ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

Есть "Вечный двигатель второго рода"! (стр. 1 из 2). Вечный двигатель второго рода


Вечный двигатель второго рода

ПОЛНОЕ ТЕРМОДИНАМИЧЕСКОЕ ПРЕОБРАЗОАНИЕ ВОЗМОЖНО ЛИШЬВ ПРЕОБРАЗОВАТЕЛЯХ ВТОРОГО РОДА !Вечных двигателей не бывает, это моё твёрдое убеждение. Но не существует и запрета на преобразование энергии с кпд близким к 100%, по крайней мере, на современном уровне, этого ещё, ни кто не доказал. В пользу сказанного, говорят практически достигнутые результаты по преобразованиям механической энергии в механическую же энергию, или же электромеханические преобразования. Достигнутые, в них, на сегодня кпд порядка 97-98% , давно должны были насторожить современных учёных и заставить их усомниться в, декларируемой Карно, ущербности термодинамических преобразований. Жалкая попытка научного обоснования получающегося низкого кпд , так называемых тепловых двигателей, теплородиста Карно, антинаучна в своих основах. Более того, в описании своего знаменитого цикла, Карно допускает, несколько, противоречащих самому себе выводов и противоречащих здравому смыслу умозаключений. Может быть причина низкого кпд, при термодинамических преобразованиях энергии, заключается в несовершенстве выбранного способа? Был ведь период времени, к примеру, когда лампы накаливания считались пределом совершенства, теперь же , когда мы чуточку разобрались в физике преобразования химической, электрической, электромагнитной энергии в эл.магнитное излучение видимого(и не только) спектра, появились лазеры, светодиоды, а эл.лампы накаливания уже сами стали полным отстоем в своей области. Может быть нам хотя бы усомниться во всемогуществе термодинамики? Ведь, до настоящего времени, человечество применяло, практически, лишь один единственный способ, способ перепада давлений. Он использован во всех двигателях от паровозного до ракетного, в доказательство сказанного могу предложить, сомневающимся, обеспечить подачу в рабочие камеры всех, известных двигателей, обыкновенного сжатого воздуха, с параметрами давлений рабочего тела и они будут работать. Но не будем забегать вперёд, рассмотрим всё по порядку. На сегодня мы имеем три основных интерпретации второго начала термодинамики:1.Не возможен процесс, при котором теплота, переходила бы самопроизвольно, от тел более холодных к телам более нагретым. Р. Клаузиус(1850)2.Невозможно построить периодически действующую машину, вся деятельность которой сводилась бы к совершению механической работы и соответствующему охлаждению теплового резервуара. У.Томпсон (Кельвин)(1851).3.Энтропия как функция беспорядка, в замкнутых системах может только возрастать.

1.Рассмотрим первую формулировку. Начнем с понятия 'теплота', как видим оно применено как имя существительное, с явно сопутствующими вещественными свойствами, всё как понимал и завещал Карно. С таким наследием мы переходим в третье тысячелетие???Общепризнано атомно-молекулярное строение материи. Разработана и почитаема молекулярно-кинетическая теория. МКТ объясняет тепловые явления как проявление кинетической энергии хаотического движения молекул. НЕТ теплорода, тепла, теплоты. Нет и тепловой энергии вне молекул. Есть кинетическая энергия молекул как мера движения молекул. Материальны сами молекулы и их движение. Именно вещественность тепла, теплоты, провозглашенная Карно, требует определения направления ее перемещения. В МКТ превалирующая энергия молекул с высокотемпературных участков распространяется на низкотемпературные участки пространства. Теплообмена не существует, как и тепла. Не ясна цель моих высказываний? Воздух из поврежденной автомобильной камеры самопроизвольно распространится в окружающее пространство, но автомобильная камера не может самопроизвольно накачаться воздухом окружающей среды. И ни какого 'пневмообмена'. Это неоспоримо, это 'ежу понятно'. Заметьте, безо всякого 'второго начала пневматики', а всё потому, что нам не затуманили голову 'вещественным пневмородом', а дали физику возникновения давления газа без идеалистического искажения.Превалирующая энергия молекул области пространства распространяется, рассеивается, в области ее относительного недостатка. НЕ теплообмен, ни в коем случае! Областям с недостатком отдавать нечего, они принимают избыток энергии молекул распространяющийся из областей с превалирующей энергией. Когда мы уясним, что нет теплоты, нет и теплообмена, станет явной никчемность этой формулировки второго начала. Но самое главное, мы только с этого момента освободимся от теплородного наследия термодинамики, вещественности теплоты.Для этого не нужны знания 'высоких материй', нужно лишь последовательно во всём разобраться, сопоставлением всех аргументов, раз и навсегда и никогда не возвращаясь к ранее отвергнутому. Как, например, поступили с геоцентрической моделью вселенной. У нас же получилось примерно так: 'земля на трёх китах это глупость:.это вселенная, с её галактиками, она точно на трёх китах'.Резюме этому рассуждению: указанная формулировка второго начала, дана теплородистами для выхода из тупиковой ситуации, куда их завела вещественность тепла и теплоты. Для МКТ это 'пятое колесо' и нужно не более чем выше описанный закон пневматики.

