобретателями, сделавшими это, были англичане Майкл Фарадей (179 г.1–1867)
и Уильям Стерджен (1783–1850) и американец
Джозеф Генри (1797–1878). Вот как они
пришли к своему гениальному изобретению.

Предположим, мы сгибаем нашу проволоку в квадратную U-образную петлю, чтобы
эффективно
два параллельных провода, проходящих через магнитное поле. Один из них
отводит от нас электрический ток по проводу и другому
один возвращает ток обратно. Поскольку ток течет в
противоположных направлениях в проводах, правило левой руки Флеминга говорит нам, что
два провода будут двигаться в противоположных направлениях. Другими словами, когда мы
включите электричество, один из проводов поднимется вверх и
другой будет двигаться вниз.

Если бы катушка проволоки могла двигаться вот так, она бы вращалась
непрерывно — и мы были бы на пути к созданию электрического
мотор. Но этого не может случиться с нашей нынешней установкой: провода будут
быстро запутаться. Не только это, но если бы катушка могла вращаться далеко
достаточно, что-то еще случилось бы. Как только катушка достигла вертикали
положение, он перевернулся бы, поэтому электрический ток
протекать через него в обратном направлении. Теперь силы на каждом
сторона катушки перевернута. Вместо непрерывного вращения в
в том же направлении, он будет двигаться в том же направлении, в котором только что пришел!
Представьте электропоезд с таким двигателем: он будет держать
шаркая взад и вперед на месте, даже не двигаясь
в любом месте.

Фото: Электрик ремонтирует электродвигатель
на борту авианосца.
Блестящий металл, который он использует, может выглядеть как золото.
но на самом деле это медь,
хороший проводник, который намного дешевле. Фото Джейсона Якобовица предоставлено
ВМС США.

Как работает электродвигатель на практике

Есть два способа решить эту проблему. Один из них заключается в использовании своего рода
электрический ток, который периодически меняет направление, известное
как переменный ток (АС).
В виде небольшого, на батарейках
двигатели, которые мы используем дома, лучшим решением будет добавить компонент
называется коммутатором
концы катушки. (Не беспокойтесь о бессмысленных технических
имя: это немного старомодное слово «коммутация» немного похоже на
слово «коммутировать». Это просто означает переход туда и обратно в одном и том же
таким образом, что коммутировать означает путешествовать туда и обратно.) В своей простейшей форме
коммутатор представляет собой металлическое кольцо, разделенное на две отдельные половины и
его работа заключается в изменении направления электрического тока в катушке каждый раз, когда
катушка поворачивается на пол-оборота. Один конец катушки присоединен к
каждой половине коммутатора. Электрический ток от аккумулятора
подключается к электрическим клеммам двигателя.
Они подают электроэнергию в коммутатор через пару свободных
разъемы, называемые щетками,
сделанный
либо из кусочков графита (мягкий углерод, похожий на карандашный
«свинец») или тонкие отрезки упругого металла,
который (как
название предполагает) «кисть» против коммутатора. С
коммутатор на месте, когда электричество течет по цепи,
катушка будет постоянно вращаться в одном и том же направлении.

Работа: Упрощенная схема частей электрического
мотор. Анимация: как это работает на практике. Обратите внимание, как коммутатор меняет направление тока каждый раз, когда катушка поворачивается.
наполовину. Это означает, что сила на каждой стороне катушки всегда
толкая в том же направлении, что заставляет катушку вращаться по часовой стрелке.

Такой простой экспериментальный двигатель не способен
много силы. Мы можем увеличить вращающую силу (или крутящий момент)
что
двигатель можно создать тремя способами: либо мы можем иметь более
мощный постоянный магнит, или мы можем увеличить электрический ток
течет по проводу, или мы можем сделать катушку, чтобы у нее было много
«витки» (петли) очень тонкой проволоки вместо одного «витка» толстой проволоки.
На практике двигатель также имеет постоянный магнит, изогнутый в виде дуги.
круглой формы, так что он почти касается катушки проволоки, которая вращается
внутри него. Чем ближе друг к другу магнит и катушка, тем
большее усилие, которое может создать двигатель.

Несмотря на то, что мы описали ряд различных деталей, вы можете представить двигатель состоящим всего из двух основных компонентов:

  • По краю корпуса двигателя находится постоянный магнит (или магниты), который остается неподвижным, поэтому он называется статором двигателя.
  • Внутри статора есть катушка, установленная на оси, которая вращается с высокой скоростью, и это называется ротором. Ротор также включает в себя коллектор.

Универсальные двигатели

9Такие двигатели постоянного тока 0002 отлично подходят для игрушек с батарейным питанием (таких как модели поездов, радиоуправляемых автомобилей или электробритв), но вы не найдете их во многих бытовых приборах. Мелкие бытовые приборы (например, кофемолки или электрические блендеры) обычно используют так называемые универсальные двигатели , которые могут питаться как от переменного, так и от постоянного тока. В отличие от простого двигателя постоянного тока, универсальный двигатель имеет электромагнит вместо постоянного магнита, и он получает питание от постоянного или переменного тока, который вы подаете:

  • При подаче постоянного тока электромагнит работает как обычный постоянный магнит и создает магнитное поле, направленное всегда в одном направлении. Коммутатор меняет направление тока катушки каждый раз, когда катушка переворачивается, как в простом двигателе постоянного тока, поэтому катушка всегда вращается в одном направлении.
  • Однако, когда вы подаете переменный ток, ток, протекающий через электромагнит, и ток, протекающий через катушку , оба меняются местами, точно в шаге, поэтому сила на катушке всегда в одном направлении, и двигатель всегда вращается по часовой стрелке. или против часовой стрелки. Что с коммутатором? Частота тока изменяется намного быстрее, чем вращается двигатель, и, поскольку поле и ток всегда синхронизированы, на самом деле не имеет значения, в каком положении находится коммутатор в любой данный момент.

Анимация: Как работает универсальный двигатель: Электропитание питает как магнитное поле, так и вращающуюся катушку. С питанием постоянного тока универсальный двигатель работает так же, как и обычный двигатель постоянного тока, как указано выше. При питании переменным током как магнитное поле, так и ток катушки меняют направление каждый раз, когда ток питания меняется на противоположное. Это означает, что сила на катушке всегда направлена ​​в одну сторону.

Фото: Внутри типичного универсального двигателя: Основные детали внутри среднего двигателя от кофемолки, который может работать как от постоянного, так и от переменного тока. Серый электромагнит по краю — это статор (статическая часть), питающийся от катушек оранжевого цвета. Обратите также внимание на прорези в коллекторе и упирающиеся в него угольные щетки, которые обеспечивают питание ротора (вращающейся части). Асинхронные двигатели в таких вещах, как электропоезда, во много раз больше и мощнее, чем этот, и всегда работают с использованием переменного тока высокого напряжения (AC) вместо постоянного тока низкого напряжения (DC) или переменного тока умеренно низкого напряжения. который питает универсальные двигатели.

Другие виды электродвигателей

Фото: Электродвигатели бывают всех форм и размеров. В этом школьном автобусе есть
заменили старый грязный дизельный двигатель на большой электродвигатель
(белая рамка) для уменьшения загрязнения воздуха.
Фото Денниса Шредера предоставлено
NREL (Национальная лаборатория возобновляемых источников энергии).

В простых двигателях постоянного тока и универсальных двигателях ротор вращается внутри статора. Ротор представляет собой катушку, подключенную к источнику электропитания, а статор представляет собой постоянный магнит или электромагнит. Большие двигатели переменного тока (используемые в таких вещах, как фабричные машины) работают немного по-другому: они пропускают переменный ток через противоположные пары магнитов для создания вращающегося магнитного поля, которое «индуцирует» (создает) магнитное поле в роторе двигателя, вызывая это вращаться вокруг. Подробнее об этом можно прочитать в нашей статье об асинхронных двигателях переменного тока. Если вы возьмете один из этих асинхронных двигателей и «развернете» его, так что статор будет эффективно выложен в длинную непрерывную дорожку, ротор сможет катиться по ней по прямой линии. Эта гениальная конструкция известна как линейный двигатель, и вы найдете ее в таких вещах, как заводские машины и плавучие железные дороги «маглев» (магнитная левитация).

Еще одна интересная конструкция — бесщеточный двигатель постоянного тока (BLDC). Статор и ротор эффективно меняются местами, с несколькими статичными железными катушками в центре и постоянным магнитом, вращающимся вокруг них, а коммутатор и щетки заменяются электронной схемой. Вы можете прочитать больше в нашей основной статье о ступичных двигателях.
Шаговые двигатели, которые поворачиваются на точно контролируемые углы, являются разновидностью бесщеточных двигателей постоянного тока.

Узнайте больше

Похожие статьи на нашем сайте

  • Батарейки
  • Электроника
  • История электричества
  • Двигатели
  • Ступичные двигатели
  • Асинхронные двигатели
  • Линейные двигатели
  • Шаговые двигатели

Книги

Для младших читателей
  • Электричество для молодых мастеров: веселые и простые проекты «Сделай сам» Марка де Винка. Maker Media, 2017. Увлекательное практическое введение в базовые проекты в области электричества, в том числе три из них связаны со сборкой электродвигателей.
  • Electric Mischief: гаджеты на батарейках, которые дети могут собрать, Алан Бартоломью. Отпечатки лап, 2008.
Для читателей старшего возраста
  • Электродвигатели и приводы: основы, типы и применение Остина Хьюза и Билла Друри, Newnes (Elsevier), 2019.
  • Управление электродвигателем, Санг-Хун Ким, Elsevier, 2017.
  • Практическое руководство по электродвигателям Ирвинга Готтлиба, Newnes (Elsevier), 1997.

Артикул

  • 200 лет назад Фарадей изобрел электродвигатель: после того, как Фарадей опубликовал свои результаты, его наставник Эллисон Марш обвинила его в плагиате. IEEE Spectrum, 27 августа 2021 г. Увлекательная история изобретения Фарадея и последствий, которые оно вызвало.
  • Новый электродвигатель может повысить эффективность электромобилей, скутеров и ветряных турбин Лоуренса Ульриха. IEEE Spectrum, 19 августа 2019 г. Двигатели с высоким крутящим моментом — ключ к нашему быстрому электрическому будущему.
  • «Как распечатать электродвигатель» Карла Бугеи. IEEE Spectrum, 24 августа 2018 г. Можно ли «напечатать» двигатель так же, как вы делаете печатную плату?
  • Заткнись о батареях: ключ к лучшему электромобилю — более легкий двигатель Мартин Доппельбауэр и Патрик Винцер. IEEE Spectrum, 22 июня 2017 г. Немецкие инженеры считают, что лучшие двигатели, а не лучшие аккумуляторы, являются ключом к завтрашнему всепобеждающему электромобилю.
  • Power and Electric Motors Ретта Аллена. Wired, ноябрь 2011 г. Почему электродвигатели потребляют гораздо больше энергии, когда они только запускаются?

Занятия

Вот несколько безопасных и простых занятий по сборке моторов, которые вы можете попробовать сами. В порядке сложности первый — это простой винтовой двигатель; последний представляет собой полноценный коллекторный двигатель постоянного тока.

