Содержание
[История] Реактивный двигатель — Новости
ВНИМАНИЕ! Устаревший формат новостей. Возможны проблемы с корректным отображением контента.
Ранние самолёты с реактивными двигателями: Me.262 и Як-15
Идеи создания теплового двигателя, к которому относится и реактивный двигатель, известны человеку с древнейших времен. Так, в трактате Герона Александрийского под названием «Пневматика» присутствует описание Эолипила – шара «Эола». Данная конструкция представляла собой не что иное, как паровую турбину, в которой пар подавался через трубки в бронзовую сферу и, вырываясь из нее, эту сферу и раскручивал. Вероятнее всего, устройство использовалось для развлечений.
Шар «Эола» |
Несколько дальше продвинулись китайцы, создавшие в XIII веке некое подобие «ракет». Используемая изначально в качестве фейерверка, в скором времени новинка была взята на вооружение и применялась в боевых целях.
Не обошел стороной идею и великий Леонардо, вознамерившийся при помощи горячего воздуха, подаваемого на лопасти, вращать вертел для жарки.
Впервые идею газотурбинного двигателя предложил в 1791 году английский изобретатель Дж. Барбер: конструкция его ГТД была оснащена газогенератором, поршневым компрессором, камерой сгорания и газовой турбиной.
Использовал в качестве силовой установки для своего самолета, разработанного в 1878 году, тепловой двигатель и А.Ф. Можайский: два паросиловых двигателя приводили в движение пропеллеры машины. Из-за низкого КПД желаемого эффекта достичь не удалось.
Другой русский инженер – П.Д. Кузьминский – в 1892 году разработал идею газотурбинного двигателя, в котором топливо сгорало при постоянном давлении. Начав реализацию проекта в 1900 году, он решил установить ГТД с многоступенчатой газовой турбиной на небольшой катер. Однако смерть конструктора помешала закончить начатое.
Более интенсивно за создание реактивного двигателя принялись лишь в ХХ веке: сначала теоретически, а через несколько лет – уже и практически.
В 1903 году в работе «Исследование мировых пространств реактивными приборами» К.Э. Циолковским были разработаны теоретические основы жидкостных ракетных двигателей (ЖРД) с описанием основных элементов реактивного двигателя, использующего жидкое топливо.
Идея создания воздушно-реактивного двигателя (ВРД) принадлежит Р. Лорину, запатентовавшему проект в 1908 году. При попытке создания двигателя, после обнародования чертежей устройства в 1913 году, изобретатель потерпел неудачу: скорости, необходимой для функционирования ВРД, достигнуть так и не удалось.
Попытки создания газотурбинных двигателей продолжались и далее. Так, в 1906 году русский инженер В.В. Караводин разработал, а через два года и построил бескомпрессорный ГТД с четырьмя камерами прерывистого сгорания и газовой турбиной. Однако мощность, развиваемая устройством, даже при 10000 об/мин не превышала 1,2 квт (1,6 л.с.).
Создал газотурбинный двигатель прерывистого горения и немецкий конструктор Х. Хольварт. Построив ГТД в 1908 году, к 1933 году, после многолетних работ по его совершенствованию, он довёл КПД двигателя до 24%. Тем не менее, идея не нашла широкого применения.
В.П. Глушко |
Идея же турбореактивного двигателя была озвучена в 1909 году русским инженером Н.В. Герасимовым, получившим патент на газотурбинный двигатель для создания реактивной тяги. Работы по реализации этой идеи не прекращались в России и впоследствии: в 1913 году М.Н. Никольской проектирует ГТД мощностью 120 квт (160 л.с.) с трёхступенчатой газовой турбиной; в 1923 году В.И. Базаров предлагает принципиальную схему газотурбинного двигателя, близкую по схеме современным турбовинтовым двигателям; в 1930 году В. В. Уваров совместно с Н.Р. Брилингом проектирует, а в 1936 году и реализует газотурбинный двигатель с центробежным компрессором.
Огромный вклад в создание теории реактивного двигателя внесли работы русских ученых С.С. Неждановского, И.В. Мещерского, Н.Е. Жуковского. французского учёного Р. Эно-Пельтри, немецкого учёного Г. Оберта. На создание воздушно-реактивного двигателя повлияла и работа известного советского ученого Б.С. Стечкина, который опубликовал в 1929 году свой труд «Теория воздушно-реактивного двигателя».
Не останавливались работы по созданию и жидкостного реактивного двигателя: в 1926 году американский ученый Р. Годдард осуществил запуск ракеты на жидком топливе. Работы над этой темой происходили и в Советском Союзе: в период с 1929 по 1933 год В.П. Глушко разработал и испытал в действии в Газодинамической лаборатории электротермический реактивный двигатель. Им же в этот период были созданы и первые отечественные жидкостные реактивные двигатели – ОРМ, ОРМ-1, ОРМ-2.
Наибольший вклад в практическое воплощение реактивного двигателя внесли немецкие конструкторы и ученые. Имея поддержку и финансирование со стороны государства, рассчитывавшего этим путем добиться технического превосходства в грядущей войне, инженерный корпус III Рейха с максимальной отдачей и в короткие сроки подошел к созданию боевых комплексов, имевших в своей основе идеи реактивного движения.
Концентрируя внимание на авиационной составляющей, можно сказать, что уже 27 августа 1939 года летчик-испытатель фирмы Heinkel флюг-капитан Э. Варзиц поднял в воздух He.178 – реактивный самолет, технологические наработки которого были впоследствии использованы при создании истребителей Heinkel He.280 и Messerschmitt Me.262 Schwalbe.
