Реферат По Авиационному Двигателю – Telegraph

>>> ПОДРОБНЕЕ ЖМИТЕ ЗДЕСЬ <<<

Реферат По Авиационному Двигателю
Copyright © 2005-2020 BestReferat.ru [email protected]
реклама на сайте
В современной авиации гражданской и военной, в космической технике широкое применение получили реактивные двигатели, в основу создания которых положен принцип получения тяги за счёт силы реакции, возникающей при отбросе от двигателя некоторой массы (рабочего тела), а направление тяги и движения отбрасываемого рабочего тела противоположны. При этом величина тяги пропорциональна произведению массы рабочего тела на скорость её отброса. Так упрощённо можно описать работу реактивного двигателя, а настоящая научная теория наглости современных реактивных двигателей разрабатывалась несколько десятков лет. И в её основе и конструкции реактивных двигателей лежат труды русских учёных и изобретателей, которые в развитии реактивных двигателей и вообще в ракетной техники всегда занимали ведущее место. Конечно, к началу работ по ракетной технике в России относится к 1690г., когда было построено специальное заведение при активном участии Петра 1 для производства пороховых ракет, которые гораздо ранее были использованы в древнем Китае. Тем не менее пороховые ракеты образца 1717г. благодаря своим высоким по тому времени качествам использовались почти без изменения в течение около ста лет. А первые попытки создания авиационного реактивного двигателя следует наверно отнести к 1849 году, когда военный инженер И.М. Третесский предложил для передвижения аэростата использовать силу реактивной струи сжатого газа. В 1881 Кибальчич разработал проект летательного аппарата тяжелее воздуха с реактивным двигателем. Конечно, это были первые попытки использовать силу реактивной струи для летательных аппаратов, а конечно Н.Е.Жуковский, «отец русской авиации», впервые разработавший основные вопросы теории реактивного движения, является по праву основоположником этой теории.
Труды Российских и советских учёных и конструкторов вместе с трудами наших выдающихся соотечественников Н. Е.Жуковского, К.Э.Циолковского, В.В.Уварова, В.П.Мишина и многих других являются основой современной реактивной техники, что позволило создать высокоскоростные истребители типа……, тяжёлые транспортные самолёты типа Руслан, сверхзвуковой лайнер Ту- 144, ракетоноситель Энергия и орбитальную станцию Мир и многое другое, что является нашей славной историей и гордостью России.
I
. Физические основы работы реактивного двигателя.