  • Как сделать простейший электродвигатель от Windell Oskay. Evil Mad Scientist, 7 августа 2006 г. Можно ли сделать мотор из батарейки, винта, магнита и полоски проволоки?
  • Очень простой винтовой двигатель, разработанный доктором Джонатаном Хэйром, Creative Science Center. Еще одно описание винтового двигателя.
  • Собери простой электродвигатель !: Science Buddies, 16 октября 2017 г. Более сложный двигатель с вращающейся катушкой.
  • Соберите простой двигатель постоянного тока со щетками и коллектором.
    (короткая версия) и «Создание двигателя постоянного тока шаг за шагом» (пошаговая версия) Тима Каллинана. Как сделать дешевый и простой коллекторный двигатель постоянного тока из бытовых материалов примерно за 5 долларов.

Патенты

Патенты являются отличным источником подробной технической информации и чертежей. Вот некоторые из них, которые я откопал из базы данных USPTO:

  • Электродвигатель Ганса Э. Ницше, 13 апреля 1925 г. Типичный ранний двигатель постоянного тока, предназначенный для питания от низковольтных батарей.
  • Электродвигатель постоянного тока

  • Масаюки Ёкояма и др., Mitsubishi Electric Corporation, 1 июня 2010 г. Двигатель с увеличенным сроком службы и улучшенной конструкцией коллектора.
  • Электродвигатель постоянного тока с высоким крутящим моментом и системой одновременной зарядки аккумулятора. Автор Уилсон А. Бертис, 26, 19 августа.97. Мощный двигатель, который может эффективно заряжать батареи электромобиля во время движения.

Понимание двигателей с постоянными магнитами | Техника управления

Управление скоростью двигателей переменного тока в большинстве случаев осуществляется с помощью частотно-регулируемого привода (ЧРП). Хотя многие сценарии предполагают использование частотно-регулируемых приводов с асинхронными двигателями с обмотками статора для создания вращающегося магнитного поля, они также могут обеспечить точное управление скоростью, используя датчики обратной связи по скорости или положению в качестве эталона для частотно-регулируемого привода.

В некоторых ситуациях можно получить сравнительно точное управление скоростью без использования датчиков обратной связи. Это стало возможным благодаря двигателю с постоянными магнитами (PM) и процессу, называемому «метод подачи высокочастотного сигнала».

Асинхронные машины

Асинхронная машина переменного тока (АД) также обычно называется двигателем переменного тока. Вращающееся поле создается обмоткой статора. Вращающееся поле индуцирует ток в стержнях ротора. Генерация тока требует разницы скоростей между ротором и магнитным полем. Взаимодействие между полем и током создает движущую силу. Поэтому асинхронные машины переменного тока являются преобладающими двигателями, управляемыми приводами с регулируемой скоростью.

Двигатели с постоянными магнитами

Двигатель с постоянными магнитами — это двигатель переменного тока, в котором используются магниты, встроенные или прикрепленные к поверхности ротора двигателя. Магниты используются для создания постоянного потока двигателя вместо того, чтобы требовать, чтобы поле статора генерировало его путем связи с ротором, как в случае с асинхронным двигателем. Четвертый двигатель, известный как двигатель с постоянными магнитами с линейным пуском (LSPM), сочетает в себе характеристики обоих двигателей. Двигатель LSPM включает в себя магниты двигателя с постоянными магнитами внутри ротора и стержни ротора двигателя с короткозамкнутым ротором, чтобы максимизировать крутящий момент и эффективность (см. Таблицу 1).

Поток, потокосцепление и магнитный поток

Чтобы понять работу двигателей с постоянными магнитами, важно сначала понять понятия магнитного потока, потокосцепления и магнитного потока.

Поток: Протекание тока через проводник создает магнитное поле. Поток определяет скорость потока свойства на единицу площади. Ток потока — это скорость тока, протекающего через заданную площадь поперечного сечения проводника.

Потокосцепление: Потокосцепление возникает, когда магнитное поле взаимодействует с материалом, как это происходит, когда магнитное поле проходит через катушку с проводом. Потокосцепление определяется количеством витков и потоком, где ϕ используется для обозначения мгновенного значения изменяющегося во времени потока. Потокосцепление определяется следующим уравнением:

Магнитный поток: Магнитный поток определяется как скорость магнитного поля, протекающего через заданную площадь поперечного сечения проводника. Поле магнитного потока создается постоянным магнитом внутри или на поверхности двигателя с постоянными магнитами.

Катушка индуктивности: Катушка индуктивности представляет собой элемент цепи, состоящий из проводящего провода, обычно в форме катушки. Проводник, по которому течет постоянный ток, будет генерировать постоянное магнитное поле. Можно показать, что магнитное поле и ток, который его создал, связаны линейной зависимостью. Изменение магнитного поля индуцирует напряжение в близлежащем проводнике, пропорциональное скорости изменения тока, создавшего магнитное поле. Напряжение в проводнике определяется следующим уравнением:

 

Индуктивность: Индуктивность (L) — это константа пропорциональности, которая определяет отношение между напряжениями, индуцированными скоростью изменения тока во времени, которое создает магнитное поле. Проще говоря, индуктивность — это потокосцепление на единицу тока. Следует пояснить, что индуктивность является пассивным элементом и является чисто геометрическим свойством. Индуктивность измеряется в Генри (Гн) или вебер-витках на ампер.

Ось d и ось q: В геометрических терминах оси «d» и «q» представляют собой однофазные представления потока, вносимого тремя отдельными синусоидальными фазовыми величинами при одной и той же угловой скорости. Ось d, также известная как прямая ось, представляет собой ось, по которой поток создается обмоткой возбуждения. Ось q или квадратурная ось — это ось, на которой создается крутящий момент. По соглашению, квадратурная ось всегда электрически опережает прямую ось на 90 градусов. Проще говоря, ось d является основным направлением потока, а ось q является основным направлением создания крутящего момента.

Магнитная проницаемость: В электромагнетизме проницаемость — это мера способности материала поддерживать формирование магнитного поля внутри себя. Следовательно, это степень намагниченности, которую материал приобретает в ответ на приложенное магнитное поле.

Эквивалентная схема двигателя с постоянными магнитами: Двигатель с постоянными магнитами может быть представлен несколькими различными моделями двигателей. Одним из наиболее распространенных методов является модель двигателя d-q.

Индуктивность двигателя с постоянными магнитами по осям d и q: Индуктивности по осям d и q представляют собой индуктивности, измеряемые при прохождении потока через ротор относительно магнитного полюса. Индуктивность по оси d представляет собой индуктивность, измеренную при прохождении потока через магнитные полюса. Индуктивность по оси q является мерой индуктивности, когда поток проходит между магнитными полюсами.

В асинхронной машине потокосцепление ротора будет одинаковым между осью d и осью q. Однако в машине с постоянным магнитом магнит уменьшает доступное железо для потокосцепления. Проницаемость магнита близка к воздухопроницаемости. Поэтому магнит можно рассматривать как воздушный зазор. Магнит находится на пути потока, когда он проходит через ось d. Путь потока, проходящий через ось q, не пересекает магнит. Следовательно, больше железа может быть связано с путем потока по оси q, что приводит к большей индуктивности. Двигатель со встроенным магнитом будет иметь большую индуктивность по оси q, чем индуктивность по оси d. Двигатель с магнитами для поверхностного монтажа будет иметь почти одинаковые индуктивности по осям q и d, потому что магниты находятся вне ротора и не ограничивают количество железа, связанного полем статора.

Магнитная заметность: Важность или значимость — это состояние или качество, благодаря которому что-то выделяется по сравнению с соседями. Магнитная заметность описывает взаимосвязь между индуктивностью основного потока ротора (ось d) и индуктивностью основного потока (ось q). Магнитная заметность изменяется в зависимости от положения ротора по отношению к полю статора, где максимальная заметность возникает при 90 электрических градусах от оси основного потока (ось d) (см. Рисунок 1).

Ток возбуждения: Ток возбуждения — это «ток в обмотках статора, необходимый для создания магнитного потока в сердечнике ротора». В машинах с постоянными магнитами не требуется ток возбуждения в обмотке статора, потому что магниты двигателя с постоянными магнитами уже создают постоянное магнитное поле.

Вторичный ток: Вторичный ток, также известный как «ток, создающий крутящий момент», представляет собой ток, необходимый для создания крутящего момента двигателя. В машине с постоянными магнитами токи, создающие крутящий момент, составляют большую часть потребляемого тока.

Втягивающий ток: В отличие от согласованного набора усилителя и сервопривода, предназначенного для управления движением, обычный ЧРП не имеет информации о положении магнитного полюса ротора двигателя. Без знания положения магнитного полюса в статоре невозможно создать поле для максимального создания крутящего момента. Таким образом, частотно-регулируемый привод может обеспечивать постоянное напряжение, чтобы зафиксировать магнитное поле в известном положении. Потребляемый ток, необходимый для втягивания ротора, называется «ток втягивания».

Высокочастотная инжекция: Высокочастотная инжекция — это метод инвертора, используемый для определения положения магнитного полюса двигателя с постоянными магнитами. Метод начинается с того, что инвертор подает высокочастотный низковольтный сигнал в двигатель на произвольной оси. Затем инвертор меняет угол возбуждения и контролирует ток.

В зависимости от угла впрыска сопротивление ротора меняется. Импеданс клемм двигателя с внутренними постоянными магнитами (IPM) уменьшается, когда ось подачи высокочастотного сигнала и ось магнитного полюса (ось d) совпадают, т. е. при 0 град. Импеданс максимален при ±90 град. Используя эту характеристику, привод может определять положение ротора без импульсных энкодеров, подавая высокочастотное переменное напряжение/ток на двигатель IPM. Кроме того, метод подачи высокочастотного сигнала можно использовать для определения скорости в области низких скоростей, где обычно управление крутящим моментом при полной нагрузке очень затруднено из-за слишком низкого уровня напряжения противо-ЭДС двигателя.

Форма сигнала обратной ЭДС

ПротивоЭДС — это сокращение от противоэлектродвижущей силы, но также известное как противоэлектродвижущая сила. Обратная электродвижущая сила — это напряжение, возникающее в электродвигателях при относительном движении между обмотками статора и магнитным полем ротора. Геометрические свойства ротора определяют форму волны обратной ЭДС. Эти формы волны могут быть синусоидальными, трапециевидными, треугольными или чем-то средним между ними.

И асинхронные машины, и машины с постоянными магнитами генерируют сигналы обратной ЭДС. В асинхронной машине форма волны обратной ЭДС будет затухать по мере медленного затухания остаточного поля ротора из-за отсутствия поля статора. Однако в машине с ПМ ротор генерирует собственное магнитное поле. Следовательно, в обмотках статора может индуцироваться напряжение всякий раз, когда ротор находится в движении. Напряжение противо-ЭДС будет расти линейно со скоростью и является решающим фактором при определении максимальной рабочей скорости.

Понимание крутящего момента машины с постоянными магнитами

Крутящий момент электрической машины можно разбить на две составляющие: магнитный момент и момент сопротивления. Момент сопротивления — это «сила, действующая на магнитный материал, которая стремится выровняться с основным потоком, чтобы минимизировать сопротивление». Другими словами, реактивный крутящий момент — это крутящий момент, создаваемый выравниванием вала ротора с магнитным полем статора. Магнитный момент — это «крутящий момент, создаваемый взаимодействием между магнитным полем магнита и током в обмотке статора».