Установленный на Heinkel He.178 двигатель Heinkel Strahltriebwerke HeS 3 конструкции Х.-И. фон Охайна хоть и не обладал высокой мощностью, но сумел открыть эру реактивных полетов боевой авиации. Достигнутая He.178 максимальная скорость в 700км/ч с использованием двигателя, мощность которого не превышала 500 кгс, говорила о многом. Впереди лежали безграничные возможности, которые лишали будущего поршневые моторы.
Созданная в Германии целая серия реактивных двигателей, например, Jumo-004 производства фирмы Junkers, позволила ей уже в конце Второй мировой войны обладать серийными реактивными истребителями и бомбардировщиками, опередив другие страны в этом направлении на несколько лет. После поражения III Рейха именно немецкие технологии дали толчок развитию реактивного самолетостроения во многих странах мира.
Единственной страной, сумевшей ответить на немецкий вызов, была Великобритания: созданный Ф. Уиттлом турбореактивный двигатель Rolls-Royce Derwent 8 был установлен на истребителе Gloster Meteоr.
Трофейный Jumo 004 |
Первым в мире турбовинтовым двигателем стал венгерский двигатель Jendrassik Cs-1 конструкции Д. Ендрашика, построившего его в 1937 году на заводе Ganz в Будапеште. Несмотря на возникшие в ходе внедрения проблемы, двигатель предполагалось устанавливать на венгерский двухмоторный штурмовик Varga RMI-1 X/H, специально сконструированный для этого авиаконструктором Л. Варго. Однако довести работы до конца венгерские специалисты так и не сумели – предприятие было перенацелено на выпуск немецких моторов Daimler-Benz DB 605, выбранных для установки на венгерские Messerschmitt Me.210.
Перед началом войны в СССР продолжались работы по созданию различных типов реактивных двигателей. Так, в 1939 году прошли испытания ракеты, на которых стояли прямоточные воздушно-реактивные двигатели конструкции И.А. Меркулова.
В том же году на ленинградском Кировском заводе начались работы по постройке первого отечественного турбореактивного двигателя конструкции А.М. Люльки. Однако начавшаяся война прекратила опытные работы над двигателем, направив всю мощность производства на нужды фронта.
Настоящая эра реактивных двигателей началась после завершения Второй мировой войны, когда за короткий промежуток времени был покорен не только звуковой барьер, но и земное притяжение, что позволило вывести человечество в космическое пространство.
Доклад Реактивный двигатель 8 класс сообщение
- Энциклопедия
- Разное
- Реактивный двигатель
Реактивный двигатель — это машина, которая превращает богатое энергией жидкое топливо в мощную силу толкания, называемую тягой. Тяга от одного или нескольких двигателей толкает самолет вперед, заставляя воздух проходить вдоль крыльев, в результате чего создается восходящая сила, называемая подъемом.
Все реактивные двигатели работают одинаково: втягивают воздух во входное отверстие, сжимают его, сжигают вместе с топливом и выводят выхлопные газы через турбину наружу. Поэтому все реактивные двигатели имеют пять ключевых компонентов: вход, компрессор, камеру сгорания и турбину. Но различные типы двигателей могут значительно отличаться друг от друга. Они могут иметь дополнительные компоненты, управляемые турбиной, входы у них могут работать по-разному, может быть более одной камеры сгорания, два или более компрессоров и несколько турбин.
Турбореактивный двигатель — это самый простой реактивный двигатель, основанный на газовой турбине. В нем базовая «ракетная» струя двигает плоскость вперед, стреляя горячей струей выхлопа назад. Выхлоп выходит из двигателя намного быстрее, чем холодный воздух входит в него, что и создает тягу.
Турбореактивные двигатели — это базовые реактивные двигатели общего назначения, которые постоянно производят одинаковое количество энергии, поэтому они подходят для небольших малоскоростных реактивных самолетов, которые не должны делать ничего особенно примечательного, например, внезапно ускоряться или перевозить огромные, тяжелые грузы.
Турбовальный двигатель сильно отличается от турбореактивного двигателя, поскольку выхлопной газ производит относительно небольшую тягу. Турбина в турбовальном двигателе передает большую часть мощности на вращение проходящего через нее приводного вала и один или несколько редукторов, которые вращают роторы. Турбовальные двигатели используются на вертолетах, в поездах, танках и лодках.
Современный самолет с пропеллером обычно использует турбовинтовой двигатель. Он похож на турбовальный двигатель в вертолете, но вместо того, чтобы приводить в действие верхний ротор, турбина внутри него вращает пропеллер, установленный спереди, который толкает плоскость вперед. В отличие от турбовального, турбовинтовой двигатель создает прямое движение от выхлопных газов, но большая часть тяги исходит от пропеллера. Поскольку летательные аппараты, управляемые пропеллером, летают медленнее, они тратят меньше энергии на борьбу с сопротивлением воздуха, что делает их очень эффективными для использования в рабочих грузовых самолетах и других небольших легких самолетах.
Гигантские пассажирские самолеты имеют огромные вентиляторы, установленные спереди, которые действуют как сверхэффективные пропеллеры. Вентиляторы работают двумя способами:
- Немного увеличивают движение воздуха, который течет через центр двигателя, создавая большую тягу с тем же топливом, что делает их более эффективными.
- Передают часть воздуха на внешнюю оболочку двигателя, полностью обходя внутреннюю часть, вызывая обратный поток воздуха.