В основе современных мощных реактивных двигателях различных типов лежит принцип прямой реакции, т.е. принцип создания движущей силы (или тяги) в виде реакции (отдачи) струи вытекающего из двигателя «рабочего вещества», обычно — раскалённых газов.
Во всех двигателях существует два процесса преобразования энергии. Сначала химическая энергия топлива преобразуется в тепловую энергию продуктов сгорания, а затем тепловая энергия используется для совершения механической работы. К таким двигателям относятся поршневые двигатели автомобилей, тепловозов, паровые и газовые турбины электростанций и т. д.
Рассмотрим этот процесс применительно к реактивным двигателям. Начнем с камеры сгорания двигателя, в котором тем или иным способом, зависящим от типа двигателя и рода топлива, уже создана горючая смесь. Это может быть, например, смесь воздуха с керосином, как в турбореактивном двигателе современного реактивного самолёта, или же смесь жидкого кислорода со спиртом, как в некоторых жидкостных ракетных двигателях, или, наконец, какое-нибудь твёрдое топливо пороховых ракет. Горючая смесь может сгорать, т.е. вступать в химическую реакцию с бурным выделением энергии в виде тепла. Способность выделять энергию при химической реакции, и есть потенциальная химическая энергия молекул смеси. Химическая энергия молекул связана с особенностями их строения, точнее, строения их электронных оболочек, т.е. того электронного облака, которое окружает ядра атомов, составляющих молекулу. В результате химической реакции, при которой одни молекулы разрушаются, а другие возникают, происходит, естественно, перестройка электронных оболочек. В этой перестройке — источник выделяющейся химической энергии. Видно, что топливами реактивных двигателей могут служить лишь такие вещества, которые при химической реакции в двигателе (сгорании) выделяют достаточно много тепла, а также образуют при этом большое количество газов. Все эти процессы происходят в камере сгорания, но остановимся на реакции не на молекулярном уровне (это уже рассмотрели выше), а на «фазах» работы. Пока сгорание не началось, смесь обладает большим запасом потенциальной химической энергии. Но вот пламя охватило смесь, ещё мгновение — и химическая реакция закончена. Теперь уже вместо молекул горючей смеси камеру заполняют молекулы продуктов горения, более плотно «упакованные». Избыток энергии связи, представляющей собой химическую энергию прошедшей реакции сгорания, выделился. Обладающие этой избыточной энергией молекулы почти мгновенно передали её другим молекулам и атомам в результате частых столкновений с ними. Все молекулы и атомы в камере сгорания стали беспорядочно, хаотично двигаться со значительно более высокой скоростью, температура газов возросла. Так произошел переход потенциальной химической энергии топлива в тепловую энергию продуктов сгорания.
Подобных переход осуществлялся и во всех других тепловых двигателях, но реактивные двигатели принципиально отличаются от них в отношении дальнейшей судьбы раскалённых продуктов сгорания.
После того, как в тепловом двигателе образовались горячие газы, заключающие в себя большую тепловую энергию, эта энергия должна быть преобразована в механическую. Ведь двигатели для того и служат, чтобы совершать механическую работу, что-то «двигать», приводить в действие, все равно, будь то динамо-машина на просьба дополнить рисунками электростанции, тепловоз, автомобиль или самолёт.
Чтобы тепловая энергия газов перешла в механическую, их объём должен возрасти. При таком расширении газы и совершают работу, на которую затрачивается их внутренняя и тепловая энергия.
В случае поршневого двигателя расширяющиеся газы давят на поршень, движущийся внутри цилиндра, поршень толкает шатун, а тот уже вращает коленчатый вал двигателя. Вал связывается с ротором динамомашины, ведущими осями тепловоза или автомобиля или же воздушным винтом самолёта — двигатель совершает полезную работу. В паровой машине, или газовой турбине газы, расширяясь, заставляют вращать связанное с валом турбиной колесо — здесь отпадает нужда в передаточном кривошипно-шатунном механизме, в чем заключается одно из больших преимуществ турбины
Расширяются газы, конечно, и в реактивном двигателе, ведь без этого они не совершают работы. Но работа расширения в том случае не затрачивается на вращение вала. Связанного с приводным механизмом, как в других тепловых двигателях. Назначение реактивного двигателя иное — создавать реактивную тягу, а для этого необходимо, чтобы из двигателя вытекала наружу с большой скоростью струя газов — продуктов сгорания: сила реакции этой струи и есть тяга двигателя. Следовательно, работа расширения газообразных продуктов сгорания топлива в двигателе должна быть затрачена на разгон самих же газов. Это значит, что тепловая энергия газов в реактивном двигателе должна быть преобразована в их кинетическую энергию — беспорядочное хаотическое тепловое движение молекул должно замениться организованным их течением в одном, общем для всех направлении.
Для этой цели служит одна из важнейших частей двигателя, так называемое реактивное сопло. К какому бы не все в там правда типу не принадлежал тот или иной реактивный двигатель, он обязательно снабжен соплом, через которое из двигателя наружу с огромной скоростью вытекают раскалённые газы — продукты сгорания топлива в двигателе. В одних двигателях газы попадают в сопло сразу же после камеры сгорания, например, в ракетных или прямоточных двигателях. В других, турбореактивных, — газы сначала проходят через турбину, которой отдают часть своей тепловой энергии. Она расходует в этом случае для приведения в движение компрессора, служащего для сжатия воздуха перед камерой сгорания. Но, так или иначе, сопло является последней частью двигателя — через него текут газы, перед тем как покинуть двигатель.
Реактивное сопло может иметь различные формы, и, тем более, разную конструкцию в зависимости от типа двигателя. Главное заключается в той скорости, с которой газы вытекают из двигателя. Если эта скорость истечения не превосходит скорости, с которой в вытекающих газах распространяются звуковые волны, то сопло представляет собой простой цилиндрический или суживающий отрезок трубы. Если же скорость истечения должна превосходить скорость звука, то соплу придается форма расширяющейся трубы или же сначала суживающейся, а за тем расширяющейся (сопло Лавля). Только в трубе такой формы, как показывает теория и опыт, можно разогнать газ до сверхзвуковых скоростей, перешагнуть через «звуковой барьер».
II
. Классификация реактивных двигателей и особенности их использования