Момент сопротивления: Момент сопротивления относится к крутящему моменту, создаваемому выравниванием ротора, который возникает, когда магнитное поле создает желаемый прямой поток от северного полюса статора к южному полюсу статора.

Магнитный момент: Постоянные магниты создают магнитное поле в роторе. Статор создает поле, которое взаимодействует с магнитным полем ротора. Изменение положения поля статора по отношению к полю ротора вызывает смещение ротора. Сдвиг из-за этого взаимодействия представляет собой магнитный момент.

SPM и IPM

Электродвигатели с постоянными магнитами можно разделить на две основные категории: двигатели с поверхностными постоянными магнитами (SPM) и двигатели с внутренними постоянными магнитами (IPM) (см. рис. 3). Ни один из типов конструкции двигателя не содержит стержней ротора. Оба типа генерируют магнитный поток постоянными магнитами, прикрепленными к ротору или внутри него.

Двигатели SPM имеют магниты, прикрепленные к внешней поверхности ротора. Из-за такого механического крепления их механическая прочность ниже, чем у двигателей IPM. Ослабленная механическая прочность ограничивает максимальную безопасную механическую скорость двигателя. Кроме того, эти двигатели имеют очень ограниченную магнитную заметность (L д ≈ L q ). Значения индуктивности, измеренные на выводах ротора, постоянны независимо от положения ротора. Из-за отношения заметности, близкого к единице, конструкции двигателей SPM в значительной степени, если не полностью, зависят от магнитной составляющей крутящего момента для создания крутящего момента.

Двигатели IPM имеют постоянный магнит, встроенный в сам ротор. В отличие от их аналогов SPM, расположение постоянных магнитов делает двигатели IPM очень надежными с механической точки зрения и подходящими для работы на очень высоких скоростях. Эти двигатели также отличаются относительно высоким коэффициентом значимости магнитного поля (L q > L d ). Из-за своей магнитной заметности двигатель IPM может генерировать крутящий момент, используя преимущества как магнитной, так и реактивной составляющих крутящего момента двигателя (см. Рисунок 4).

Моторные конструкции PM

Моторные конструкции PM можно разделить на две категории: внутренние и поверхностные. Каждая категория имеет свое подмножество категорий. Поверхностный двигатель с постоянными магнитами может иметь свои магниты на поверхности ротора или быть вставленным в него, чтобы повысить надежность конструкции. Расположение и конструкция внутреннего двигателя с постоянными магнитами могут сильно различаться. Магниты двигателя IPM можно вставлять в виде большого блока или располагать в шахматном порядке по мере приближения к сердечнику. Другой метод заключается в том, чтобы встроить их в узор со спицами.

Изменение индуктивности двигателя с постоянными магнитами в зависимости от нагрузки

Только определенное количество потока может быть связано с куском железа для создания крутящего момента. В конце концов, железо насыщается и больше не позволяет флюсу связываться. Результатом является уменьшение индуктивности пути, пройденного полем потока. В машине с постоянными магнитами значения индуктивности по осям d и q будут уменьшаться с увеличением тока нагрузки.

Индуктивности осей d и q двигателя SPM почти идентичны. Поскольку магнит находится вне ротора, индуктивность по оси q будет падать с той же скоростью, что и индуктивность по оси d. Однако индуктивность двигателя IPM будет уменьшаться по-разному. Опять же, индуктивность по оси d, естественно, ниже, потому что магнит находится на пути потока и не создает индуктивного свойства. Следовательно, по оси d насыщается меньше железа, что приводит к значительно меньшему уменьшению потока по отношению к оси q.

Ослабление/усиление потока двигателей с постоянными магнитами

Поток в двигателе с постоянными магнитами создается магнитами. Поле потока следует по определенному пути, который можно усиливать или противодействовать. Повышение или усиление поля потока позволит двигателю временно увеличить выработку крутящего момента. Противодействие полю потока сведет на нет существующее магнитное поле двигателя. Уменьшенное магнитное поле ограничит создание крутящего момента, но уменьшит напряжение противо-ЭДС. Уменьшенное напряжение противо-ЭДС высвобождает напряжение, чтобы подтолкнуть двигатель к работе на более высоких выходных скоростях. Оба типа работы требуют дополнительного тока двигателя. Направление тока двигателя по оси d, заданное контроллером двигателя, определяет желаемый эффект.

Угол возбуждения

Угол возбуждения — это угол, под которым векторная сумма сигналов по осям d и q подается на двигатель относительно оси d. Ось d всегда рассматривается как место, где находится магнит. Максимальный магнитный поток достигается на оси q, которая находится на расстоянии 90 электрических градусов от оси d. Поэтому в большинстве эталонов угла возбуждения уже учитывается разница в 90 градусов от оси d к оси q.

Фазовый угол и крутящий момент

Магнитный момент максимален, когда поле статора возбуждает ротор двигателя под углом 90 электрических градусов от оси d (положение магнита двигателя). Момент нежелания следует по другому пути и достигает максимума на 45 электрических градусов за осью q. Максимальный магнитный момент использует как магнитное сопротивление двигателя, так и магнитный момент. Дальнейшее смещение от оси q уменьшает магнитный крутящий момент, но его значительно перевешивает усиление реактивного момента. Максимальный комбинированный магнитный и реактивный момент возникает около 45 электрических градусов от оси q, но точный угол будет варьироваться в зависимости от характеристик двигателя с постоянными магнитами.

Плотность мощности двигателя с постоянными магнитами

Мощность двигателя с постоянными магнитами зависит от конфигурации магнитов двигателя и результирующей заметности двигателя. Двигатели с высоким коэффициентом значимости (Lq > Ld) могут повысить КПД двигателя и выработку крутящего момента за счет включения реактивного крутящего момента двигателя. Инвертор можно использовать для изменения угла возбуждения относительно оси d, чтобы максимизировать как реактивный момент, так и магнитный момент двигателя.

Типы магнитов двигателей с постоянными магнитами

В настоящее время для электродвигателей используется несколько типов материалов для постоянных магнитов. Каждый вид металла имеет свои преимущества и недостатки.

Размагничивание постоянным магнитом

Постоянные магниты едва ли являются постоянными и имеют ограниченные возможности. На эти материалы можно воздействовать определенными силами, чтобы размагнитить их. Другими словами, можно удалить магнитные свойства материала постоянного магнита. Вещество с постоянными магнитами может размагнититься, если материал подвергается значительной деформации, нагреванию до значительных значений или подвергается воздействию сильных электрических помех.

Во-первых, натяжение постоянного магнита обычно осуществляется физическими средствами. Магнитный материал может размагнититься, если не ослабнуть, если подвергнется сильным ударам/падениям. Ферромагнитный материал обладает присущим ему магнитным свойством. Однако эти магнитные свойства могут излучать в любом множестве направлений. Одним из способов намагничивания ферромагнитных материалов является приложение к материалу сильного магнитного поля для выравнивания его магнитных диполей. Выравнивание этих диполей направляет магнитное поле материала в определенную ванну. Сильное воздействие может нарушить выравнивание атомов магнитных доменов материала, что ослабит силу предполагаемого магнитного поля.

Во-вторых, температура также может влиять на постоянный магнит. Температуры заставляют магнитные частицы в постоянном магните волноваться. Магнитные диполи способны выдерживать некоторое тепловое возбуждение. Однако длительное перемешивание может ослабить силу магнита, даже если он хранится при комнатной температуре. Кроме того, все магнитные материалы имеют порог, известный как «температура Кюри», который представляет собой порог, определяющий температуру, при которой тепловое возбуждение приводит к полному размагничиванию материала. Такие термины, как коэрцитивная сила и удерживающая способность, используются для определения способности магнитного материала сохранять прочность.

Наконец, сильные электрические помехи могут привести к размагничиванию постоянного магнита. Эти электрические помехи могут быть вызваны взаимодействием материала с сильным магнитным полем или прохождением через материал большого тока. Точно так же, как сильное магнитное поле или ток можно использовать для выравнивания магнитных диполей материала, другое сильное магнитное поле или ток, приложенный к полю, создаваемому постоянным магнитом, может привести к размагничиванию.

Самоопределение в сравнении с работой в замкнутом контуре

Последние достижения в технологии приводов позволяют стандартным приводам переменного тока «самообнаруживать» и отслеживать положение магнита двигателя. Система с обратной связью обычно использует канал z-pulse для оптимизации производительности. С помощью определенных процедур привод узнает точное положение магнита двигателя, отслеживая каналы A/B и корректируя ошибки с помощью z-канала. Знание точного положения магнита позволяет создать оптимальный крутящий момент, что приведет к оптимальной эффективности.

Серводвигатели

Серводвигатели — это двигатели с постоянными магнитами, используемые для управления движением. Как правило, в конструкции двигателя с внутренними / внутренними постоянными магнитами эти двигатели работают в паре со специальным усилителем как часть согласованного набора для достижения максимальной производительности. Усилитель был точно настроен производителем на двигатель с постоянными магнитами для достижения оптимальной производительности. Конфигурация усилителя движения/сервопривода обычно использует обратную связь двигателя, которая также обеспечивает обратную связь по положению магнитного полюса и скорости.

Кристофер Яшолт () — специалист по управлению приводами в компании Yaskawa America Inc. Он имеет более чем девятилетний опыт работы в области управления движением. Помимо своей нынешней должности, Ящольт работал инженером технической поддержки и инженером по применению. Он имеет степень бакалавра наук Университета Северного Иллинойса, ДеКалб, Иллинойс.

. Эта статья опубликована в приложении Applied Automation к Control Engineering
и Plant Engineering.

Есть ли у вас опыт и знания по темам, упомянутым в этом содержании? Вам следует подумать о том, чтобы внести свой вклад в нашу редакционную команду CFE Media и получить признание, которого вы и ваша компания заслуживаете. Нажмите здесь, чтобы начать этот процесс.

Постоянный магнит против асинхронного двигателя: крутящий момент, потери, материал

Поскольку электрификация автомобилей продолжается ускоренными темпами, многие задаются вопросом, какой тип двигателя лучше всего подходит для современной электрической трансмиссии.

Это может быть трехфазный асинхронный двигатель или двигатель с постоянными магнитами? Оба двигателя в настоящее время используются в электромобилях. Оба обеспечивают высокую эффективность и надежную работу. Но что лучше?

Существует веский аргумент в пользу того, что двигатель с постоянными магнитами превосходит асинхронный двигатель. Неотъемлемые преимущества порошковой металлургии — потенциал для повышения производительности двигателя и снижения общей стоимости — могут быть эффективным инструментом в производстве этих приводных систем.

Давайте проведем несколько сравнений эффективности асинхронных двигателей и двигателей с постоянными магнитами, чтобы увидеть их преимущества и потенциальные недостатки:

  • Стоимость
  • КПД — крутящий момент, потери в сердечнике, управление частотой и скоростью двигателя
  • Материальные возможности
  • Использование

Мелкие детали конструкции электродвигателя более сложны, чем описано ниже, но это отличный старт для тех, кто взвешивает усовершенствование конструкции:

Двигатель с постоянными магнитами и асинхронный двигатель Эффективность

Как следует из названия, в двигателе EV с постоянными магнитами на роторе используются постоянные магниты (см. рисунок ниже). Переменный ток, подаваемый на статор, приводит во вращение ротор. Поскольку магниты намагничены постоянно, ротор может работать синхронно с переменным током переключения. Проскальзывание, необходимое в асинхронных двигателях, устранено, повышает вашу тепловую эффективность.