Другими словами, турбовентилятор производит тягу частично как турбореактивный двигатель и частично как турбовинтовой. Низкооборотные турбовентиляторы посылают практически весь воздух через сердечник, в то время как обходные направляют больше воздуха вокруг двигателя. Впечатляющая мощность и эффективность делают турбовинтовые двигатели самыми востребованными: от пассажирских самолетов до реактивных истребителей.
Доклад №2
Устройство и роль ракетных двигателей в жизни людей.
Люди начали осваивать космос очень не скоро: не на чем было выбраться за пределы атмосферы Земли. Дело обстояло в том, что не хватало тяги для данной операции. Только в 1961 году удалось впервые полететь в космос. Все благодаря тому, что наконец – то удалось создать такой двигатель, который был способен вынести ракету за пределы орбиты Земли. Но как устроен ракетный двигатель? Что использовали для получения такой огромной мощи? И применяются ли где – нибудь еще подобные двигатели?
Как работает ракетный двигатель?
Создателем ракетного двигателя был А. Циолковский. Один из важных фактов про работу ракетного двигателя – это то, что его действие зависит от закона сохранения импульса. Для тех, кто не знает данный закон, я напомню: сумма импульсов до взаимодействия тел равна сумме импульсов после взаимодействия тел. Кстати говоря, ракетные двигатели работоспособны даже там, где отсутствует воздух. Главный компонент для отличной работы двигателей – это твердое топливо, которое вскоре начинает прогорать. Когда оно сгорит полностью, тогда образуется достаточная масса горючего газа. Весь этот газ образуется в мощную струю, благодаря которой ракета движется в направлении, противоположном направлению газового потока.
Роль ракетных двигателей в жизни людей.
К сожалению, у такого рода двигателей только одна задача, о которой уже было говорено ранее. Их цель – отправить ракету в космос, ведь у других двигателей не хватает мощи для этого. Больше ракетные двигатели нигде применения не находят.
Разновидности ракетных двигателей.
Да, они бывают нескольких видов. Главное их отличие – это источник энергии, он же – топливо для двигателей. Итак, вот эти самые виды:
• Химические.
Самый многочисленный, если подумать. Здесь топливом является реакция определенного горючего и окислителя. Затем всю «смесь» нагревают до высокой температуры, что ведет к расширению топлива, которое следом разгоняют в сопле Лаваля. В итоге, то, что получилось, выталкивает ракету. Стоит отметить, что уже в 2013 году данный вид двигателя улучшили до максимума, а значит, у ракет с химическим двигателем есть свой предел.
• Электрические.
Нетрудно догадаться, что в данном случае будет топливом. Импульс электрических двигателей способен достичь отметки 210 километров в час.
• Плазменные.
Схож с прошлым типом двигателей, только здесь ракета будет ускоряться, когда топливо находится в плазменном состоянии. На данный момент существует только один такой двигатель.
8 класс
Реактивный двигатель
Популярные темы сообщений
- Бешенство (характеристика вируса, симптомы и признаки)
Бешенство — это опасное вирусное инфекционное заболевание, развивающееся с тяжелым поражением нервной системы и завершающееся, в большинстве случаев, летальным исходом.
- Сказки Пушкина
Практически каждый из нас знаком с творчеством известного русского писателя XIX века Александром Сергеевичем Пушкиным. Именно этот творческий деятель был создателем русского литературного языка. Но мало кто знает,
- Круговорот воды в природе
С тех пор как образовалась планета на которой мы живем прошло очень много времени. Но общее число вод на ней, можно сказать осталось без изменения. Но поскольку вода все время совершает движение на земной поверхности
- Ковыль (растение)
Ковыль – это травянистое растение, относящееся к многолетнему роду. Как представитель семейства злаков оно включает почти 300 видов. Среди наиболее известных разновидностей могут быть названы: волосатик, перистый,
- Полиция России
В России формирование правоохранительных органов началось вместе с формированием государства, как его неотъемлемой части. Главной задачей при этом было обеспечения правопорядка, ведь как известно,
Новый реактивный двигатель на основе воздушной плазмы
Источник: журнал «Наука и техника»
Автор: | Николай Макаренко |
Опубликовано: 07.05.2020, 11:43
Прототип оригинального реактивного двигателя на основе воздушной плазмы может создавать тягу без использования ископаемого топлива, что потенциально позволит решить проблему экологичных воздушных перевозок. Устройство ионизирует воздух микроволнами, генерируя плазму, которая создает тягу. Таким образом, самолеты могут когда-нибудь летать, используя только электричество и воздух вокруг них.
Прототип двигателя, работающего на воздушной плазме создали китайские ученые из Уханьского университета. Исследователи нашли способ создать струю плазмы за счет сильного сжатия воздуха и использования микроволнового излучения для ионизации потока.
Сейчас прототип способен создать струю воздуха, которая может поднять стальной шарик весом один килограмм над трубкой диаметром 24 миллиметра. При увеличении масштабов тяга будет сравнима с показателями реактивных двигателей.
Прототип концепта и серийная реализация двигателя
Между прототипом проверенного концепта и установкой двигателя на реальном самолете предстоит долгий путь. Но прототип смог создать тягу, запустив в воздух стальной шарик весом в один килограмм (2,2 фунта) на 24 миллиметра. Это та же тяга, пропорциональная масштабу, что и у обычного реактивного двигателя.
«Наши результаты показали, что такой реактивный двигатель на основе микроволновой воздушной плазмы может быть потенциально жизнеспособной альтернативой обычному реактивному двигателю на ископаемом топливе», — сказал в своем пресс-релизе ведущий исследователь и инженер Уханьского университета Джау Тан.