2. Вторую формулировку считают аналогом первой. Позвольте не согласиться. То, что нарушение 'постулированного направления движения теплоты', позволило бы создать в.д. второго рода это логично. Но на каком основании мы утверждаем, что если не нарушить этого постулата то в.д. второго рода не создать, лично для меня огромная загадка. Предположим, что невозможность полного преобразования мы найдём в постулатах и цикле Карно. Пробежимся указочкой по строкам описания цикла Карно. Небольшое авторское пояснение, несмотря на то, что я в принципе не приемлю теплородистких, тепло вещественных позиций, а именно из них сложено всё описание, я тем не менее беру без каких либо изменений первоисточное изложение.'Карно цикл, обратимый круговой процесс, в котором совершается превращение теплоты в работу (или работы в теплоту).'Теплота не вещественна, поэтому я бы предложил говорить о следующем. Термодинамическое преобразование энергии это процесс превращения кинетической энергии молекул рабочего тела(р.т.), в кинетическую энергию движущихся частей машины или наоборот.'Р.т. последовательно находится в тепловом контакте с двумя тепловыми резервуарами(имеющими постоянные темп-ры) - нагревателем(с темп-рой Т1) и холодильником (с темп-рой Т 2 < T1). Превращение теплоты в работу сопровождается переносом рабочим телом определённого кол-ва теплоты от нагревателя к холодильнику.'Ничего ни куда не переносится, не обязательны ни тепловые контакты, ни разность температур. Для совершения термодинамического преобразования сразу обозначим, первого рода, т.е. единственного его вида применённого во всех известных ныне, так называемых, тепловых двигателях, необходимым условием является наличие разности давлений р.т. между рабочей зоной и зоной сброса р.т. Достаточными условиями является: а) перепад давления должен соответствовать возникающей результирующей, величина которой должна быть больше или равна величины противодействующих сил сопротивления, в числе которых - снимаемое усилие; б) принимающее энергию тело (поршень, ротор турбины или масса самой ракеты) должно находиться в движении. Это всё!Вы возразите, как же? Двигатель то, тепловой. Во-первых, из выше сказанного следует, что он в первую очередь пневматический. Нагрев р.т. используется лишь для создания превалирующего давления р.т. и является, наиболее эффективным методом его создания. Подайте вместо р.т. сжатый воздух и любой известный 'тепловой двигатель' будет работать. Декомпрессия остановит любой 'тепловой двигатель'. Кто-либо пытался проанализировать этот факт? Если в цилиндре с поршнем, р.т. будет иметь давление 1атм, то поршень не шелохнется в среде выброса с давлением 1атм, даже если температура р.т. внутри него будет больше15000. И наоборот, если температура в цилиндре будет равна температуре атмосферы, но давление р.т. будет удовлетворять сформулированному необходимому и достаточным условиям, то поршень будет выдвигаться и процесс т.д. преобразования происходить. Этот вывод вообще следует из элементарной формулы действующих на поршень сил, со стороны р.т. и со стороны атмосферы: F = Fр.т.- Fатм. = Pр.т.*Sпоршня - Pатм.*S поршня = Sпоршня ( Pр.т. -Pатм.).Где вы видите прямую зависимость сил от температуры?Перейдём к просмотру самого цикла:'Р.т. (например пар в цилиндре под поршнем) при температуре Т1 приводится в соприкосновение с нагревателем и изотермически получает от него кол-во теплоты &#948;Q1 (при этом пар расширяется и совершает работу) , этому соответствует отрезок изотермы АВ.'Вы не забыли температуру этого нагревателя? Вернитесь наверх - Т1, так и есть. И как Вы собрались передавать теплоту от нагревателя с температурой Т1 рабочему телу с Т1? Не могу не сделать 'лирического отступления', ибо меня часто упрекают в непочтительном отношении к Карно, поэтому хочу внести ясность в этом вопросе. Это предложение человека с планеты 'Ниберу'? Землянам, допускающим такой процесс, я предлагаю, с чайником воды, имеющим температуру 1000С, войти в сауну с температурой 1000С. Как закипит, звоните, я прилечу с 1*106баксов, для торжественного вручения Вам. Я бы хотел посмотреть, вживую, на землянина обогревающего свое жилище с Т=200, радиаторами с Т=200, звоните, доставьте удовольствие. Кстати, не забывайте, процесс этого квазистатического изотермического преобразования применён светилами науки в двигателях! Не забыли сколько оборотов совершают двигатели в секунду? Я напоминаю для укрепления вашей уверенности в выборе квазистатических процессов для описания их работы. Но это не всё, это всего лишь здравый смысл. На самом деле всё ещё хуже, Карно...