Присущий КПД двигателя с постоянными магнитами выше, чем у асинхронного двигателя. Оба двигателя имеют трехфазную конструкцию благодаря полностью оптимизированной производительности. Однако асинхронные двигатели были разработаны для работы в основном на частоте 60 Гц. По мере увеличения частоты в высокочастотных асинхронных двигателях потери на вихревые токи будут намного больше, чем в хорошо сделанных двигателях с постоянными магнитами.

Конструкция бесщеточных двигателей с постоянными магнитами обеспечивает удельную мощность (крутящий момент) в 2-3 раза выше, чем у асинхронных двигателей, при меньших потерях в сердечнике примерно на 50 %. Независимо от того, как вы изгибаете или формируете асинхронный двигатель, хорошо спроектированный синхронный двигатель с постоянными магнитами обеспечит увеличенный диапазон, лучшую производительность и так далее.

Материалы для двигателей с постоянными магнитами

В случае с постоянными магнитами ротор теперь может представлять собой сплошную деталь, изготовленную, например, из магнитного материала порошковой металлургии методом прессования и спекания. Вы можете спроектировать ротор таким образом, чтобы магниты были приклеены к внешнему диаметру или заключены внутри ротора, как показано ниже:

( Сравнение конструкции асинхронного двигателя переменного тока и двигателя с постоянными магнитами)

Он не обязательно должен быть изготовлен из пластин из электротехнической стали! Ротор из порошкового металла может иметь пазы, которые вы видите на изображении выше, разработанные с использованием сетчатой ​​формы порошкового металла, что устраняет необходимость в дорогостоящей механической обработке. Используя спеченный магнитомягкий материал, ротор из порошкового металла для двигателя с постоянными магнитами может достичь прочности, аналогичной конкурирующим процессам.

Материал ротора для асинхронных двигателей, однако, по-прежнему состоит из пластин из штампованной электротехнической стали. Процесс штамповки приводит к гораздо большему количеству брака, чем при порошковой металлургии, а потери в сердечнике увеличиваются по мере того, как вы укладываете больше листов.

Использование постоянных магнитов в двигателях

Постоянный двигатель мощностью 50 кВт (около 70 л.с.) обычно весит менее 30 фунтов. (Обратите внимание, что вам по-прежнему потребуется преобразователь постоянного тока в переменный, чтобы генерировать достаточное напряжение и частоту.)

Использование двигателей с постоянными магнитами в автомобильной промышленности включает Chevy Volt (в настоящее время снято с производства), Chevy Bolt и растущее число Teslas:.

  • Модель Chevy Bolt представляет собой двигатель мощностью 200 л.с. с магнитами внутри ротора. В нем используется односкоростной редуктор 7,05: 1 для привода колес. Никаких оценок веса в открытом доступе нет.
  • Tesla Model 3 также использует двигатель с постоянными магнитами с магнитами, расположенными в массиве Хальбаха. Этот массив фокусирует магнитные линии потока для оптимизации эквивалента MPG.
  • Более крупные автомобили Tesla, Model S и Model X , переключили свои меньшие передние двигатели на постоянные магниты, увидев впечатляющий запас хода Model 3. Эти модели используют передний привод во время движения и полный привод при ускорении и при низкой тяге.

Зачем переделывать только передние двигатели? Асинхронные двигатели по-прежнему производят большую мощность благодаря отличному контролю магнитных полей. Однако при малой мощности управление скоростью синхронных двигателей с постоянными магнитами более эффективно.

Скорость двигателя с постоянными магнитами такая же, как и у его асинхронного аналога:

  • Ns = 120 * частота / число полюсов

(Ns — синхронная скорость. Количество полюсов — это общее количество полюсов на фазу, включая северный и южный полюса.)

Помните, что ротор не будет проскальзывать относительно рабочей частоты статора.

Стоимость vs. Производительность

Одним из основных соображений при выборе двигателей с постоянными магнитами является стоимость магнитов. Если вы использовали высокоэнергетические магниты (например, железо-неодим-бор), вы почувствовали боль в своем бюджете (или ваш босс). Возможные потери при штамповке материала для ламинирования только усугубляют проблему.

Возможности для порошковой металлургии изобилуют этими типами двигателей. Роторы двигателя с постоянными магнитами могут быть изготовлены из спеченного порошкового металла, независимо от того, какой метод проектирования вы выбрали: внутренний или внешний. Статор также может быть изготовлен из магнитомягких композитов. При ожидаемых высоких частотах переключения потери в СМК ниже, чем в ламинированном 3% кремниевом железе, для дальнейшего повышения эффективности этой конструкции. Проще говоря, магнитомягкие композиты созданы специально для высоких частот.

Металлический порошок может повысить эффективность двигателя с постоянными магнитами по сравнению с асинхронным двигателем. Возможности трехмерного формообразования в порошковой металлургии позволяют формировать статор так, чтобы вся проволока была полностью заключена в магнитомягкий композит, чтобы исключить потери на конце витка. .

Это лишь некоторые из многих преимуществ, которые предлагает порошковый металл — как спеченные магнитомягкие материалы, так и SMC.

(Связанный ресурс: кривая эффективности двигателя с постоянными магнитами по сравнению с асинхронными двигателями. Эта диаграмма производительности была разработана при частоте сети около 60 Гц. По мере повышения частоты ожидается дальнейшее улучшение производительности. )

Приведенное выше обсуждение сосредоточился на рассмотрении двигателей с постоянными магнитами, использующих конструкцию статора, аналогичную конструкции асинхронного двигателя переменного тока. Тем не менее, было сделано крупное усовершенствование в конструкции двигателей нового типа , в которых также используются постоянные магниты для повышения эффективности электродвигателей.

Компания Linear Labs, например, разработала новый высокоэффективный синхронный двигатель с постоянными магнитами. Это устраняет некоторые из дорогих редкоземельных магнитов, с которыми вы застряли в течение многих лет.

Мы думаем, что будущее за двигателями с постоянными магнитами. Для полноты картины давайте рассмотрим конструкцию асинхронного двигателя, которую в настоящее время используют 90% инженеров.

Эффективность трехфазного асинхронного двигателя переменного тока

Никола Тесла изобрел асинхронный двигатель в 1883 году. По сути, это та же базовая конструкция статора, что и у двигателя с постоянными магнитами, но без постоянных магнитов.

Его основной принцип работы заключается в том, что магнитное поле, создаваемое в статоре, создает противоположный ток в стержнях ротора. Затем индуцированный ток ротора создает магнитное поле в пластинах ротора. Это противодействующее поле заставляет ротор вращаться — при переключении тока статора ротор всегда отстает и заставляет ротор вращаться.

Преимущество этого индуцированного магнитного поля заключается в том, что конструкция ротора асинхронного двигателя больше не требует щеток и обмотки ротора. Управление переменной скоростью и крутящим моментом асинхронного двигателя проще во время ускорения, поскольку напряжение может быть снижено на высокой скорости.

Двигатели этого типа также:

  • Надежные
  • Прочный
  • Малообслуживаемый

Посмотрите на эту типичную конфигурацию асинхронного двигателя. Обратите внимание, что ротор имеет пластины в сердечнике и электропроводящий материал (медь или алюминий) в пазах ротора, так называемые стержни ротора.

Для большинства промышленных применений (более 1 л.с.) и автомобильных трансмиссий конструкция трехфазного асинхронного двигателя настолько распространена, насколько это возможно. три фазы намотаны на статор таким образом, что обеспечивается более плавная работа и высокая эффективность. Трехфазные двигатели переменного тока запускаются автоматически при подаче напряжения на обмотки статора. Во многих случаях так называемые стержни ротора расположены под углом для обеспечения более высокого крутящего момента.

Эффективность асинхронного двигателя переменного тока на практике

Использование трехфазного двигателя в промышленности относительно просто, поскольку входное напряжение уже является трехфазным. Однако в автомобильных приложениях вам необходимо преобразовать питание постоянного тока батареи в трехфазное питание переменного тока. Это происходит через преобразователь постоянного тока в переменный.

Теперь, как мы можем контролировать скорость асинхронного двигателя?

При работе с асинхронными двигателями переменного тока необходимо учитывать скорость вращения ротора по отношению к частоте поступающего переменного тока. Первоначально это определяется так называемой синхронной скоростью. Для асинхронного двигателя переменного тока синхронная скорость рассчитывается следующим образом:

  • Ns = 120 * частота / количество полюсов

(Помните, Ns — это синхронная скорость. Число полюсов — это общее число полюсов на фазу, включая северный и южный полюса.)

Для двухполюсного асинхронного двигателя переменного тока, работающего на частоте 60 Гц, скорость будет 3600 об/мин. Однако, если бы ротор вращался со скоростью 3600 об/мин в этой конфигурации, у вас был бы нулевой крутящий момент от двигателя. В идеале должно быть некоторое проскальзывание ротора относительно частоты; обычно это около 5%. Таким образом, эти двигатели считаются асинхронными двигателями.

КПД трехфазных асинхронных двигателей может варьироваться от 85% до 96%. См. приведенную ниже диаграмму зависимости крутящего момента от проскальзывания.

(типичная зависимость крутящего момента от скольжения для асинхронных двигателей переменного тока — любезно предоставлено All About Circuits )

Не могли бы вы построить трехфазный асинхронный двигатель с низким напряжением и высоким крутящим моментом? Технически да. .. но нет.

Вам нужно управлять этим маленьким батарейным блоком с большой силой тока. Мощная низковольтная электромагнитная конструкция не только нуждалась бы в огромных (и тяжелых) медных стержнях в качестве обмоток, но и выделяла бы чрезмерное тепло.

Асинхронные двигатели мощностью 50–100 л.с. для промышленного применения различаются по весу от 700 до 1000 фунтов. Слишком тяжелый для автомобилей, верно?

Некоторые модели асинхронных двигателей Tesla весят всего 70 фунтов. и может генерировать 360 л.с. при 18 000 об/мин. Общий вес двигателя и инвертора составляет около 350 фунтов. — все еще намного легче, чем средний двигатель внутреннего сгорания.

Этот двигатель представляет собой трехфазную конструкцию с восемью полюсами на фразу, что означает, что частота переменного тока, используемая для выработки этой мощности, составляет около 1200 Гц. На этих рабочих частотах вихретоковый нагрев материала ламината будет достаточно высоким. Это автомобильный мотор Tesla требует значительного охлаждения, чтобы избежать перегрева.   Также немного иронично, что GM дебютировала со своим автомобилем EV1 в середине 90-х годов с асинхронным двигателем, который был ограничен тем, что он использовал свинцово-кислотные батареи вместо ионно-литиевых аккумуляторов.

Стоимость асинхронных двигателей

Основным преимуществом асинхронных двигателей переменного тока для электромобилей является стоимость. Их относительно дешево построить.  

В индукционных конструкциях переменного тока используются стальные пластины как в статоре, так и в роторе; их можно штамповать почти одновременно из одного и того же листа материала. Другими словами, уровень брака намного ниже, чем в среднем по штамповке.