Однако этот могучий ствол, принцип прямой реакции, дал жизнь огромной кроне «генеалогического дерева» семьи реактивных двигателей. Чтобы познакомиться с основными ветвями его кроны, венчающей «ствол» прямой реакции. Вскоре, как можно видеть по рисунку (см. ниже), этот ствол делится на две части, как бы расщепленный ударом молнии. Оба новых ствола одинаково украшены могучими кронами. Это деление произошло по тому, что все «химические» реактивные двигатели делятся на два класса в зависимости от того, используют они для своей работы окружающий воздух или нет.
Один из вновь образованных стволов — это класс воздушно-реактивных двигателей (ВРД). Как показывает само название, они не могут работать вне атмосферы. Вот почему эти двигатели — основа современной авиации, как пилотируемой, так и беспилотной. ВРД используют атмосферный кислород для сгорания топлива, без него реакция сгорания в двигателе не пойдет. Но все же в настоящее время наиболее широко применяются турбореактивные двигатели
(ТРД), устанавливаемые почти на всех без исключения современных самолётах. Как и все двигатели, использующие атмосферный воздух, ТРД нуждаются в специальном устройстве для сжатия воздуха перед его подачей в камеру сгорания. Ведь если давление в камере сгорания не будет значительно превышать атмосферное, то газы не станут вытекать из двигателя с большей скоростью — именно давление выталкивает их наружу. Но при малой скорости истечения тяга двигателя будет малой, а топлива двигатель будет расходовать много, такой двигатель не найдёт применения. В ТРД для сжатия воздуха служит компрессор, и конструкция двигателя во многом зависит от типа компрессора. Существует двигатели с осевым и центробежным компрессором, осевые компрессоры могут иметь спасибо за пользование нашей системой меньшее или большее число ступеней сжатия, быть одно-двухкаскадными и т.д. Для приведения во вращение компрессора ТРД имеет газовую турбину, которая и дала название двигателю. Из-за компрессора и турбины конструкция двигателя оказывается весьма сложной.
Значительно проще по конструкции безкомпрессорные воздушно-реактивные двигатели, в которых необходимое повышение давления осуществляется другими способами, которые имеют названия: пульсирующие и прямоточные двигатели.
В пульсирующем двигателе для этого служит обычно клапанная решётка, установленная на входе в двигатель, когда новая порция топливно-воздушной смеси заполняет камеру сгорания и в ней происходит вспышка, клапаны закрываются, изолируя камеру сгорания от входного отверстия двигателя. Вследствие того давление в камере повышается, и газы устремляются через реактивное сопло наружу, после чего весь процесс повторяется.
В бескомпрессорном двигателе другого типа, прямоточном, нет даже и этой клапанной решётки и давление в камере сгорания повышается в результате скоростного напора, т.е. торможения встречного потока воздуха, поступающего в двигатель в полёте. Понятно, что такой двигатель способен работать только тогда, когда летательный аппарат уже летит с достаточно большой скоростью, на стоянке он тяги не разовьет. Но зато при весьма большой скорости, в 4-5 раз большей скорости звука, прямоточный двигатель развивает очень большую тягу и расходует меньше топлива, чем любой другой «химический» реактивный двигатель при этих условиях. Вот почему прямоточные двигатели.
Особенность аэродинамической схемы сверхзвуковых летательных аппаратов с прямоточными воздушно-реактивными двигателями (ПВРД) обусловлена наличием специальных ускорительных двигателей, обеспечивающих скорость движения, необходимую для начала устойчивой работы ПРД. Это утяжеляет хвостовую часть конструкции и для обеспечения необходимой устойчивости требует установки стабилизаторов.
III
.Особенности проектирования и создания летательного аппарата.