elementy.ru

Есть "Вечный двигатель второго рода"!

Есть "Вечный двигатель второго рода"!

...- Г-голубчики, - сказал Федор Симеонович озадаченно, разобравшись в почерках. - Это же п-проблема Бен Б-бецалая. К-калиостро же доказал, что она н-не имеет р-решения.

- Мы сами знаем, что она не имеет решения, - сказал Хунта, немедленно ощетиниваясь. - Мы хотим знать, как ее решать.

- К-как-то ты странно рассуждаешь, К-кристо... К-как же искать решение, к-когда его нет? Б-бесмыслица какая-то...

- Извини, Теодор, но это ты странно рассуждаешь. Бессмыслица - искать решение, если оно и так есть. Речь идет о том, как поступать с задачей, которая решения не имеет...

А.Стругацкий, Б.Стругацкий. Понедельник начинается в субботу.

Уважаемые Господа!

Вечный двигатель второго рода это такой двигатель, который не подчиняется Второму закону термодинамики.

В 1824 году С. Карно в своем сочинении «Размышления о движущей силе огня и о машинах, способных развивать эту силу» высказал мысль, что «тепловая машина не поглощает тепло, превращая ее в работу, а передает его холодному телу». В. Томпсон (лорд Кельвин), Р. Клаузиус, М. Планк возвели эту мысль в ранг закона. Современная трактовка Второго закона термодинамики звучит так: "Для перевода теплоты в работу необходим источник тепла и охладитель более низкой температуры". Того, кто осмеливался противоречить этому закону, называют изобретателями вечного двигателя второго рода.

Этот закон распространяется на тепловые электростанции. Наверное, все знают, что для выработки электроэнергии надо подвести тепло к воде в парогенераторе «ПГ» (см. Рис. 1), затем испарить ее и поднять давление пара. После этого пар с высоким давлением поступает в турбину «Т», вращает ее ротор вместе с ротором генератора «Г», а последний вырабатывает электроэнергию. После турбины, пар с низким давлением поступает в конденсатор «К» (охладитель) и там конденсируется - пар переходит в состояние жидкости (воды). После конденсатора, вода снова подается в парогенератор конденсатным насосом «КН».

При отводе тепла из конденсатора, в окружающую среду (реки, озера, моря) выбрасывается более половины подведенного тепла. Вот как мы греем "матушку Землю!

Выброс тепла в конденсаторе делается для того, чтобы уменьшить затраты энергии на поднятие давления пара. Для поднятия давления водяного пара с низким давлением, сначала его надо перевести в состояние жидкости (сконденсировать), поднять давление воды в насосах, подать в парогенератор, снова подвести к воде тепло для ее испарения и поднятия давления пара.

Я решил придумать что-нибудь для увеличения КПД цикла и улучшения экологической обстановки в местах размещения ГРЭС, ТЭЦ, АЭС.

Для изобретательства в теплоэнергетике надо знать азы термодинамики.