Однако уникальный дизайн автомобильного мотора Tesla стоит немного дороже. Трудно найти точную цену в Интернете, но вариант с полным приводом для Tesla добавляет около 4000 долларов к общей стоимости автомобиля. Вы также должны учитывать повышенные требования к охлаждению на этих высоких частотах переменного тока.

Индукция Против. Эффективность двигателей с постоянными магнитами: победителем становится …

Несмотря на преимущества использования порошковых материалов для электродвигателей в конструкциях с постоянными магнитами (SMC не являются фактором в индукционных конструкциях), выбор типа двигателя для вашей трансмиссии затруднен. У каждого есть преимущества и недостатки.

Несмотря на то, что асинхронный двигатель переменного тока был впервые разработан более 100 лет назад, он по-прежнему актуален благодаря повышению эффективности и производительности в 20-м и 21-м веках. Двигатель с постоянными магнитами является относительным новичком, но обещает более высокую производительность и, возможно, меньший вес.  

Основным камнем преткновения при использовании двигателей с постоянными магнитами является потенциально высокая стоимость магнитов. К счастью, на горизонте есть многообещающие разработки, которые могли бы устранить этот недостаток.

Мы пользуемся услугами уважаемого разработчика двигателей, чтобы помочь клиентам с подобными проектами. Если вам нужна помощь в разработке компонентов, чтобы в полной мере использовать весь потенциал порошковой металлургии для проектирования электродвигателей переменного или постоянного тока с постоянными магнитами, см. наш центр ресурсов:

(Примечание редактора: эта статья была первоначально опубликована в апреле 2020 г. и был недавно обновлен.)

Темы:
порошковая металлургия,
Магнетики,
Материалы,
Приложения,
Дизайн,
моторы,
автомобильный,
электрификация

M6-S4: Применение эффекта двигателя: двигатель постоянного тока
– Science Ready

 

 

Вспомните следующие понятия:

  • Двигательный эффект: на проводник с током действует сила во внешнем магнитном поле.

  • Использование правила ладони правой руки для определения направления силы двигательного эффекта

 

Эффект двигателя в двигателях

  • Двигатель – это устройство, преобразующее электрическую энергию в механическую (кинетическую) энергию
  • Двигатель постоянного тока работает на постоянном токе (DC), обычно подключенном к батарее, которая позволяет току (или электронам) течь только в одном направлении.
  • Когда батарея включена, ток протекает через катушку, образуя проводник с током. Катушка движется под воздействием внешнего магнитного поля в результате моторного эффекта.

 

 

 

Компоненты двигателя постоянного тока

Компонент

Описание

Функция

Катушка и якорь

·       Несколько витков ( n ) провода намотаны на якорь, образуя катушку.

·       Общая сила, возникающая в результате моторного эффекта, пропорциональна количеству витков

·       Катушка: проводит ток для производства механической энергии в результате моторного эффекта.

·       Якорь относится ко всей катушке. Поверхность проводника, взаимодействующая с внешним магнитным потоком, создает эффект двигателя и обратную ЭДС.

Ось

·       Расположен в середине арматуры

·       Точка вращения приложенного крутящего момента, в которой якорь поворачивается примерно на

·       Обеспечивает точку вращения якоря

·       Передает механическую энергию вращения другому устройству, например, вентилятор

Магниты

·       Может быть постоянным или электромагнитным. Электромагнитный лучше, так как сила магнитного поля может быть изменена переменным током

·       Обычно радиальные магниты используются для создания радиального магнитного поля. Радиальные магнитные поля «сглаживают» скорость изменения потока, так что скорость двигателя становится более зависимой от величины тока.

·       Создает внешнее магнитное поле

Коллектор с разъемным кольцом

·       Проводящий материал в форме полумесяца, соединенный с катушкой/якорем

·       Вращается вместе с катушкой при работающем двигателе

·       Соединяет арматуру со щеткой и источником питания.

·       Периодически изменяет направление тока (каждые пол-оборота), чтобы поддерживать постоянное направление крутящего момента и непрерывное вращение

Щетка

·       Проводящий материал, напр. углерод

·       Подключен к внешней батарее или другому источнику питания постоянного тока

·       Вращается ли , а не вместе с катушкой при работающем двигателе

·       Требуется техническое обслуживание и замена, так как частый контакт с разъемными кольцами вызывает трение, изнашивающее материал

·       Физически не закреплены на коммутаторах с разъемным кольцом. Действует как токопроводящее соединение между коммутаторами с разъемным кольцом и якорем и источником питания (батареей)

Аккумулятор

·       Наиболее распространенный источник электродвижущей силы (ЭДС), который заставляет электроны двигаться в одном направлении, производя, таким образом, постоянный ток (DC)

·       Производит ток à производит двигательный эффект, поскольку катушка становится «проводником с током» во внешнем магнитном поле

  • Схема ниже:
    • Радиальные магниты создают радиальное внешнее магнитное поле
    • Одновитковая катушка, подключенная к коммутаторам с разъемным кольцом
    • Применяя правило правой руки для электронов, на левую сторону катушки действует восходящая сила, а на правую сторону катушки действует направленная вниз сила. Следовательно, якорь вращается по часовой стрелке, как показано красной стрелкой.
    • Коллекторы с разъемным кольцом: обратите внимание, что «разрез» или зазор всегда перпендикулярен плоскости катушки. Следовательно, когда катушка находится в вертикальном положении, она теряет контакт с источником постоянного тока, поскольку «разрез» становится на одной линии с щеткой. В этом случае импульс катушки уносит ее за вертикальное положение. После этого движение электронов с каждой стороны катушки равно перевернул , чтобы вращение продолжалось в том же направлении.
  • Сила Motor Effect, действующая на якорь, остается постоянной на всем протяжении его вращения в магнитном поле. Это верно как для параллельных, так и для радиальных магнитов, поскольку угол между катушкой и силовыми линиями магнитного поля составляет 90º в обоих сценариях.
    • Величина силы остается постоянной
    • Направление силы периодически меняется (каждые 180º)

крутящий момент в DC Motors

Крутящий момент позволяет вращать движение, наблюдаемое в моторном двигателе

  • . Общая сила, действуя на броне. умножить на общее количество витков

 

Вспомните крутящий момент из Модуля 5 – Продвинутая механика:

  • Поскольку большинство якорей имеют четырехугольную форму:

  

Коммутаторы с разъемным кольцом решают проблемы двигателя постоянного тока

  • Проблема №1: Когда якорь перпендикулярен магнитному полю, на якорь действует нулевой крутящий момент. Поскольку результирующая сила, действующая на точку поворота, теперь равна нулю, это предотвращает дальнейшее вращение якоря
  • Задача №2 Постоянный ток, протекающий через катушку, приводит к однонаправленному вектору силы, действующей на катушку. Это создает проблему, поскольку якорь не может совершить полный оборот из-за того, что он «застревает», когда становится перпендикулярным внешнему магнитному полю 9.0118
  • Использование коммутатора с разъемным кольцом решает эти две проблемы
  • Коллектор с разъемным кольцом устроен таким образом, что он находится в контакте со щеткой на всем протяжении вращения якоря, кроме случаев, когда он становится перпендикулярным магнитному полю. Когда коммутаторы теряют контакт со щеткой, ток в катушке становится равным нулю, поскольку на электроны больше не действует электродвижущая сила (ЭДС), создаваемая батареей. Это временное прекращение тока позволяет якорю продолжать вращаться с прежним импульсом 9.0118
  • После того, как якорь преодолевает свое перпендикулярное положение с магнитным полем, пара коммутаторов с разрезными кольцами меняет контакт с соответствующими щетками. Этот меняет направление тока, протекающего через каждую сторону якоря. Общее направление тока в цепи остается прежним . Это позволяет якорю продолжать вращаться до полного оборота
  • Следовательно, говорят, что коммутаторы с разъемными кольцами помогают якорю в двигателе постоянного тока достигать устойчивое вращательное движение


Пояснение к диаграмме:

(a) Якорь находится в горизонтальном положении, при этом сторона LK испытывает восходящую силу, а MN — направленную вниз силу. В этом положении коммутаторы с разрезными кольцами контактируют со щеткой, что позволяет замыкать цепь.

(b) Арматура вот-вот примет вертикальное положение. На стороны LK и MN действует та же сила, что и в (а)

(c) Момент, сохраненный ранее, позволил якорю обойти вертикальное положение, чтобы принять новую ориентацию в (c). Здесь коммутатор с разъемным кольцом изменил направление тока, протекающего через стороны LK и MN.

Обратите внимание на изменение направления тока во втором ряду диаграмм. Это изменение направления тока поддерживает постоянный крутящий момент, что обеспечивает непрерывное движение. Кроме того, обратите внимание, что пара коммутаторов с разъемными кольцами поменяла местами точки контакта со щеткой.

(d) Якорь вернулся в свою горизонтальную плоскость, но на этот раз LK испытывает направленную вниз силу, а MN восходящую силу из-за реверсирования тока, которое имело место ранее.

(e) Якорь вот-вот займет вертикальное положение.

 

В чем разница между параллельными и радиальными магнитными полями?

  • Параллельные магнитные поля однородны, так как силовые линии магнитного поля всегда параллельны и равноудалены друг от друга.
  • Радиальные магнитные поля создают неоднородное радиальное поле. В радиальном магнитном поле силовые линии не параллельны.

Что такое обратная ЭДС?

Движение якоря во внешнем магнитном поле создает противоЭДС

  • Закон Фарадея: при вращении якоря во внешнем магнитном поле его поверхность площадью A пересекает линии магнитного потока. Плотность магнитного поля остается постоянной, но угол между нормалью к поверхности и силовыми линиями изменяется при вращении. В результате катушка в якоре испытывает изменения магнитного потока. Наконец, это приводит к возникновению ЭДС (закон Фарадея).
  • Закон Ленца: эта ЭДС индукции противостоит магнитному полю, которое сначала создало ее. Таким образом, направление ЭДС индукции всегда , противоположное по отношению к ЭДС, создаваемой батареей. ЭДС, действующая в обратном направлении, называется противоЭДС .
  • Обратная ЭДС уменьшает общую результирующую ЭДС à ток уменьшается, так как сопротивление катушки остается прежним.

  • Обратная ЭДС снижает скорость двигателя постоянного тока. Из приведенного выше уравнения уменьшенный ток приводит к меньшему крутящему моменту, действующему на якорь. Следовательно, вращательное движение двигателя становится медленнее. Его эффективность снижается.

  • Обратная ЭДС индуцируется только при изменении магнитного потока ротора. Таким образом, когда он не вращается, обратная ЭДС не индуцируется.

  • Обратная ЭДС ограничивает КПД двигателей постоянного тока. Преобразование энергии из электрической в ​​механическую становится все более и более неэффективным по мере увеличения крутящего момента (скорости вращения) якоря. Это связано с тем, что величина обратной ЭДС пропорциональна изменению магнитного потока (закон Фарадея).

 

Практический вопрос 1

(a) Опишите компоненты, из которых состоит двигатель постоянного тока (3 балла) двигатель постоянного тока (2 балла)

 

Практический вопрос 2

Прямоугольная проволочная петля подключена к источнику питания постоянного тока. Сторона X петли находится рядом с магнитом. Петля может свободно вращаться вокруг оси.