Рассмотрим реактивного движения при разных скоростях возьмем два типа реактивного движения: дозвуковое и сверхзвуковое. На любой скорости важную роль играет аэродинамика летательного аппарата.
Аэродинамика — наука о движении тел в воздушной среде — является теоретической основной авиации. Без успехов аэродинамики не возможно было бы стремительное развитие авиации, столь характерное для нашего времени. Но успехи аэродинамики были бы немыслимы без проведения экспериментальных работ, в основе которых использование аэродинамических труб, позволяющих производить моделирование полёта летательного аппарата с учётом теории подобия, в результате чего испытуемое изделие закреплялось стационарно, а воздушный поток набегал на него.
Это позволило инженерам решить сложные вопросы аэродинамики крыла, оптимизировать формы фюзеляжа, решить проблемы штопора, флаттера, вопросы преодоления вниз звукового барьера и многие другие, инженерные и научные вопросы теории газодинамики. На лабораторной базе Центрального аэрогидродинамического университета (ЦАГУ) проводились основные исследования, в том числе и реактивных двигателей (вернее их масштабных моделей) при дозвуковом и сверхзвуковом набегающем потоке. Результатами этих работ явились научные труды, позволившие оптимальным образам выбирать характеристики двигателей их компоновку и положение на корпусе фюзеляжа и многое другое. Таким образом, в результате проектных и экспериментальных работ определялся общий вид летательного аппарата.
Но важной особенностью проектных работ являлось выбор двигательной установки, позволившей выполнять изделию заданные технические характеристики. Конечно, на самом деле вопросы выбора двигателя в истории развития авиационной технике шли как бы поэтапно от простого к сложному и соответственно более совершенному, не уменьшая надёжности. Это на современном этапе развития техники мы можем более грамотно (из имеющегося) выбирать компоновку летательного аппарата в соответствии с требуемыми задачами. Поэтому конструктора всегда учитывают особенности двигателей при разных скоростях.
В этих случаях Реактивные двигатели (прямоточные, турбореактивные) используют для своей работы кислород воздуха, поступающий из воздухозаборников, установленных на летательном аппарате.
Размеры воздухозаборных устройств, их число, характер расположения, режимы работы существенно изменяют условия обтекания и аэродинамические свойства летательного аппарата, что в свою очередь влияет на тяговые и экономические характеристики двигателей.
Для обеспечения наименьших потерь полного давления и создания тем самым лучших условий работы двигателей воздухозаборные устройства должны размещаться на летательном аппарате так, чтобы они не затенялись крыльями, оперением и другими впихните свой лицо выступающими частями, т.е. чтобы в зоне входа в воздухозаборное устройство поток испытывал как можно меньшие возмущения
С этой целью нежелательно размещать воздухозаборное устройство вблизи поверхности корпуса на большом удалении от носовой части, если входной канал оказывается в зоне пограничного слоя с достаточно большой толщиной и поступающий воздух будет иметь большие потери полного давления
Вид аэродинамической схемы летательного аппарата с реактивным двигателем зависит от расположения воздухозаборных устройств. При большом удалении воздухозаборника от носовой части летательного аппарата перед входом в него должны быть предусмотрены устройства для отсоса пограничного слоя. Возможно вынесение входного сечения воздухозаборника за пределы пограничного слоя. Всё это предотвращает срыв потока воздуха и улучшает характеристики работы воздухозаборников.
С целью снижения потерь давления воздуха, поступающего в двигатель, и повышения эффективности его работы воздухозаборные устройства вместе с двигателями могут располагаться в виде гондол на крыльях или специальных пилонах. В этом случае для повышения устойчивости и улучшения управляемости предусмотрено хвостовое оперение.
Банк рефератов содержит более 364 тысяч рефератов , курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.