При нормальных условиях для выкипания воды, сначала надо нагреть ее до 100°С, затем подвести тепло для испарения. Испарение происходит при отрыве молекул воды с поверхности кипения. О распределении внутренних энергий в процессе кипения можно судить по Рис.2.

Здесь, I' - теплота идущая на нагрев воды до температуры кипения.

R - теплота идущая на испарение кипящей воды - теплота парообразования

При дальнейшем подводе тепла к пару, идет его перегрев – увеличение внутренней энергии с повышением температуры.

Теплота парообразования R состоит из теплоты разъединения молекул U и теплоты расширения L. При нормальных условиях теплота расширения L в 12,5 раз меньше теплоты разъединения U.

В процессе получения электроэнергии, теплота разъединения U выбрасывается в окружающую среду, а теплота расширения L участвует в полезной работе. Вот из-за неё то и вся драка пойдет.

Я подумал, все дело в состоянии массы - жидкое оно, или газообразное. Как это так? Для поднятия давления в жидкости надо затратить энергии во много раз меньше, чем для поднятия того же давления в паре? Значит надо найти другой, менее энергоемкий способ поднятия давления пара, или найти другой способ перевода пара в состояние жидкости (воды).

Известно, что "Удавалось перегревать воду при нормальных условиях на десятки градусов. Однако, в конце концов, такая вода вскипает. Кипение происходит крайне бурно, напоминая взрыв".

Я задал себе задачу успокоить перегретую воду - найти способ ее успокаивания (чтобы не взрывалась). Потом создать такие условия, когда внутренняя энергия перегретой воды была бы больше, чем внутренняя энергия пара при том же давлении сжатия.

Моя профессия - инженер теплоэнергетик, специализация - виброналадка вращающегося оборудования. Т.е. в голове всякие ускорения, центробежные силы и др. Поэтому, возник вопрос, как влияют центробежные силы инерции на процесс кипения жидкости?

Представьте, что Вас послали на Солнце в барокамере и термостате. На Солнце вес увеличивается в 30 раз и составит для человека 2 - 3 тонны. Ну и как в этих условиях бегать, прыгать? Короче, летальный исход от веса! Ну а молекулы воды другое дело. К ним можно подвести много тепла и тогда произойдет их отрыв (прыжок) с поверхности. Но с увеличением тепла в жидкой массе должна расти ее температура кипения. Т.е. воду для кипения надо будет нагревать не до 100°С, а до большей температуры.

Имитировать увеличение веса в молекулах воды можно во вращающемся цилиндре (см. Рис. 3). Вес молекул увеличится от возрастания центробежных сил в массе.

Я провел опыт по испарению воды во вращающемся цилиндре. При увеличении центробежных сил, от увеличения радиуса поверхности кипения возрастала температура кипения. В первом приближении определил увеличение внутренней энергии, при увеличении радиуса кипения на один сантиметр.

Получилось, что температура кипения чистой воды увеличивается не только от увеличения давления сжатия, но и от увеличения центробежных сил в молекулах на вращающейся поверхности. Этот эффект был также открыт в 1971 году в Америке.

Согласно данных измерений в опыте, я просчитал, что для того, чтобы внутренняя энергия кипящей воды была равна внутренней энергии пара, при нормальных условиях, надо иметь радиус внутренней вращающейся поверхности воды в цилиндре 1,9 метра. Т.о. если этот радиус будет больше, то пар с нормальными параметрами будет переходить в состояние жидкости на этой поверхности (силы не хватит оторваться от поверхности "Солнца"). Процесс перехода пара в состояние жидкости на вращающейся поверхности назван «Коллапсация пара".

Расчеты показали, что энергия массы, вращающейся с частотой n = 3000 об/мин на поверхности с радиусом 1,9 метра близка к энергии движения массы со звуковой скоростью и к теплоте расширения L.

Материалы по опытам со сверхзвуковыми движениями потоков газов говорят об одной физической природе скачков уплотнения на острие крыла и переходом пара в состояние жидкости на вращающейся поверхности. Причем, затрачиваемые энергии в процессах перехода пара в состояние жидкости равны теплоте расширения пара L. Исходя из этого, для уточнения, мной выполнен расчет радиуса коллапсации пара для компенсации теплоты расширения. Этот радиус получился равным 1,05 метра.