При включении питания в контур подается ток силой 20 А. Чтобы предотвратить вращение, к любой стороне X или стороне Y петли можно прикрепить груз массой 40 г.

(a) С какой стороны петли следует прикрепить груз, чтобы предотвратить вращение? (1 балл)

(b) Рассчитайте крутящий момент, создаваемый грузом массой 40 г. (2 балла)

(c) Рассчитайте напряженность магнитного поля вокруг стороны X. (3 балла)

 

Предыдущий раздел:  Электромагнитная индукция

Следующий раздел: Трансформаторы и другие виды индукции
Введение с использованием анимации и схем для объяснения физических принципов
различных типов электродвигателей, генераторов, генераторов переменного тока,
линейные двигатели и громкоговорители.

  • Схемы и работа различных типов
    двигателя

    • Двигатели постоянного тока
    • Двигатели и генераторы
    • Генераторы
    • Противоэдс
    • Универсальные двигатели
    • Соберите простой двигатель
    • Двигатели переменного тока (синхронные и шаговые двигатели)
    • Асинхронные двигатели
    • Электродвигатели с короткозамкнутым ротором
    • Трехфазные асинхронные двигатели
    • Линейные двигатели
    • Униполярные двигатели и генераторы (отдельная страница).
  • Громкоговорители
  • Трансформаторы
  • Генераторы переменного и постоянного тока
  • Некоторые веб-ресурсы

Схемы, показанные здесь, идеализированы, чтобы сделать принципы очевидными.
Например, эта анимация имеет только одну петлю из проволоки, без подшипников и очень простой
геометрия. В реальных двигателях используются те же принципы, но их геометрия
обычно сложно. Если вы уже понимаете основные принципы
различных типов двигателей, вы можете сразу перейти к
более сложные и тонкие случаи, описанные в разделе Как
работают настоящие электродвигатели, профессор Джон Стори.


Двигатели постоянного тока

Простой двигатель постоянного тока имеет катушку с проволокой, которая может вращаться в магнитном поле.
ток в катушке подается через две щетки, контактирующие с подвижным контактом.
разрезное кольцо. Катушка находится в постоянном магнитном поле. Приложенные силы
на токоведущих проводах создают вращающий момент на катушке.



Сила F, действующая на провод длиной L, по которому течет ток i в магнитном поле
B равно iLB, умноженному на синус угла между B и i, который будет равен 9.0°, если
поле было равномерно вертикальным. Направление F исходит справа
ручное правило, как показано здесь. Две показанные здесь силы равны и противоположны друг другу.
но они смещены по вертикали, поэтому они создают крутящий момент. (Силы на
две другие стороны катушки действуют вдоль одной и той же линии и поэтому не создают крутящего момента.)

Катушку также можно рассматривать как магнитный диполь или маленький электромагнит,
как указано стрелкой SN: согните пальцы правой руки в
направление течения, а ваш большой палец — это северный полюс. В эскизе
справа изображен электромагнит, образованный катушкой ротора.
как постоянный магнит, и тот же крутящий момент (Север притягивает Юг) виден
быть тем, что действует для выравнивания центрального магнита.

Обратите внимание на влияние щеток на разрезное кольцо . Когда
плоскость вращающейся катушки станет горизонтальной, щетки разорвут контакт
(потеряно немного, потому что это и так точка нулевого крутящего момента – силы
действовать внутрь). Угловой момент катушки уносит ее мимо этого разрыва.
точка, и ток затем течет в противоположном направлении, которое меняет направление
магнитный диполь. Итак, после прохождения точки останова ротор продолжает
поворачиваться против часовой стрелки и начинает выравниваться в противоположном направлении. в
В следующем тексте я буду в основном использовать картинку «крутящий момент на магните», но
имейте в виду, что использование щеток или переменного тока может привести к тому, что полюса
рассматриваемый электромагнит меняет положение, когда ток меняет направление.

Крутящий момент, создаваемый за цикл, зависит от вертикального разделения
две силы. Следовательно, она зависит от синуса угла между
оси катушки и поля. Однако из-за разъемного кольца всегда
в том же смысле. Анимация ниже показывает его изменение во времени, и вы
может остановить его на любом этапе и проверить направление, прикладывая правую руку
правило.

Двигатели и генераторы

Теперь двигатель постоянного тока также является генератором постоянного тока. Посмотрите следующую анимацию.
катушка, разрезное кольцо, щетки и магнит точно такое же оборудование, как и двигатель
выше, но катушка вращается, что создает ЭДС.

Если вы используете механическую энергию для вращения катушки (N витков, площадь A) с равномерной
угловая скорость ω в магнитном поле Б ,
в катушке возникает синусоидальная ЭДС. ЭДС (ЭДС или электродвижущая сила — это почти то же самое, что и напряжение). Пусть θ будет
угол между B и нормалью к катушке, поэтому магнитный поток φ равен
NAB.cos θ. Закон Фарадея дает:

Анимация выше будет называться генератором постоянного тока. Как и в двигателе постоянного тока,
концы катушки соединяются с разъемным кольцом, две половины которого соприкасаются
по кистям. Обратите внимание, что щетки и разрезное кольцо «выпрямляют» создаваемую ЭДС:
контакты организованы так, что ток всегда будет течь в одном и том же
направлении, потому что когда катушка поворачивается мимо мертвой точки, где щетки
встречаются зазор в кольце, соединения между концами катушки и
внешние клеммы перепутаны. ЭДС здесь (без учета мертвой зоны, которая обычно возникает при нуле вольт) равна
|НБА ω sin ωt|,
как нарисовано.

Генератор

Если мы хотим AC, нам не нужна повторная проверка, поэтому нам не нужны разрезные кольца. ( Этот
это хорошая новость, потому что разрезные кольца вызывают искры, озон, радиопомехи и дополнительный износ. Если хочешь
постоянного тока, часто лучше использовать генератор переменного тока и выпрямлять диодами.)

В следующей анимации две щетки касаются двух непрерывных колец, поэтому
две внешние клеммы всегда подключены к одним и тем же концам катушки.
Результатом является невыпрямленная синусоидальная ЭДС, определяемая NBAω sin ωt,
который показан в следующей анимации.


Это генератор переменного тока. Преимущества переменного и постоянного тока
генераторы сравниваются в разделе ниже. Мы видели выше, что двигатель постоянного тока
также является генератором постоянного тока. Точно так же генератор переменного тока также является двигателем переменного тока. Однако,
это довольно негибкий. (Смотри как
настоящие электродвигатели работают для более подробной информации. )

Обратная ЭДС

Теперь, как показывают первые две анимации, двигатели постоянного тока и генераторы могут быть
то же самое. Например, двигатели поездов становятся генераторами, когда поезд
замедляется: они преобразуют кинетическую энергию в электрическую и помещают
питание обратно в сеть. В последнее время некоторые производители начали выпускать легковые автомобили.
рационально. В таких автомобилях электродвигатели, используемые для привода автомобиля, также
используется для зарядки аккумуляторов при остановке автомобиля — это называется регенеративным
торможение.

Вот интересное следствие. Каждый двигатель является генератором . Это
правда, в некотором смысле, даже когда он функционирует как двигатель. ЭДС этого двигателя
генерирует называется обратной ЭДС . Противо-ЭДС увеличивается с
скорость по закону Фарадея. Так что, если двигатель без нагрузки, он крутится очень
быстро и разгоняется до противо-ЭДС, плюс падение напряжения из-за потерь,
равно напряжению питания. Обратную ЭДС можно рассматривать как «регулятор»:
он останавливает бесконечно быстрое вращение двигателя (тем самым избавляя физиков от некоторого смущения). Когда двигатель загружен, то
фаза напряжения становится ближе к фазе тока (начинает
выглядеть резистивным), и это кажущееся сопротивление дает напряжение. Итак, спина
ЭДС необходима меньше, и двигатель вращается медленнее. (Чтобы добавить заднюю
ЭДС, которая индуктивная, к резистивной составляющей нужно добавить напряжения
которые не совпадают по фазе. См. AC
схемы.)

Катушки обычно имеют сердечник

На практике (и в отличие от нарисованных нами схем) генераторы и постоянный ток
двигатели часто имеют сердечник с высокой проницаемостью внутри катушки, так что большой
магнитные поля создаются небольшими токами. Это показано слева на
рисунок ниже на котором статоры (магниты стационарные)
являются постоянными магнитами.


Универсальные двигатели

Магниты статора также могут быть выполнены в виде электромагнитов, как показано выше.
справа. Два статора намотаны в одном направлении, чтобы дать
поле в том же направлении, а ротор имеет поле, которое дважды меняет направление
за цикл, потому что он связан со щетками, которые здесь не показаны. Один
Преимущество обмотки статора в двигателе состоит в том, что можно сделать двигатель
который работает на переменном или постоянном токе, так называемый универсальный двигатель . Когда вы едете
такой двигатель с переменным током, ток в катушке изменяется дважды в каждом цикле
(помимо изменений со щеток), но полярность статоров
изменяется одновременно, поэтому эти изменения компенсируются. (К сожалению, кисти все же есть, хоть я и спрятал их в этом наброске.) За достоинства и
недостатки постоянного магнита по сравнению со статором с обмоткой см. ниже.
Также см. больше
на универсальных двигателях.

Собрать простой мотор

Чтобы построить этот простой, но странный двигатель, вам понадобятся два довольно сильных магнита.
(подойдут редкоземельные магниты диаметром около 10 мм, как и стержень большего размера).
магниты), немного жесткой медной проволоки (не менее 50 см), два провода с крокодилом
зажимы на обоих концах, шестивольтовая батарея для фонаря, две банки из-под безалкогольных напитков, два блока
дерева, клейкой ленты и острого гвоздя.


Сделайте катушку из жесткой медной проволоки, чтобы не требовалось никаких внешних
поддерживать. Намотайте от 5 до 20 витков по кругу диаметром около 20 мм и
два конца направлены радиально наружу в противоположных направлениях. Эти концы будут
быть и осью, и контактами. Если провод имеет лаковую или пластиковую изоляцию,
обрежьте его на концах.

Опоры оси могут быть изготовлены из алюминия, поэтому
чтобы они вступали в электрический контакт. Например, сделать дырки в безалкогольном напитке.
банки с гвоздем, как показано на рисунке. Расположите два магнита с севера на юг,
так что магнитное поле проходит через катушку под прямым углом к
оси. Приклейте или приклейте магниты к деревянным брускам (не показаны).
на схеме), чтобы держать их на нужной высоте, затем переместите блоки
поставить их в положение, довольно близко к катушке. Сначала поверните катушку
так что магнитный поток через катушку равен нулю, как показано на схеме.

Теперь возьмите аккумулятор и два провода с зажимами типа «крокодил». Соединять
две клеммы аккумулятора к двум металлическим опорам для
катушка и она должна крутиться.

Обратите внимание, что у этого двигателя есть по крайней мере одна «мертвая зона»: он часто останавливается
в положении, когда на катушке нет крутящего момента. Не уходи
это слишком долго: это быстро разрядит батарею.

Оптимальное количество витков в катушке зависит от внутренней
сопротивление аккумулятора, качество опорных контактов и
тип провода, поэтому следует поэкспериментировать с разными значениями.