Китайские ученые продемонстрировали в лабораторных условиях прототип микроволнового плазменного двигателя, способного работать в атмосфере Земли и создавать тягу с эффективностью, сравнимой с реактивными двигателями, которые используются на современных авиалайнерах.
Воздушно-плазменное реактивные двигатели — новый подход к решению проблемы
В предлагаемом опытном образце реактивного двигателя используется воздушная плазма, индуцированная микроволновой ионизацией. Такой реактивный двигатель просто использует воздух и электричество для получения высокой температуры и плазмы под давлением для создания реактивной силы. Исследователи продемонстрировали, что при одинаковом энергопотреблении его тяга сопоставима с тягой обычных реактивных двигателей самолетов, использующих ископаемое топливо. Следовательно, такой двигатель без выбросов углерода может потенциально использоваться в качестве реактивного двигателя в атмосфере.
В конструкции двигателя используется воздушный компрессор для создания начальной скорости воздуха, затем ионизируется воздух в плазму и нагревается до высоких температур и давлений с помощью мощного микроволнового излучателя
Подобно твердым телам, жидкостям и газам, плазма является нормальным состоянием вещества. Плазма естественным образом возникает вследствие ионизации молекул при высоких температурах (например, на солнце) или в сильных электрических полях (например, при молнии). В лаборатории плазма может генерироваться с использованием электрической дуги, микроволнового резонатора, лазера, пламени огня или высоковольтного разряда.
Плазма имеет широкое применение во многих областях, в т. ч. на реактивных двигателях космических кораблей, использующих ксеноновую плазму. При этом она создает небольшую тягу и может использоваться только в космическом безвоздушном пространстве.
Плазменные двигатели уже применяются на космических кораблях в качестве средства солнечно-электрического передвижения, использующего плазму ксенона, но такие вещи бесполезны в атмосфере Земли, поскольку ускоренные ионы ксенона теряют большую часть своей силы тяги из-за трения о воздух. Не говоря уже о том, что они не создают достаточной тяги.
Новый проект, разработанный и созданный группой специалистов из Института технических наук Уханьского университета, использует только воздух и электричество и, по-видимому, произведет впечатляющий прорыв, который может привести к тому, что он станет актуальным для применения в электрических самолетах.
Воздушно-плазменное реактивное устройство работает путем ионизации воздуха, чтобы создать низкотемпературную плазму, которая продувается воздушным компрессором. На полпути вверх по трубе в ионизационной камере на плазму воздействует мощный микроволновый излучатель частотой 2,45 ГГц, который сильно «встряхивает» ионы в плазме, разбивая их о другие неионизированные атомы и значительно повышая температуру и давление плазмы. Эта температура и давление создают значительную силу тяги.
В предлагаемом прототипе плазменного реактивного двигателя может генерироваться приблизительно 11 Н тяги при 400 Вт мощности, используя 0,5 л / с для воздушного потока, что соответствует тяге 28 Н / кВт и давлению струи 2,4 × 10 4 Н / м2. При более высокой микроволновой мощности или большем потоке воздуха могут быть достигнуты силы тяги и реактивные давления, сравнимые с показателями реактивных двигателей коммерческих самолетов.
Исследователи проверили параметры в диапазоне различных уровней мощности и скоростей воздушного потока, и, несмотря на несколько импровизированную технику измерения, они обнаружили линейную зависимость между движущей силой тяги и микроволновой мощностью, а также воздушным потоком.
Реальные достижения и обоснованные сомнения
С точки зрения эффективности, движущая сила при 400 Вт и 1,45 кубических метров воздуха в час составила 11 Ньютонов, что представляет собой преобразование мощности в тягу 27,5 Н / кВт. Предполагая линейную экстраполяцию, команда предположила, что она может взять батарею Tesla Model S, способную выдавать мощность 310 кВт, и превратить ее в нечто вроде силы тяги в 8500 Н.
Для сравнения, в электрическом самолете Airbus E-Fan используется пара вентиляторов с электроприводом мощностью 30 кВт, которые в совокупности производят 1500 Н тяги. Это подразумевало бы высокие показатели — около 25 Н / кВт, что не так хорошо, как у первого прототипа, собранного в этой лаборатории.
Исследователи утверждают, что эффективность тяги уже сравнима с эффективностью реактивных двигателей коммерческих самолетов. Исследователи уже работают над отказом от метода испытаний стальных шариков для чего-то более надежного и точного, а также пытаются повысить эффективность конструкции. Но уже полученные результаты, безусловно, выглядят многообещающими для этой новой идеи плазменного двигателя в двигателе электрического самолета, с несколькими важными оговорками.
Во-первых, в eVTOL не будет большой замены в качестве замены оборудования или канального вентилятора, независимо от того, насколько тише он может работать, если эта плазма выходит при температурах в тысячи градусов. И, во-вторых, как было отмечено в анализе Ars Technica , «воздушные потоки примерно в 15 000 раз ниже, чем у полноразмерного двигателя. Тяга также должна масштабироваться примерно на четыре порядка (то есть мощность тоже.) Экстраполяция линейных трендов на четыре порядка — хороший способ разочароваться в жизни».
Кроме того, по какой-то причине точки данных не показывают самые высокие уровни микроволновой мощности при самых высоких воздушных скоростях, которые, как кажется, позволяет испытательный стенд, сигнализируя о том, что в лаборатории уже могут начаться странные вещи.
И, наконец, даже если он является настолько же эффективным или более эффективным, чем обычный старый двигатель Airbus для данного количества потребляемой энергии, факт остается фактом: авиационное топливо несет гораздо больше энергии для данного веса, чем батареи. Тем не менее, это интересная и новая конструкция плазменного двигателя, и интересно посмотреть, что из этого выйдет. Если он окажется масштабируемым и эффективным до уровня, благоприятного для воздушных судов, он может внести реальный вклад в развивающуюся область электрической авиации с нулевыми локальными выбросами.