Для подтверждения правильности рассуждений рассмотрен процесс эрозионного износа лопаток паровых турбин (вырывы металла жидкостью), работающих на сухом насыщенном паре при атмосферном давлении. Начало эрозионного износа лопаток начинается на радиусе примерно 1 метр. Эти наблюдения подтверждают также специалисты МЭИ. Значит, рассуждения и расчеты радиуса коллапсации выполнены правильно.

Т.о. найден новый способ перевода пара в состояние жидкости!

Представьте, что в цилиндре Рис. 3 близко к наружному диаметру выполнены отверстия, а сам цилиндр помещен в корпус с напорным и всасывающим патрубками и системой уплотнений. Это будет центробежный насос с гидрозатвором в рабочем колесе. На Рис. 4 показан разрез насоса.

Работа насоса происходит следующим образом.

Пар с низким давлением поступает во всасывающий патрубок насоса. Попадая в отверстия барботажного цилиндра, он раскручивается и приобретает центробежную силу. Под действием этой силы пар направляется к поверхности гидрозатвора. Когда молекулы пара окажутся на этой поверхности, они перейдут в состояние перегретой жидкости. Центробежные силы не дадут им снова оторваться от поверхности. По радиусу гидрозатвора будет происходить приращение давления сжатия перегретой воды, как в обычном центробежном насосе. С большим давлением перегретая вода будет выходить из гидрозатвора рабочего колеса насоса. После выхода из рабочего колеса перегретая вода прекратит вращаться и снова перейдет в состояние пара, но с высоким давлением.

Энергия, затрачиваемая на коллапсацию единицы массы пара будет равна теплоте расширения L. Т.е. для повышения давления пара не надо будет выбрасывать теплоту разъединения U. Для перевода пара в состояние жидкости надо будет затрачивать работу равную теплоте расширения L. Т.к. теплота L в турбинах также используется для совершения работы, то тепло, используемое полезно, будет равно теплоте перегрева пара.

Схема работы паросиловой установки с применением двухфазного насоса будет выглядеть, как показано на Рис. 5.

Здесь: ПП – пароперегреватель; Т – турбина; Г – Генератор; ДН – Двухфазный насос.

Из двухфазного насоса, пар с высоким давлением поступает в пароперегреватель и там перегревается. Перегретый пар с высоким давлением из пароперегревателя поступает на турбину. В турбине тепловая энергия пара переходит в энергию вращения ротора турбины. Последний вращает ротор генератора, который вырабатывает электроэнергию. После турбины, пар низкого давления поступает в двухфазный насос. В двухфазном насосе происходит повышение давления пара низкого давления до давления пара высокого давления. Далее цикл повторяется.

mirznanii.com

Вечный двигатель второго рода — Альтернативный взгляд Salik.biz

По мере развития науки ее законы охватывают все более широкие области, уточняются, приближаются к законам природы, делаются адекватными им. В обобщенном виде характер связи между законами природы и законами науки был четко выражен А. Эйнштейном: «Наши представления о физической реальности никогда не могут быть окончательными, и мы всегда должны быть готовы менять эти представления». П.Л. Капица, любивший парадоксы, говорил даже так: «Интересны не столько сами законы, сколько отклонения от них».

Но изобретатели perpetuum mobile не правы, рассчитывая на вполне возможное изменение законов науки, не разрешающих пока действие вечных двигателей. Дело в том, что законы науки (в частности, физики) не отменяются, а дополняются и развиваются.

Н. Бор сформулировал общее положение (1923 г.), отражающее эту закономерность развития науки: принцип соответствия, который гласит, что всякий более общий закон включает в себя старый закон как частный случай; он (старый) получается из нового при переходе к другим значениям определяющих его величин.

Утверждение закона сохранения энергии — первого начала термодинамики — сделало попытки создать вечный двигатель первого рода абсолютно безнадежным занятием. И хотя они все еще продолжались, основное направление мыслей создателей perpetuum mobile изменилось. Новые варианты вечных двигателей рождаются уже в полном согласии с первым началом термодинамики: сколько энергии поступает в такой двигатель, ровно столько же и выходит.