Название: Виды реактивных двигателей, физические основы реактивного движения при разных скоростях
Раздел: Рефераты по истории техники
Тип: реферат
Добавлен 19:33:23 05 октября 2003 Похожие работы
Просмотров: 10780
Комментариев: 29
Оценило: 35 человек
Средний балл: 3. 9
Оценка: 4     Скачать

Привет студентам) если возникают трудности с любой работой (от реферата и контрольных до диплома), можете обратиться на FAST-REFERAT.RU , я там обычно заказываю, все качественно и в срок) в любом случае попробуйте, за спрос денег не берут)
Да, но только в случае крайней необходимости.

Реферат : Виды реактивных двигателей … — BestReferat.ru
История развития авиационных двигателей
Классификация двигателей летательных аппаратов. Поршневые…
История авиационных двигателей
Реферат на тему «Реактивные двигатели , устройство, принцип…»
Сочинение Я Люблю Читать Книги
Платежная Система Мир Реферат
Реферат Банковской Деятельности
Контрольная Работа 1 Четверть 21 Век
Сохраним Чистоту Своего Города Сочинение

Альтернативные двигатели внутреннего сгорания. Методы форсирования двигателей

Реферат

  • формат doc
  • размер 221 КБ
  • добавлен
    03 декабря 2011 г.

Минск: БГАТУ, 2011. – 13 с. Реферат по предмету тракторы и
автомобили.
Преподаватель: Тарасенко В.Е.
Схема роторно-поршневого двигателя Ванкеля. Пневматический вариант
двигателя Абрамова. Двигатель Курочкина на 50 кВт. Методы
форсирования двигателей.

Читать онлайн

Похожие разделы

  1. Академическая и специальная литература
  2. Топливно-энергетический комплекс
  3. Альтернативная энергетика
  4. Двигатели Стирлинга
  1. Академическая и специальная литература
  2. Топливно-энергетический комплекс
  3. Теплотехника
  1. Академическая и специальная литература
  2. Топливно-энергетический комплекс
  3. Техническая термодинамика
  1. Академическая и специальная литература
  2. Транспорт
  3. Авиационные двигатели
  1. Академическая и специальная литература
  2. Транспорт
  3. Железнодорожный транспорт
  4. Автономный тяговый подвижной состав и вспомогательные агрегаты на базе ДВС
  1. Академическая и специальная литература
  2. Транспорт
  3. Периодика по транспорту
  4. Двигатели внутреннего сгорания
  1. Академическая и специальная литература
  2. Транспорт
  3. Судостроение
  4. Судовые энергетические установки
  1. Академическая и специальная литература
  2. Транспорт
  3. Судостроение
  4. Судовые энергетические установки
  5. Судовые электроэнергетические установки
  1. Прикладная литература
  2. Досуг
  3. Домашнему мастеру
  4. Самодельные транспортные средства и механизмы
  1. Прикладная литература
  2. Досуг
  3. Моделизм и диорамостроение
  4. Авиамоделизм

Смотрите также

  • формат djvu
  • размер 11. 4 МБ
  • добавлен
    10 февраля 2011 г.

Изд. второе. — М.: «Машиностроение», 1972. — 502 с. В книге рассмотрены конструкции колесных и гусеничных тракторов, приведены их технические характеристики. Изложены теория и расчет двигателей и шасси тракторов, приведены параметры, характеризующие их работу. Дан расчет основных деталей двигателя и трансмиссии трактора, приведены технические условия и рабочие чертежи, даны примеры расчета отдельных деталей. Даны рекомендации по уходу за системам…

  • формат doc
  • размер 227.74 КБ
  • добавлен
    24 мая 2011 г.