Авторские права на данный материал принадлежат журналу «Наука и техника».
Цель включения данного материала в дайджест — сбор
максимального количества публикаций в СМИ и сообщений компаний по
авиационной тематике. Агентство «АвиаПорт» не гарантирует достоверность, точность, полноту и
качество данного материала.
реактивный двигатель | инжиниринг | Британика
реактивный двигатель
Посмотреть все СМИ
- Ключевые люди:
- сэр Фрэнк Уиттл
Ганс Иоахим Пабст фон Охайн
Лоуренс Дейл Белл
- Похожие темы:
- турбореактивный
прямоточный воздушно-реактивный двигатель
движитель
турбовальный
турбореактивный двигатель
Просмотреть весь связанный контент →
Сводка
Прочтите краткий обзор этой темы
реактивный двигатель , любой из класса двигателей внутреннего сгорания, которые приводят в движение самолет посредством выброса назад струи жидкости, обычно горячих выхлопных газов, образующихся при сжигании топлива с воздухом, всасываемым из атмосферы.
Общие характеристики
Первичным двигателем практически всех реактивных двигателей является газовая турбина. Газовая турбина, которую по-разному называют активной зоной, генератором газа, газификатором или генератором газа, преобразует энергию, полученную в результате сгорания жидкого углеводородного топлива, в механическую энергию в виде воздушного потока высокого давления и высокой температуры. Затем эта энергия используется тем, что называется движителем (например, пропеллером самолета и ротором вертолета), для создания тяги, с помощью которой самолет движется.
Принцип действия
Газовая турбина работает по циклу Брайтона, в котором рабочим телом является непрерывный поток воздуха, подаваемый на вход двигателя. Сначала воздух сжимается турбокомпрессором до степени сжатия, обычно в 10-40 раз превышающей давление входного воздушного потока (как показано на рисунке 1). Затем он поступает в камеру сгорания, где вводится устойчивый поток углеводородного топлива в виде распыляемых капель жидкости и пара или того и другого и сгорает при приблизительно постоянном давлении. Это приводит к непрерывному потоку продуктов сгорания под высоким давлением, средняя температура которых обычно составляет от 9от 80 до 1540 °C или выше. Этот поток газов проходит через турбину, которая соединена валом крутящего момента с компрессором и извлекает энергию из газового потока для приведения в действие компрессора. Поскольку к рабочему телу подводится тепло под высоким давлением, газовый поток, выходящий из газогенератора после расширения через турбину, содержит значительное количество избыточной энергии, т. температура и высокая скорость, которые можно использовать для движения.
Теплота, выделяемая при сжигании обычного топлива для реактивных двигателей в воздухе, составляет приблизительно 43 370 килоджоулей на килограмм (18 650 британских тепловых единиц на фунт) топлива. Если бы этот процесс был эффективен на 100 процентов, он тогда производил бы мощность газа на каждую единицу расхода топлива в размере 7,45 лошадиных сил/(фунтов в час) или 12 киловатт/(кг в час). На самом деле, некоторые практические термодинамические ограничения, которые являются функцией пиковой температуры газа, достигаемой в цикле, ограничивают эффективность процесса примерно до 40 процентов от этого идеального значения. Пиковое давление, достигаемое в цикле, также влияет на эффективность выработки энергии. Это означает, что нижний предел удельного расхода топлива (SFC) для двигателя, производящего газ, составляет 0,336 (фунт в час)/лошадиная сила или 0,207 (кг в час)/киловатт. На практике SFC даже выше этого нижнего предела из-за неэффективности, потерь и утечек в отдельных компонентах первичного двигателя.
Викторина «Британника»
Изобретатели и изобретения
Наши первые человеческие предки изобрели колесо, но кто изобрел шарикоподшипник, уменьшающий трение при вращении? Пусть крутятся колеса в вашей голове, проверяя свои знания об изобретателях и их изобретениях в этой викторине.
Поскольку вес и объем имеют первостепенное значение в общей конструкции самолета и поскольку силовая установка составляет значительную долю от общего веса и объема любого самолета, эти параметры должны быть сведены к минимуму в конструкции двигателя. Воздушный поток, проходящий через двигатель, является репрезентативной мерой площади поперечного сечения двигателя и, следовательно, его веса и объема. Поэтому важным показателем качества первичного двигателя является его удельная мощность — количество энергии, которое он вырабатывает на единицу воздушного потока. Эта величина очень сильно зависит от пиковой температуры газа в активной зоне на выходе из камеры сгорания. Современные двигатели генерируют от 150 до 250 лошадиных сил/(фунт в секунду), или от 247 до 411 киловатт/(кг в секунду).
Движитель
Газовая мощность, вырабатываемая первичным двигателем в виде горячего газа под высоким давлением, используется для привода движителя, позволяя ему создавать тягу для движения или подъема самолета. Принцип создания такой тяги основан на втором законе движения Ньютона. Этот закон обобщает наблюдение, что сила ( F ), необходимая для ускорения дискретной массы ( м ), пропорциональна произведению этой массы на ускорение ( и ). Фактически, где масса берется как вес ( w ) объекта, деленный на ускорение свободного падения ( г ) в месте, где объект был взвешен. В случае реактивного двигателя обычно имеют дело с ускорением постоянного потока воздуха, а не с дискретной массой. Здесь эквивалентное утверждение второго закона движения состоит в том, что сила ( F ), необходимая для увеличения скорости потока жидкости, пропорциональна произведению скорости массового потока ( M ) потока и изменение скорости потока, где за скорость полета принята скорость на входе ( V 0 ) относительно двигателя и скорость нагнетания ( V j ) — скорость выхлопа или струи относительно двигателя. W — скорость массового расхода рабочего тела (т. е. воздуха или продуктов сгорания), деленная на ускорение свободного падения в месте, где измеряется массовый расход. Относительно небольшое влияние массового расхода топлива на создание разницы между массовым расходом впускного и выпускного потоков намеренно не учитывается.