Как было сказано выше, это тоже генератор, но очень
неэффективный. Чтобы сделать большую ЭДС, используйте больше витков (может понадобиться
использовать более тонкую проволоку и рамку, на которую ее можно намотать.) Вы можете использовать
например, электрическая дрель, чтобы быстро повернуть ее, как показано на рисунке выше.
С помощью осциллографа посмотрите на генерируемую ЭДС. Это переменный или постоянный ток?

В этом двигателе нет разрезного кольца, так почему
на ДК работает? Проще говоря, если бы он был точно симметричным, он бы не работал. Однако, если ток в одном полупериоде немного меньше, чем в другом, то средний крутящий момент не будет равен нулю, и, поскольку он вращается достаточно быстро, угловой момент, приобретенный в течение полупериода с большим током, переносит его через полупериод, когда крутящий момент направлен в противоположную сторону. По крайней мере, два эффекта могут вызвать асимметрию. Даже если провода идеально зачищены и провода чистые, контактное сопротивление вряд ли будет точно равным даже в состоянии покоя. Кроме того, само вращение вызывает прерывистый контакт, поэтому, если во время одной фазы происходят более длительные отскоки, этой асимметрии достаточно. В принципе, можно было бы частично зачистить провода таким образом, чтобы за один полупериод ток был равен нулю.


Альтернативная версия простого двигателя от Джеймса.
Тейлор.

Еще более простой двигатель (который также намного проще для понимания!) является униполярным двигателем.

Двигатели переменного тока

С переменным током мы можем изменить направление поля без использования щеток.
Это хорошая новость, потому что мы можем избежать дугового разряда, образования озона и
омические потери энергии, которые могут повлечь за собой щетки. Далее, поскольку щетки
соприкасаются между движущимися поверхностями, они изнашиваются.

Первое, что нужно сделать в двигателе переменного тока, это создать вращающееся поле. ‘Обычный’
Переменный ток от 2- или 3-контактной розетки является однофазным переменным током — он имеет одну синусоидальную форму.
разность потенциалов возникает только между двумя проводами — активным и нейтральным.
(Обратите внимание, что провод заземления не пропускает ток, за исключением случаев
электрические неисправности.) С однофазным переменным током можно создать вращающееся поле
путем создания двух токов, которые не совпадают по фазе, с использованием, например, конденсатора.
В показанном примере два тока равны 90° не по фазе, поэтому вертикальная
составляющая магнитного поля синусоидальная, а горизонтальная — косусоидальная,
как показано. Это дает поле, вращающееся против часовой стрелки.

(* Меня попросили объяснить это: от простого переменного тока
теории, ни катушки, ни конденсаторы не имеют напряжения в фазе с
электрический ток. В конденсаторе напряжение максимально, когда заряд
закончил течь на конденсатор, и вот-вот начнет течь.
Таким образом, напряжение отстает от тока. В чисто индуктивной катушке
падение напряжения наибольшее, когда ток изменяется наиболее быстро, что
также, когда ток равен нулю. Напряжение (падение) опережает ток.
В моторных катушках фазовый угол меньше 90, потому что электрический
энергия превращается в механическую).

В этой анимации графики показывают изменение токов во времени
в вертикальных и горизонтальных катушках. График компонентов поля B x и
B y показывает, что векторная сумма этих двух полей представляет собой вращающуюся
поле. На основном рисунке показано вращающееся поле. Он также показывает полярность
магнитов: как и выше, синий представляет северный полюс, а красный — южный полюс.

Если мы поместим постоянный магнит в эту область вращающегося поля, или если мы поместим
в катушке, ток которой всегда течет в одном и том же направлении, то это становится
синхронный двигатель . В широком диапазоне условий двигатель будет
вращаться со скоростью магнитного поля. Если у нас много статоров, вместо
только двух пар, показанных здесь, мы могли бы рассматривать его как шаговый двигатель.
двигатель: каждый импульс перемещает ротор к следующей паре задействованных полюсов.
Пожалуйста, помните мое предупреждение об идеализированной геометрии: настоящие шаговые двигатели
иметь десятки полюсов и довольно сложную геометрию!

Асинхронные двигатели

Теперь, поскольку у нас есть переменное во времени магнитное поле, мы можем использовать ЭДС индукции
в катушке — или даже просто вихревые токи в проводнике — чтобы ротор
магнит. Правильно, если у вас есть вращающееся магнитное поле, вы можете просто
вставьте проводник и он крутится. Это дает несколько преимуществ
асинхронные двигатели
: отсутствие щеток или коллектора означает простоту изготовления, нет
износа, отсутствия искр, образования озона и связанных с этим потерь энергии.
с ними. Слева внизу показана схема асинхронного двигателя. (Для фотографий
настоящие асинхронные двигатели и более подробную информацию см. в разделе Индукция
моторы.)

Анимация справа представляет двигатель с короткозамкнутым ротором . Белка
Клетка имеет (во всяком случае, в этой упрощенной геометрии!) два круглых проводника, соединенных
несколькими прямыми стержнями. Любые два стержня и соединяющие их дуги образуют
катушка — как показано синими черточками на анимации. (Только два из
для простоты показано много возможных схем. )

На этой схеме показано, почему их можно назвать двигателями с короткозамкнутым ротором.
Реальность другая: фотографии и подробности см. в разделе «Индукция».
моторы. Показана проблема с асинхронным двигателем и двигателем с короткозамкнутым ротором.
в этой анимации то, что конденсаторы высокой стоимости и высокого номинального напряжения
дорогие. Одним из решений является двигатель с экранированными полюсами, но его вращение
поле имеет некоторые направления, где крутящий момент мал, и имеет тенденцию
бежать назад при некоторых условиях. Самый простой способ избежать этого
использовать многофазные двигатели.

Трехфазные асинхронные двигатели переменного тока

Однофазный используется в бытовых целях для маломощных приложений, но
у него есть некоторые недостатки. Во-первых, он выключается 100 раз в секунду (вы не
обратите внимание, что флуоресцентные лампы мерцают с такой скоростью, потому что ваши глаза
слишком медленные: даже 25 кадров в секунду на телевизоре достаточно быстро, чтобы дать
иллюзию непрерывного движения. ) Во-вторых, это делает его неудобным
для создания вращающихся магнитных полей. По этой причине некоторая большая мощность (несколько
кВт) для бытовых устройств может потребоваться трехфазная установка. Промышленное применение
широко используйте трехфазный двигатель, а трехфазный асинхронный двигатель является стандартным
рабочая лошадка для приложений высокой мощности. Три провода (не считая земли)
несут три возможные разности потенциалов, которые не совпадают по фазе с каждым
другой на 120°, как показано на анимации ниже. Таким образом, три статора дают плавный
вращающееся поле. (Посмотри это
ссылка для получения дополнительной информации о трехфазном питании.)

Если в такой набор статоров поместить постоянный магнит, он станет синхронным .
трехфазный двигатель
. На анимации показана беличья клетка, в которой для
простота показана только одна из многих петель индуцированного тока. Без
механической нагрузки, он вращается практически синхронно с вращающимся полем.
Ротор не обязательно должен быть беличьей клеткой: на самом деле любой проводник, который
переносимые вихревые токи будут вращаться, стремясь следовать за вращающимся полем.
Эта договоренность может дать асинхронный двигатель с высоким КПД,
высокая мощность и высокий крутящий момент в диапазоне скоростей вращения.

Линейные двигатели

Набор катушек можно использовать для создания магнитного поля, которое перемещается, а не
чем вращается. Пара катушек на анимации ниже пульсирует от
слева направо, поэтому область магнитного поля движется слева направо. А
постоянный или электромагнит будет стремиться следовать за полем. Так бы и простой
пластина из проводящего материала, поскольку в ней индуцируются вихревые токи (не показаны)
содержат электромагнит. В качестве альтернативы мы могли бы сказать, что из теории Фарадея
Согласно закону, в металлической пластине всегда индуцируется ЭДС, препятствующая любым изменениям.
в магнитном потоке, а силы на токи, движимые этой ЭДС, удерживают
поток в плите почти постоянный. (Вихревые токи на этой анимации не показаны.)

В качестве альтернативы мы могли бы иметь наборы активных катушек в подвижной части,
и вызвать вихревые токи в рельсе. В любом случае мы получаем линейный двигатель,
что было бы полезно, скажем, для поездов на магнитной подвеске. (В анимации геометрия
как обычно на этом сайте, сильно идеализирован, и только один вихревой ток
показан.)

Некоторые примечания о двигателях переменного и постоянного тока для мощных приложений

    Изначально этот сайт был создан, чтобы помочь старшеклассникам
    и учителей в Новом Южном Уэльсе, Австралия, где новая учебная программа концентрируется
    на истории и приложениях физики, в ущерб самой физике,
    был введен. В новой программе в одном из пунктов есть это
    загадочное требование: «объясните, что двигатели переменного тока обычно производят маломощные и
    связывают это с их использованием в электроинструментах».

Двигатели переменного тока используются для приложений высокой мощности, когда это возможно. Три
фазные асинхронные двигатели переменного тока широко используются для приложений большой мощности, в том числе
тяжелая промышленность. Однако такие двигатели непригодны, если нет многофазности, т.к.
или трудно доставить. Электрички тому пример: проще строить
линии электропередач и пантографы, если нужен только один активный проводник, так что это
обычно имеет постоянный ток, и многие двигатели поездов работают на постоянном токе. Однако из-за недостатков
постоянного тока для высокой мощности, более современные поезда преобразуют постоянный ток в переменный, а затем запускают
трехфазные двигатели.

Однофазные асинхронные двигатели имеют проблемы с приложениями, объединяющими
высокая мощность и гибкие условия нагрузки. Проблема заключается в производстве
вращающееся поле. Конденсатор можно использовать, чтобы поместить ток в один набор
катушки впереди, но высокая стоимость, высоковольтные конденсаторы дороги. Затененный
вместо них используются полюса, но при некоторых углах крутящий момент невелик. Если человек не может
создают плавно вращающееся поле, и если груз «проскальзывает» далеко за
поле, то крутящий момент падает или даже меняется на противоположное.

В электроинструментах и ​​некоторых бытовых приборах используются щеточные двигатели переменного тока. Кисти представляют
потери (плюс искрение и образование озона). Полярность статора изменена
100 раз в секунду. Даже если материал сердечника выбран для минимизации гистерезиса
потери («железные потери»), это способствует неэффективности и возможности
перегрева. Эти моторы можно назвать «универсальными».
двигатели, потому что они могут работать на постоянном токе. Это решение дешевое, но грубое
и неэффективно. Для приложений с относительно низким энергопотреблением, таких как электроинструменты,
неэффективность обычно не имеет экономического значения.

Если доступен только однофазный переменный ток, можно выпрямить переменный ток и использовать
Двигатель постоянного тока. Раньше сильноточные выпрямители были дорогими, но сейчас
менее дорогие и более широко используемые. Если вы уверены, что понимаете
принципы, пришло время перейти к Как
настоящие электродвигатели работы Джона Стори. Или же продолжить здесь, чтобы найти
про громкоговорители и трансформаторы.


Громкоговорители

Громкоговоритель представляет собой линейный двигатель с небольшим диапазоном. Он имеет одно движение
катушка, которая постоянно, но гибко подключена к источнику напряжения, поэтому
нет кистей.