Как известно, закон сохранения энергии можно сформулировать в следующей несколько видоизмененной форме: при всех процессах преобразования энергии сумма всех видов энергии, участвующих в данном процессе, должна оставаться неизменной. Такая формулировка, хотя и не допускает возможности создания энергии из ничего, однако оставляет открытым другой путь реализации вечного двигателя, принцип работы которого основывался бы на идеальном преобразовании одной формы энергии в другую.

Было известно, что работа в двигателях совершается, когда горячее тело отдает тепло газу или пару и пар совершает работу, например, двигая поршень. Однако оказалось, что никак не удается сделать так, чтобы энергия от более холодного тела перешла к более горячему. А ведь для создания вечного двигателя необходимо, чтобы при этом еще и совершалась работа.

В результате развития термодинамики, основываясь на работах Сади Карно, Рудольф Клаузиус показал, что, невозможен процесс, при котором теплота переходила бы самопроизвольно от тел более холодных к телам более нагретым. При этом невозможен не только непосредственный переход — его невозможно осуществить и с помощью машин или приборов без того, чтобы в природе не произошло еще каких-либо изменений.

Уильям Томсон (лорд Кельвин) сформулировал принцип невозможности вечного двигателя второго рода (1851 г.), поскольку в природе невозможны процессы, единственным следствием которых была бы механическая работа, произведённая за счет охлаждения теплового резервуара.

Исследованием вопроса о perpetuum mobile нового типа в начале XX в. занимался известный немецкий физико-химик Вильгельм Оствальд. Идеальную машину, способную циклично и без потерь преобразовывать энергию из одной формы в другую, он назвал вечным двигателем второго рода. Как видно и после отказа от возможности создания вечного двигателя первого рода проблема вечного движения все же продолжает оставаться открытой. Однако, вечные двигатели первого и второго рода уже значительно различаются между собой. Если функция объявленного учеными неосуществимым вечного двигателя первого рода состояла в непрерывном совершении полезной работы без пополнения запасов энергии от внешних источников, то от вечного двигателя второго рода требовалась лишь способность идеально трансформировать энергию.

Согласно первому началу термодинамики, теплота эквивалентна механической энергии, поэтому, не входя в противоречие с первым началом, вполне можно построить машину, отбирающую тепло от тела, которое имеет температуру окружающего воздуха, или, к примеру, забирающую тепло воды из больших водоемов и совершающую благодаря этому механическую работу. Если преобразовать теперь полученную механическую энергию обратно в тепло, то тем самым возникает замкнутый цикл преобразования энергии, основанный на принципе вечного двигателя второго рода.

Однако в обыденной жизни никогда не встречаются подобные явления. В теплом помещении вынутая из холодильника бутылка с молоком нагревается, а стакан горячего чая остывает. К тому же холодная жидкость при своем нагревании незаметно понижает температуру воздуха в комнате, а горячая — повышает. Вместе с тем никогда не случается, чтобы холодное тело само собой охладилось или горячее — нагрелось. Для такого охлаждения служат специальные холодильные установки, нуждающиеся, однако, в постоянном подводе энергии от внешних источников. В то же время самопроизвольное охлаждение холодного или нагревание горячего тела вовсе не противоречит первому началу термодинамики. Поэтому очевидно, что формулировку этого закона следует как-то уточнить и дополнить.

Второе начало термодинамики устраняет неполноту закона сохранения энергии, который не делал различия между обратимыми и необратимыми процессами и тем самым оставлял призрачную надежду тем, кто не хотел мириться с невозможностью создания perpetuum mobile. Этот физический принцип накладывает ограничение на направление процессов, которые могут происходить в термодинамических системах. Второе начало термодинамики запрещает так называемые вечные двигатели второго рода, показывая, что коэффициент полезного действия не может равняться единице, поскольку для кругового процесса температура холодильника не может равняться абсолютному нулю (невозможно построить замкнутый цикл, проходящий через точку с нулевой температурой).

Существуют несколько эквивалентных формулировок второго закона термодинамики:

Постулат Клаузиуса: «Невозможен круговой процесс, единственным результатом которого является передача теплоты от менее нагретого тела к более нагретому» (такой процесс называется процессом Клаузиуса).

Постулат Томсона (Кельвина): «Невозможен круговой процесс, единственным результатом которого было бы производство работы за счёт охлаждения теплового резервуара» (такой процесс называется процессом Томсона).