Киев.: НИИ Украгропромпроизводительность, 2003. – 48 с. на укр. Изложены принципы моделирования пооперационных часовых нормативов расхода топлива для дизельных двигателей тракторов сельскохозяйственного назначения. Приведены формы связи между мощностью двигателя, удельным расходом топлива и часовым расходом топлива на разных режимах его работы. Определены формулы зависимостей и рассчитаны открытые интервальные таблицы часового расхода топлива…

degree

  • формат dwg, doc
  • размер 1.3 МБ
  • добавлен
    22 ноября 2010 г.

Определение конструктивных особенностей ТНВД и их влияние на показатели процесса топливоподачи; Определение динамических и эффективных показателей двигателей ММЗ. Чертежи [dwg], записка [doc] Смесеобразование в дизелях Распыление топлива Пленочный и объемно-пленочный способы смесеобразования Регулировочные характеристики системы топливоподачи Конструктивные особенности ТНВД и их влияние на показатели процесса топливоподачи Динамические. ..

degree

  • формат doc, cdw
  • размер 941.13 КБ
  • добавлен
    23 июня 2011 г.

Пояснительная записка+ графическая часть Маркетинговые исследования Краткая характеристика предприятия Состав цехов и служб завода. Состав цехов РММ Годовая производственная программа завода Материально – техническое снабжение предприятия Кадры завода, их пополнение и закрепление Перспективы развития предприятия Существующая организация труда на предприятии Характеристика объекта проектирования Анализ недостатков организации работ в цехе Предложе…

  • формат pdf
  • размер 11.64 МБ
  • добавлен
    09 декабря 2011 г.

Аннотация учебного фильма (год издания не указан). 12 с. В фильме кратко пояснены основные особенности конструкций этих тракторов и их агрегатов — двигателей, коробок передач, ходовых частей и т.д. Приведены ссылки для скачивания фильма.

Контрольная работа

  • формат docx
  • размер 5.35 МБ
  • добавлен
    08 февраля 2011 г.

Основные сравнительные параметры двигателей, приведите примеры. Основные понятия и определения по кривошипно-шатунному механизму. Начертите общую схему системы питания двигателя КамАЗ – 740, дайте пояснение к ней. Начертите схему проверки и регулировки уровня топлива в поплавковой камере карбюратора. Возможные неполадки, признаки, причины их устранения в системе питания карбюраторного двигателя.rn

  • формат pdf
  • размер 2.44 МБ
  • добавлен
    20 декабря 2010 г.

Учебное пособие. Тамбов: Изд-во Тамб. гос. техн. ун-та, 2008. – 304 с. Изложены основные сведения о получении нефтепродуктов, эксплуатационных свойствах топлив и смазочных материалов, используемых в агрегатах сельскохозяйственной техники, средствах хранения, транспортировки и заправки нефтепродуктов, представлены сведения о современных добавках (присадках) к смазочным маслам для улучшения их эксплуатационных свойств. Уделено внимание вопросам кон…

Реферат

  • формат docx
  • размер 30.83 КБ
  • добавлен
    03 декабря 2011 г.

Минск: БГАТУ, 2011. – 15 с. Реферат по предмету сельскохозяйственные машины. Преподаватель: Еднач В.Н. Методы и машины для химической защиты растений. Машины для приготовления жидких ядохимикатов и заправки опрыскивателей. Агротехнические требования к опрыскивателям. Установка опрыскивателей, опыливателей и протравливателей на норму расхода ядохимиката. Техника безопасности.

Реферат

  • формат doc
  • размер 143.69 КБ
  • добавлен
    03 декабря 2011 г.

Минск: БГАТУ, 2011. – 21 с. Реферат по предмету сельскохозяйственные машины. Преподаватель: Еднач В.Н. Анализ условий работы, конструкций и эксплуатационных характеристик. Проектный расчет.

  • формат pdf
  • размер 8.13 МБ
  • добавлен
    06 февраля 2011 г.