катушка движется в поле постоянного магнита, который обычно имеет форму
для создания максимальной силы на катушке. Подвижная катушка не имеет сердечника, поэтому
его масса мала, и его можно быстро разогнать, что позволяет
частотное движение. В громкоговорителе катушка прикреплена к легкому грузу.
бумажный конус, который поддерживается на внутреннем и внешнем краях круглыми,
гофрированные бумажные «пружины». На фотографии ниже динамик находится за пределами
нормальный верхний предел его перемещения, поэтому катушка видна над
магнитные полюса.

Для низкочастотного звука с большой длиной волны нужны большие конусы.
Показанный ниже динамик имеет диаметр 380 мм. Динамики, предназначенные для
низкие частоты называются вуферами. Они имеют большую массу и
поэтому трудно быстро ускориться для высокочастотных звуков.
На фотографии ниже часть вырезана, чтобы показать
внутренние компоненты.

ВЧ-динамики — громкоговорители, предназначенные для высоких частот — могут быть просто
динамики аналогичной конструкции, но с небольшими диффузорами и катушками малой массы.
В качестве альтернативы они могут использовать пьезоэлектрические кристаллы для перемещения конуса.


Динамики представляют собой линейные двигатели со скромным диапазоном — возможно, десятки
мм. Подобные линейные двигатели, хотя, конечно, без бумажного конуса, часто
используется для радиального перемещения считывающей и записывающей головок на дисководе.


Внимание: настоящие моторы сложнее

Эскизы двигателей были схематичными, чтобы показать принципы.
Пожалуйста, не сердитесь, если, когда вы разбираете двигатель, он выглядит более
сложный! (Смотри как
работают настоящие электродвигатели.) Например, типичный двигатель постоянного тока
вероятно, будет иметь много отдельно намотанных катушек для создания более плавного крутящего момента:
всегда есть одна катушка, для которой синусоидальный член близок к единице.
Это показано ниже для двигателя с обмоткой статора (вверху) и
постоянные статоры (ниже).


Трансформаторы

На фотографии изображен трансформатор, предназначенный для демонстрационных целей:
первичная и вторичная катушки четко разделены и могут быть удалены
и заменяется подъемом верхней секции сердечника. Для наших целей обратите внимание
что в левой катушке меньше витков, чем в правой (вставки
показать крупный план).


На схеме и схеме показан повышающий трансформатор. Чтобы сделать понижающий трансформатор,
нужно только поставить источник справа, а нагрузку слева. ( Важно
примечание по технике безопасности
: настоящий трансформатор можно было «подключить только наоборот».
только после проверки соответствия номинального напряжения.) Итак, как
трансформатор работает?

Сердечник (заштрихован) имеет высокую магнитную проницаемость, т. е. материал, образующий
магнитное поле гораздо легче, чем свободное пространство, из-за ориентации
атомных диполей. (На фотографии сердечник — ламинированное мягкое железо.)
В результате поле концентрируется внутри ядра и почти
никакие силовые линии не выходят из ядра. Если следует, что магнитные потоки φ через
первичный и вторичный примерно равны, как показано. От Фарадея
закона, ЭДС в каждом витке, будь то в первичной или вторичной обмотке, равна −dφ/dt.
Если пренебречь сопротивлением и другими потерями в трансформаторе, вывод
напряжение равно ЭДС. Для N р витка первички, это
дает

    V p = − N p .dφ/dt
    .

Для N с витками вторичной обмотки это дает

    V с = − N с .φ/dt

Деление этих уравнений дает уравнение трансформатора

    V с /V p = N с /N p = р.

где r — коэффициент поворота. Что с текущим? Если пренебречь потерями в
трансформатора (см. раздел об эффективности ниже), и если мы предположим, что
напряжение и ток имеют одинаковые фазовые соотношения в первичной и
вторично, то из закона сохранения энергии мы можем написать в стационарном состоянии:

Так что ничего даром не получишь: повышаешь напряжение — уменьшаешь
ток (как минимум) на тот же коэффициент. Обратите внимание, что на фотографии
катушка с большим количеством витков имеет более тонкий провод, потому что она рассчитана на меньшее количество витков.
ток, чем тот, с меньшим количеством витков.

В некоторых случаях целью упражнения является уменьшение силы тока. В силе
линиях электропередач, например, мощность, теряемая при нагреве проводов из-за
к их ненулевому сопротивлению пропорционально квадрату тока.
Таким образом, при передаче электроэнергии от электростанции экономится много энергии.
в город на очень высоком напряжении, так что токи только скромные.

Наконец, и снова предполагая, что трансформатор идеален, давайте спросим, ​​что
резистор во вторичной цепи «похож» на первичную цепь.
В первичном контуре:

R/r 2 называется отраженным сопротивлением . при условии, что
частота не слишком высока, и при условии наличия сопротивления нагрузки (условия
обычно встречается в практических трансформаторах), индуктивное сопротивление первичной
намного меньше, чем это отраженное сопротивление, поэтому первичная цепь ведет себя
как если бы источник управлял резистором со значением R/r 2 .

Эффективность трансформаторов

На практике настоящие трансформаторы имеют КПД менее 100%.

  • Во-первых, в катушках имеются резистивные потери (мощность потерь I 2 .r).
    Для данного материала сопротивление катушек можно уменьшить, сделав
    их сечение велико. Удельное сопротивление также можно уменьшить, используя
    медь высокой чистоты. (См. дрейф
    скорость и закон Ома.)
  • Во-вторых, в сердечнике есть потери на вихревые токи. Это может быть
    уменьшается за счет ламинирования сердцевины. Ламинирование уменьшает площадь контуров
    в сердечнике, а так уменьшить ЭДС Фарадея, а так ток протекающий
    в ядре, и поэтому энергия при этом теряется.
  • В-третьих, в сердечнике есть гистерезисные потери. намагниченность и
    кривые размагничивания для магнитных материалов часто немного отличаются
    (гистерезис или зависимость от истории), а это означает, что энергия, необходимая
    намагнитить сердечник (пока ток растет) не совсем
    восстанавливается при размагничивании. Разница в энергии теряется в виде тепла
    в ядре.
  • Наконец, геометрический дизайн, а также материал сердцевины могут
    быть оптимизирована для обеспечения того, чтобы магнитный поток в каждой катушке вторичной обмотки
    примерно такой же, как и в каждой обмотке первичной обмотки.
Подробнее о трансформаторах: генераторы переменного и постоянного тока

Трансформаторы работают только от переменного тока, что является одним из больших преимуществ переменного тока. Трансформеры
позволяют снизить напряжение 240 В до удобного уровня для цифровой электроники
(всего несколько вольт) или для других маломощных приложений (обычно 12 В). Трансформеры
повышайте напряжение для передачи, как упоминалось выше, и понижайте для безопасного
распределение. Без трансформаторов потери электроэнергии в распределении
сети, и без того высокие, были бы огромными. Возможно преобразование напряжения
на постоянном токе, но сложнее, чем на переменном токе. Кроме того, такие преобразования часто
неэффективно и/или дорого. Преимущество переменного тока в том, что его можно использовать
на двигателях переменного тока, которые обычно предпочтительнее двигателей постоянного тока для приложений с высокой мощностью.


Другие ресурсы от нас

  • Как
    настоящие электродвигатели работы Джона Стори. На этом сайте много фотографий
    реальных моторов и обсуждение их сложностей, преимуществ и
    недостатки.
  • Physclips – волны и звук. Это наш новый проект, который начинается с главы о колебаниях.
  • Часто задаваемые вопросы для средней школы
    физика. Первоначально созданный для учителей и учащихся, использующих New
    Программа Южного Уэльса.
  • Доска вопросов и ответов для
    задачи по физике в средней школе. Первоначально созданный для учителей и
    студенты, использующие программу Нового Южного Уэльса.
  • Основной сайт AC.
  • RC фильтры,
    интеграторы и дифференциаторы.
  • ЖК-резонанс.
  • Мощность в цепях переменного тока,
    среднеквадратичные значения.
  • Ссылка на Джо
    образовательные страницы.

Некоторые внешние ссылки на веб-ресурсы по двигателям и генераторам

  • Гиперфизика:
    Электродвигатели с сайта HyperPhysics в штате Джорджия. Отлично
    сайт
    габаритный, а моторная секция идеально подходит для этой цели. Хороший
    использование веб-графики. Использует двигатели постоянного, переменного и асинхронного тока и имеет обширный
    ссылки
  • Громкоговорители..
    Еще больше полезного от Гиперфизики штата Джорджия. Хорошая графика, хорошие пояснения
    и ссылки. Этот громкоговоритель
    сайт также включает вложения.
  • http://members.tripod.com/simplemotor/rsmotor.htm А
    сайт с описанием двигателя, построенного студентами. Ссылки на другие двигатели, построенные компанией
    тот же студент и ссылки тоже на сайты про моторы.
  • http://www.specamotor.com А
    сайт, который сортирует двигатели от различных производителей в соответствии со спецификациями, введенными пользователем.

В чем разница между наличием постоянных магнитов
и наличие электромагнитов в двигателе постоянного тока? Делает ли это его более эффективным или
более могущественный? Или просто дешевле?

Когда я получил этот вопрос на Высшем
Школьная доска объявлений по физике, я отправил ее Джону
Стори, который, будучи выдающимся астрономом, является строителем.
электромобилей. Вот его ответ:

В целом, для небольшого двигателя намного дешевле использовать постоянные магниты.
Материалы для постоянных магнитов продолжают совершенствоваться и стали настолько недорогими
что даже правительство иногда будет присылать вам бессмысленные магниты на холодильник
через пост. Постоянные магниты также более эффективны, потому что
тратится на создание магнитного поля. Так зачем вообще использовать раневое поле
Двигатель постоянного тока? Вот несколько причин:

  • Если вы собираете действительно большой двигатель, вам нужен очень большой магнит и
    в какой-то момент раневое поле может подешеветь, особенно если очень
    сильное магнитное поле необходимо для создания большого крутящего момента. Имейте это в виду
    если вы проектируете поезд. По этой причине большинство автомобилей имеют стартеры.
    которые используют раневое поле (хотя в некоторых современных автомобилях сейчас используется постоянное
    магнитные двигатели).
  • У постоянного магнита магнитное поле имеет фиксированное значение (т.
    что значит «постоянный»!) Напомним, что крутящий момент, создаваемый двигателем
    заданная геометрия равна произведению тока через якорь
    и напряженность магнитного поля. С двигателем с раневым полем у вас есть
    возможность изменения тока через поле и, следовательно, изменение
    характеристики двигателя. Это открывает ряд интересных возможностей;
    Вы включаете обмотку возбуждения последовательно с якорем, параллельно,
    или кормить его из отдельно контролируемого источника? Пока достаточно
    крутящий момент для преодоления нагрузки на двигатель, внутреннего трения и т. д.,
    чем слабее магнитное поле, тем *быстрее* будет вращаться двигатель (при фиксированном
    Напряжение). Сначала это может показаться странным, но это правда! Итак, если вы хотите
    двигатель, который может создавать большой крутящий момент в состоянии покоя, но при этом вращаться до высоких
    скорости, когда нагрузка низкая (как продвигается этот дизайн поезда?), возможно,
    поле раны является ответом.