Другая формулировка второго начала термодинамики основывается на понятии энтропии:

«Энтропия изолированной системы не может уменьшаться» (закон неубывания энтропии). В состоянии с максимальной энтропией макроскопические необратимые процессы (а процесс передачи тепла всегда является необратимым из-за постулата Клаузиуса) невозможны.

Когда была создана статистическая термодинамика, которая основывалась на молекулярных представлениях, Оказалось, что второе начало термодинамики имеет статистический характер: оно справедливо для наиболее вероятного поведения системы. Существование флуктуаций препятствует точному его выполнению, однако вероятность сколь-нибудь значительного нарушения крайне мала. То есть переход тепла от холодного тела к более горячему возможен, но это крайне маловероятное событие. А в природе реализуются наиболее вероятные события.

Читайте также "Вечный двигатель первого рода" и "Вечный двигатель третьего рода"

salik.biz

Вечный двигатель второго рода Википедия

Мнимый вечный двигатель с перекатывающимися шарами. Фото 1915 года У этого термина существуют и другие значения, см. Perpetuum Mobile.

Ве́чный дви́гатель (лат. Perpetuum Mobile) — воображаемое неограниченно долго действующее устройство, позволяющее получать большее количество полезной работы, чем количество сообщённой ему извне энергии (вечный двигатель первого рода) или позволяющее получать тепло от одного резервуара и полностью превращать его в работу (вечный двигатель второго рода)[1][2].

Современная классификация вечных двигателей

И первое, и второе начала термодинамики были введены как постулаты после многократного экспериментального подтверждения невозможности создания вечных двигателей. Из этих начал выросли многие физические теории, проверенные множеством экспериментов и наблюдений, и у учёных не остаётся никаких сомнений в том, что данные постулаты верны, и создание вечного двигателя невозможно. В частности, второе начало термодинамики может быть сформулировано как один из следующих (эквивалентных) постулатов:

  1. Постулат Кельвина — невозможно создать периодически действующую машину, совершающую механическую работу только за счёт охлаждения теплового резервуара.
  2. Постулат Клаузиуса — самопроизвольный переход теплоты от более холодных тел к более горячим невозможен.

Демон Максвелла и броуновский храповик, если бы такие устройства были осуществимы, позволили бы реализовать вечный двигатель второго рода. Однако доказано, что работа таких систем как замкнутых (без обмена энергией с внешней средой) невозможна.

История

Индийский или арабский вечный двигатель с небольшими косо закреплёнными сосудами, частично наполненными ртутью

Попытки исследования места, времени и причины возникновения идеи вечного двигателя — задача весьма сложная. Не менее затруднительно назвать и первого автора подобного замысла. К самым ранним сведениям о Perpetuum mobile относится, по-видимому, упоминание, которое мы находим у индийского поэта, математика и астронома Бхаскары, а также отдельные заметки в арабских рукописях XVI в., хранящихся в Лейдене, Готе и Оксфорде[3]. В настоящее время прародиной первых вечных двигателей по праву считается Индия. Так, Бхаскара в своём стихотворении, датируемом примерно 1150 г., описывает некое колесо с прикреплёнными наискось по ободу длинными, узкими сосудами, наполовину заполненными ртутью. Принцип действия этого первого механического перпетуум мобиле был основан на различии моментов сил тяжести, создаваемых жидкостью, перемещавшейся в сосудах, помещённых на окружности колеса. Бхаскара обосновывает вращение колеса весьма просто: «Наполненное таким образом жидкостью колесо, будучи насажено на ось, лежащую на двух неподвижных опорах, непрерывно вращается само по себе». Первые проекты вечного двигателя в Европе относятся к эпохе развития механики, приблизительно к XIII веку. К XVI—XVII векам идея вечного двигателя получила особенно широкое распространение. В это время быстро росло количество проектов вечных двигателей, подаваемых на рассмотрение в патентные ведомства европейских стран. Среди рисунков Леонардо Да Винчи была найдена гравюра с чертежом вечного двигателя.