Оформите подписку Britannica Premium и получите доступ к эксклюзивному контенту.
Подпишитесь сейчас
Таким образом, можно сделать вывод, что компоненты движителя должны воздействовать силой F на поток воздуха, проходящий через движитель, если это устройство ускоряет воздушный поток от скорости полета V 0 до скорости нагнетания В j . Реакция на эту силу F в конечном итоге передается опорами движителя на самолет в виде тяги.
Существует два основных подхода к преобразованию мощности газа в тягу. В одном случае вторая турбина (т. е. турбина низкого давления или мощность) может быть введена в проточную часть двигателя для извлечения дополнительной механической мощности из имеющейся газовой мощности в лошадиных силах. Затем эта механическая энергия может быть использована для приведения в движение внешнего движителя, такого как пропеллер самолета или винт вертолета. В этом случае тяга создается в движителе, поскольку он возбуждает и ускоряет воздушный поток, проходящий через движитель, т. Е. Воздушный поток, отдельный от потока, протекающего через первичный двигатель.
При втором подходе высокоэнергетический поток, подаваемый первичным двигателем, может подаваться непосредственно в реактивное сопло, которое разгоняет газовый поток до очень высокой скорости на выходе из двигателя, что характерно для турбореактивного двигателя. В этом случае тяга создается в компонентах первичного двигателя, поскольку они возбуждают газовый поток.
В других типах двигателей, таких как ТРДД, тяга создается обоими способами: основная часть тяги создается вентилятором, который приводится в действие турбиной низкого давления и который возбуждает и ускоряет байпасный поток ( см. ниже ). Оставшаяся часть общей тяги создается основным потоком, который выбрасывается через реактивное сопло.
Как первичный двигатель является несовершенным устройством для преобразования тепла сгорания топлива в мощность газа, так и движитель является несовершенным устройством для преобразования мощности газа в тягу. Обычно в высокотемпературном и высокоскоростном реактивном потоке, выходящем из движителя, остается много энергии, которая не полностью используется для движения. КПД движителя, КПД движителя η p , часть доступной энергии, которая используется для приведения в движение самолета, по сравнению с полной энергией реактивного потока. Для простого, но репрезентативного случая, когда поток нагнетаемого воздуха равен потоку входящего газа, установлено, что
Хотя скорость струи V j должна быть больше скорости самолета V 0 для создания полезной тяги, большая скорость реактивной струи, которая значительно превышает скорость полета, может быть очень вредной для тяговой эффективности. Максимальная тяговая эффективность достигается, когда скорость реактивной струи почти равна (но, по необходимости, немного выше) скорости полета. Этот фундаментальный факт привел к появлению большого разнообразия реактивных двигателей, каждый из которых предназначен для создания определенного диапазона реактивных скоростей, который соответствует диапазону скоростей полета самолета, который он должен приводить в действие.
Чистая оценка эффективности реактивного двигателя представляет собой измерение скорости расхода топлива на единицу развиваемой тяги (например, в фунтах или килограммах в час расходуемого топлива на фунты или килограммы тяги генерируется). Не существует простого обобщения величины удельного расхода топлива двигателя тяги. Это зависит не только от эффективности первичного двигателя (и, следовательно, от его отношения давления и температуры пикового цикла), но также и от тяговой эффективности движителя (и, следовательно, от типа двигателя). Это также сильно зависит от скорости полета самолета и температуры окружающей среды (которая, в свою очередь, сильно зависит от высоты, времени года и широты).
Как работают 4 типа газотурбинных двигателей
Прямой эфир из кабины экипажа
Газотурбинные двигатели прошли долгий путь с 1903 года. Это был первый год, когда газовая турбина производила достаточную мощность для поддержания своей работы. Дизайн был разработан норвежским изобретателем Эгидусом Эллингом, и он производил 11 лошадиных сил, что было огромным достижением в то время.
В наши дни газотурбинные двигатели бывают всех форм и размеров, и большинство из них производят много более 11 лошадиных сил. Вот 4 основных типа газотурбинных двигателей, а также плюсы и минусы каждого.
1) Турбореактивный двигатель
Википедия
Heinkel He 178, первый в мире турбореактивный самолет
Турбореактивные двигатели были первым типом изобретенных газотурбинных двигателей. И хотя они выглядят совершенно иначе, чем поршневой двигатель в вашем автомобиле или самолете, они работают по той же теории: впуск , сжатие, мощность, выпуск .
Как работает турбореактивный двигатель?
Турбореактивные двигатели работают за счет пропускания воздуха через 5 основных секций двигателя:
Шаг 1: воздухозаборник
Воздухозаборник представляет собой трубу перед двигателем. Воздухозаборник может показаться простым, но он невероятно важен. Задача воздухозаборника — плавно направлять воздух на лопатки компрессора. На малых скоростях ему нужно минимизировать потери воздушного потока в двигатель, а на сверхзвуковых — замедлять воздушный поток ниже 1 Маха (воздух, поступающий в ТРД, должен быть дозвуковым, независимо от того, с какой скоростью летит самолет ).