Техническое описание, особенности ухода и инструкция по эксплуатации двигателей

поршневых двигателей

поршневых двигателей

Поршневые двигатели приводили в движение самолеты с самого начала полетов с двигателями и по сей день. Почти каждое заметное улучшение характеристик самолета было прямым результатом улучшения двигателя. Многие из этих усовершенствований двигателя вошли в число величайших достижений первой половины двадцатого века.

В этом разделе подробно описывается разработка и использование поршневых двигателей.

 

Двигатели до 1925 г. Дизели Эллисон Алвис
Армстронг-Сиддели БМВ Бристоль Шевроле
Крайслер Перистые Авиационная корпорация Содружества Континенталь
Кертисс Даймлер-Бенц де Хэвилленд Фэйрчайлд (Рейнджер)
Фиат Французский Авиация общего назначения Джейкобс
Японский Юнкерс Менаско Нейпир
Паккард Побджой Пратт и Уитни Роллс-Ройс
Советский Студебеккер Райт Аэро  

 

Развитие нагнетателей в США в межвоенный период

Дисплей порядка стрельбы V-12

Цилиндры авиационных двигателей с воздушным охлаждением — Джордж Женевро

Выдающийся сборник информации о горизонтально расположенных авиационных двигателях — Джек Эриксон

Таблица сведений о двигателе США, предоставленная Ларри Макклелланом (PDF,
XLS)

Воздушный ежегодник Британской империи — 1938: Британский прогресс двигателей

Дефектные детали двигателя

Технический анализ двигателя артиллерийской мишени Тома Фея времен Второй мировой войны

Производство двигателей США времен Второй мировой войны

 


От OX-5 до турбокомпаундов:
Краткий обзор разработки авиационных двигателей
Кимбл Д. Маккатчеон

В период между мировыми войнами авиационные двигатели значительно усовершенствовались и сделали возможным беспрецедентный прогресс в конструкции самолетов. Разработка двигателя в те дни, а в значительной степени даже сегодня, представляет собой очень трудоемкий, детальный процесс создания двигателя, его запуска до разрушения, анализа того, что сломалось, разработки исправления и повторения процесса. Ни один продукт никогда не выходит на рынок без того, чтобы какой-нибудь инженер(ы) не потратил много долгих, одиноких, беспокойных часов, совершенствуя этот продукт. Это особенно верно для авиационных двигателей, которые по самой своей природе раздвигают все границы изобретательности, материалов и производственных процессов.

— Скачать статью (712 K PDF) —


Нет коротких дней:
Борьба за разработку R-2800
Коленчатый вал «Double Wasp»
Кимбл Д. Маккатчеон

Незадолго до Второй мировой войны инженеры компаний Pratt & Whitney и Curtiss-Wright неустанно трудились над созданием первого двигателя с воздушным охлаждением мощностью более 2000 лошадиных сил. Усилия обеих команд были почти сорваны сильной вибрацией из неожиданных источников. Это история о том, как команда Pratt & Whitney путем упорного труда и настойчивости выявила и решила проблемы с вибрацией. В результате появился один из самых удачных двигателей всех времен — Р-2800.
1. Введение (1.28M PDF) 2. Технические сведения (401K PDF)
3. Вибрация при кручении (151K PDF) 4. Линейная вибрация (239K PDF)
5. Разработка коленвала (525K PDF) 6. Заключение (408K PDF)
R-2800 Crankshaft Evolution (66K PDF)  

 


Немецкий двигатель времен Второй мировой войны

Авиационные двигатели в бронетехнике


Отправить письмо на

с вопросами или комментариями об этом веб-сайте.
Работа этого веб-сайта зависит от файлов cookie. Если вы продолжаете просматривать, прокручивать, нажимать или иным образом взаимодействовать, вы подтверждаете и соглашаетесь с этим.
Copyright © 2002-2023 Общество истории авиационных двигателей, Inc.