Этап 2: Компрессор
Компрессор приводится в действие турбиной в задней части двигателя, и его работа заключается в сжатии поступающего воздуха, что значительно увеличивает давление воздуха. Компрессор представляет собой серию «вентиляторов», каждый из которых имеет лопасти все меньшего и меньшего размера. Когда воздух проходит через каждую ступень компрессора, он становится более сжатым.
Этап 3: Камера сгорания
Далее идет камера сгорания, где действительно начинается волшебство. Воздух высокого давления соединяется с топливом, и смесь воспламеняется. Когда топливовоздушная смесь сгорает, она проходит через двигатель к турбине. Турбореактивные двигатели работают на очень обедненной смеси, примерно 50 частей воздуха на 1 часть топлива (большинство поршневых двигателей работают в диапазоне от 6 к 1 до 18 к 1). Одна из основных причин, по которой турбины работают с таким обеднением, заключается в том, что для охлаждения турбореактивного двигателя необходим дополнительный поток воздуха.
Этап 4: Турбина
Турбина — это еще одна серия «вентиляторов», которые работают как ветряная мельница, поглощая энергию проходящего через нее воздуха с высокой скоростью. Лопатки турбины соединены с валом и вращают его, который также соединен с лопатками компрессора в передней части двигателя. «Круг жизни» турбореактивного двигателя почти завершен.
Этап 5: Выхлоп (также известный как «Я ухожу!»)
Топливно-воздушная смесь, сгоревшая на высокой скорости, выходит из двигателя через выхлопное сопло. Когда высокоскоростной воздух выходит из задней части двигателя, он создает тягу и толкает самолет (или то, к чему он прикреплен) вперед.
Турбореактивный двигатель на вынос:
- Плюсы:
- Относительно простая конструкция
- Возможность очень высоких скоростей
- Занимает мало места
- Минусы:
- Высокий расход топлива
- Громко
- Низкая производительность на малых скоростях
2) Турбовинтовой двигатель
Прямой эфир из кабины экипажа
King Air с турбовинтовыми двигателями
Следующие три типа газотурбинных двигателей представляют собой все виды турбореактивных двигателей, и мы начнем с турбовинтовых. Турбовинтовой двигатель представляет собой турбореактивный двигатель, соединенный с воздушным винтом через систему зубчатых передач.
Как работает турбовинтовой двигатель?
Этап 1 : Турбореактивный двигатель вращает вал, который соединен с коробкой передач.
Шаг 2 : Коробка передач замедляет вращение, и самая медленная передача соединяется с пропеллером
Шаг 3 : Пропеллер вращается в воздухе, создавая тягу точно так же, как ваша Cessna 172
Вынос турбовинтового двигателя:
- Плюсы:
- Очень экономичный
- Наиболее эффективен на средней скорости 250-400 узлов
- Наиболее эффективен на средних высотах 18 000–30 000 футов
- Минусы:
- Ограниченная скорость полета вперед
- Системы зубчатых передач тяжелые и могут сломаться
3) Турбовентиляторный двигатель
Прямой эфир из кабины экипажа
Некоторые широкофюзеляжные турбовентиляторные двигатели могут развивать тягу более 100 000 фунтов
Турбовентиляторы сочетают в себе лучшее из обоих миров между турбореактивными и турбовинтовыми двигателями. И вы, вероятно, увидите эти двигатели, когда отправитесь в аэропорт на следующий рейс.
Как работает турбовентиляторный двигатель?
Турбовентиляторные двигатели работают путем прикрепления канального вентилятора к передней части турбореактивного двигателя. Вентилятор создает дополнительную тягу, способствует охлаждению двигателя и снижает уровень шума двигателя.
Шаг 1 : Входящий воздух разделяется на два отдельных потока. Один поток обтекает двигатель (перепускной воздух), а другой проходит через сердцевину двигателя.
Этап 2 : Перепускной воздух проходит вокруг двигателя и ускоряется канальным вентилятором, создавая дополнительную тягу.
Этап 3 : Воздух проходит через турбореактивный двигатель, продолжая создавать тягу.
Турбовентилятор на вынос:
- Плюсы:
- Экономичный
- Тише турбореактивных двигателей
- Они выглядят потрясающе
- Минусы:
- Тяжелее турбореактивных двигателей
- Большая лобовая площадь, чем у турбореактивных двигателей
- Неэффективен на очень больших высотах
USAF
ТРДД Pratt & Whitney F100 с форсажной камерой на F-16
4) Турбовальный двигатель
NASA
Вертолет Bell 206 с турбовальным двигателем
Турбовальные двигатели в основном используются на вертолетах. Самая большая разница между турбовальными и турбореактивными двигателями заключается в том, что турбовальные двигатели используют большую часть своей мощности для вращения турбины, а не для создания тяги в задней части двигателя.
Как работает турбовальный вал?
Турбовальные двигатели представляют собой турбореактивные двигатели с большим валом, соединенным с задней частью. А поскольку большинство этих двигателей используются на вертолетах, этот вал соединен с трансмиссией лопастей несущего винта.
Шаг 1 : Двигатель по большей части работает как турбореактивный.
Этап 2 : Приводной вал, прикрепленный к турбине, приводит в действие трансмиссию.
Этап 3 : Трансмиссия передает вращение от вала к лопасти ротора.
Шаг 4 : Вертолет, в основном неизвестными и магическими средствами, может летать по небу.
Вынос турбовального вала:
- Плюсы:
- Гораздо более высокое отношение мощности к весу, чем у поршневых двигателей
- Обычно меньше поршневых двигателей
- Минусы:
- Громко
- Системы зубчатых передач, соединенные с валом, могут быть сложными и ломаться
4 типа двигателей, основанных на одной базовой концепции
Газотурбинные двигатели прошли долгий путь за последние 100 лет. И хотя турбореактивные, турбовинтовые, турбовентиляторные и турбовальные двигатели имеют свои различия, они производят мощность практически одинаково: впуск, сжатие, мощность и выхлоп.
Станьте лучшим пилотом.
Подпишитесь, чтобы получать последние видео, статьи и тесты, которые помогут вам стать более умным и безопасным пилотом.
Зарегистрироваться >
НАЗВАНИЕ
- Бирка
- Автор
- Дата
Реактивный двигатель Определение и значение
- Основные определения
- Викторина
- Родственный контент
- Примеры
- Британский
- Научная
показывает уровень сложности
.
Сохрани это слово!
См. синонимы слова реактивный двигатель на сайте Thesaurus.com
Показывает уровень обучения в зависимости от сложности слова.
сущ.
двигатель, такой как авиационный двигатель, который создает движение вперед за счет выброса назад струи жидкости или нагретого воздуха и газов.
ВИКТОРИНА
Сыграем ли мы «ДОЛЖЕН» ПРОТИВ. «ДОЛЖЕН» ВЫЗОВ?
Следует ли вам пройти этот тест на «должен» или «должен»? Это должно оказаться быстрым вызовом!
Вопрос 1 из 6
Какая форма используется для указания обязательства или обязанности кого-либо?
Также называется реактивным двигателем, реактивным двигателем.
Происхождение реактивного двигателя
Впервые записано в 1940–45 гг. ком без сокращений
На основе Random House Unabridged Dictionary, © Random House, Inc. 2022
Слова, относящиеся к реактивному двигателю
fanjet, pulsejet, ramjet, реактивный двигатель, ракета, ракетный двигатель, турбовентиляторный, турбореактивный, турбовинтовой
Как использовать реактивный двигатель в предложении
Компания использовала машинное обучение для удаленного контроля работы оборудования реактивных двигателей и атомных электростанций.
Как носимый искусственный интеллект может помочь вам вылечиться от COVID|Род МакКаллом|9 июня 2021 г.|MIT Technology Review
Мы обнаружили проблемы в реактивных двигателях до того, как GE, Pratt & Whitney и Rolls-Royce разработали персонализированную модель для каждого двигателя.
Как носимый ИИ может помочь вам вылечиться от COVID|Род Маккаллом|9 июня. потом выплюнул.
Полвека назад у Зоны 51 разбился самолет-разведчик ЦРУ. Этот исследователь нашел его.|Сара Скоулз|5 января 2021 г.|Popular-Science
Огромный корабль также оснащен самыми большими реактивными двигателями, GE9X, каждый из которых оснащен вентилятором диаметром 11 футов.
100 величайших инноваций 2020 года|Научно-популярный персонал|2 декабря 2020 г.|Научно-популярный журнал
В конце прошлого месяца Федеральное авиационное управление утвердило самый большой коммерческий реактивный двигатель в мире.
Объяснение самого большого в мире реактивного двигателя|Роб Верже|14 октября 2020 г. |Popular-Science
Кроме того, у самолета нет возможности снимать видео высокой четкости, использовать инфракрасный указатель.
Осечки Пентагона в скандале с реактивным самолетом-невидимкой|Дэйв Маджумдар|8 января 2015 г.|DAILY BEAST
Реактивный двигатель мгновенно принес два преимущества по сравнению с пропеллерами: он удвоил скорость и стал намного надежнее.
Полет 8501 Задает вопрос: современные самолеты слишком автоматизированы для полета?|Клайв Ирвинг|4 января 2015 г.|DAILY BEAST Двигатель Whitney F135 загорелся.
Новый американский реактивный самолет-невидимка не сможет стрелять из пушки до 2019 года | Дэйв Маджумдар | 31 декабря 2014 г. | DAILY BEAST
Но даже когда самолет сможет стрелять из своей пушки, F-35 едва несет достаточно боеприпасов, чтобы сделать это оружие полезным.
Новый американский самолет-невидимка не сможет стрелять из пушки до 2019 года|Дэйв Маджумдар|31 декабря 2014|DAILY BEAST
Поисковые группы находят десятки людей и обломки самолета, плавающие в Яванском море, поскольку авиакомпания подтверждает обломки от QZ8501.
Найдены обломки, тела авиакатастрофы AirAsia|Леннокс Сэмюэлс|30 декабря 2014 г.|DAILY BEAST
Это был всего лишь локомотив, тянущий поезд к станции, чтобы увезти пассажиров.
Смешная свинья Сквинти|Ричард Барнум
«Mon pauvre petit, вы проголодались», — сказал Аристид, неся его к машине, которую трясло от лязгающего двигателя.
Веселые приключения Аристида Пужоля|Уильям Дж. Локк
С другой стороны к машинному отделению примыкает конюшня, где содержатся пять великолепных лошадей.
Бирмингемский словарь Шоуэлла | Томас Т. Харман и Уолтер Шоуэлл
Огромный паровоз, чудесные вагоны, внушительная охрана, занятые носильщики и шумная станция.
Пятьдесят лет железнодорожной жизни в Англии, Шотландии и Ирландии|Джозеф Татлоу
Он нанял паровоз, чтобы вспахать всю свою землю, которая не была подготовлена, кроме того, что арендовал немного больше, а также взял летчик с пшеницей.