Как ухаживать за самолетом с поршневым двигателем

Поршневые двигатели, или двигатели внутреннего сгорания, стали популярными в эпоху братьев Райт.

Все самолеты были оснащены поршневым двигателем до начала 20-х гг.
-й век, когда появились реактивные двигатели. Они даже устанавливались в паровые машины и функционируют аналогично автомобильным двигателям.

Сегодня поршневые двигатели, как правило, предназначены для коммерческого и частного использования, поскольку они имеют средний запас хода 300 миль или меньше, вмещают шесть пассажиров или меньше и не превышают высоту 12 000 футов, поскольку они не находятся под давлением.

При правильном уходе самолет с поршневым двигателем обеспечивает долгие годы надежности и безопасности как для пилота, так и для пассажиров. Знание надлежащего уровня заботы обычно приобретается благодаря многолетнему опыту, но делает владение самолетом стоящим.

Знание общих правил обслуживания вашего поршневого двигателя обеспечит его долговечность, а также удовольствие от полета на вашем любимом самолете как можно дольше.

Вот что нужно знать о внутреннем сгорании

Внутреннее сгорание происходит в цилиндре, где химическая энергия преобразуется в механическую энергию, вращая пропеллеры и создавая тягу.

Внутри цилиндра поршень сжимает топливно-воздушную смесь до того, как произойдет сгорание, выталкивая ее обратно в цилиндр. Средний 4- или 6-цилиндровый поршневой двигатель крепится к коленчатому валу с уравновешенными интервалами, что обеспечивает равномерное зажигание поршня. Процесс продолжает повторяться и приводит в действие двигатель самолета.

Самая важная практика работы с поршневыми двигателями

В то время как газотурбинные двигатели строго регулируются, то же самое не относится к поршневым двигателям.

Стандарты технического обслуживания и способы обеспечения долговечности различаются; однако один из самых простых и эффективных способов ухода за самолетом с поршневым двигателем — это частые полеты на нем.

Поршневой двигатель изнашивается медленнее, чем дольше летает.

Причина в том, что двигатель очень восприимчив к ржавчине, и слишком долгая простоя вредна. Рекомендуется летать на самолетах с поршневыми двигателями не менее одного часа в неделю.

Когда самолет садится, масло стекает со стенок цилиндров и позволяет конденсату взаимодействовать с железом, образуя ржавчину. Ржавчина вызывает износ двигателя. Каждый раз, когда двигатель охлаждается, он поглощает влагу из атмосферы. Единственный способ устранить это содержание воды — довести температуру двигателя выше 212° F, точки испарения воды. В свою очередь, чем больше вы летаете, тем меньше влаги будет подвергаться воздействию вашего двигателя.

Что делать, если я не могу управлять своим самолетом один час в неделю?

Однако для тех, у кого нет доступа, времени или средств, чтобы постоянно летать на своем самолете, есть решение.
Phillips 66 Anti-Rust Aviation Engine Oil 20w-50 — это масло со специальной формулой, предотвращающее ржавчину и коррозию для авиационных поршневых двигателей, помогающее защитить их от ржавчины и коррозии в течение длительных периодов бездействия. Оно не предназначено для повседневного использования в двигателях часто используемых самолетов, поэтому, если вы планируете хранить свой самолет на хранении, это идеальное решение для продления срока службы вашего поршневого двигателя.

При подготовке самолета к хранению слейте отработанное моторное масло и залейте
Авиационное антикоррозионное масло. Запустите двигатель и прогрейте его до нормальной работы
температуры, чтобы новое масло полностью циркулировало по всему двигателю
и разрешено покрывать все детали двигателя.

Для достижения наилучших результатов летайте на самолете до
к хранению. Рекомендуется закрывать выпускные и впускные отверстия, чтобы свести к минимуму
воздействие влаги при хранении.

У вас есть самолет с поршневым двигателем? Нужны смазочные материалы? Покупайте масло для поршневых двигателей самолетов в
Магазин авиационных масел!


Источники:

https://er.