Неудачные конструкции вечных двигателей из истории

Рис. 1. Одна из древнейших конструкций вечного двигателя

На рис. 1 показана одна из древнейших конструкций вечного двигателя. Она представляет зубчатое колесо, в углублениях которого прикреплены откидывающиеся на шарнирах грузы. Геометрия зубьев такова, что грузы в левой части колеса всегда оказываются ближе к оси, чем в правой. По замыслу автора, это, в согласии с законом рычага, должно было бы приводить колесо в постоянное вращение. При вращении грузы откидывались бы справа и сохраняли движущее усилие.

Однако, если такое колесо изготовить, оно останется неподвижным. Причина этого факта заключается в том, что хотя справа грузы имеют более длинный рычаг, слева их больше по количеству. В результате моменты сил справа и слева оказываются равны.

Рис. 2. Конструкция вечного двигателя, основанного на законе Архимеда

На рис. 2 показано устройство ещё одного двигателя. Автор решил использовать для выработки энергии закон Архимеда. Закон состоит в том, что тела, плотность которых меньше плотности воды, стремятся всплыть на поверхность. Поэтому автор расположил на цепи полые баки и правую половину поместил под воду. Он полагал, что вода будет их выталкивать на поверхность, а цепь с колёсами, таким образом, бесконечно вращаться.

Здесь не учтено следующее: выталкивающая сила — это разница между давлениями воды, действующими на нижнюю и верхнюю части погруженного в воду предмета. В конструкции, приведённой на рисунке, эта разница будет стремиться вытолкнуть те баки, которые находятся под водой в правой части рисунка. Но на самый нижний бак, который затыкает собой отверстие, будет действовать лишь сила давления на его правую поверхность. И она будет уравновешивать или превосходить силу, действующую на остальные баки.

Пример псевдовечного двигателя 2-го рода

Анализ конкретной конструкции вечного двигателя 2-го рода может представлять собой нетривиальную задачу, особенно если речь идёт о конструкции сложной или такой, принцип действия которой на первый взгляд вообще непонятен, либо потоки энергии и их источник неочевидны. Зафиксируем, например, один конец работающей на изгиб биметаллической пластины, а ко второму концу подвесим груз и поместим получившуюся конструкцию на открытый воздух. За счёт колебаний температуры пластина будет изгибаться/распрямляться, а груз подниматься и опускаться, то есть устройство будет совершать работу. Заменив груз на храповой механизм, мы получим механический привод, способный выполнять полезную работу за счёт извлечения энергии из единственного теплового резервуара — окружающей среды. Но поскольку окружающая среда попеременно выступает в качестве то нагревателя, то охладителя, противоречие со вторым законом термодинамики отсутствует. Таким образом, рассмотренная конструкция представляет собой не вечный, а псевдовечный двигатель 2-го рода[4].

Патенты и авторские свидетельства на вечный двигатель

В 1775 году Парижская академия наук приняла решение не рассматривать проекты вечного двигателя из-за очевидной невозможности их создания[5]. Патентное ведомство США не выдаёт патенты на perpetuum mobile уже более ста лет[6]. Тем не менее, в Международной патентной классификации сохраняются разделы для гидродинамических (раздел F03B 17/00) и электродинамических (раздел H02K 53/00) вечных двигателей.

Известные «изобретатели» вечных двигателей

Проект вечного двигателя Орфиреуса

Вечный двигатель в произведениях искусства

См. также

Примечания

Литература

Ссылки

Видеоурок: вечный двигатель

wikiredia.ru

Вечный двигатель второго рода

Создан двигатель в котором локально нарушается второе начало термодинамики.

Физики из МФТИ выяснили, как создать «локальный» вечный двигатель второго рода — квантовое устройство, в котором не соблюдается второе начало термодинамики и КПД которого может достигать 100%. Однако второе начало в нём нарушается только локально, в рамках системы в целом законы физики остаются незыблемыми.

Второй закон термодинамики гласит, что тепловая энергия не может переходить от менее горячих объектов к более горячим, или, в иной формулировке — величина энтропии (степени неупорядоченности) в замкнутой системе либо растёт, либо остаётся постоянной. Согласно ещё одной формулировке закона, КПД тепловой машины никогда не может достигать 100%, иными словами, невозможен вечный двигатель второго рода.

«Любой тепловой двигатель состоит из нагревателя, который собственно и является источником энергии, и холодильника, задача которого состоит в охлаждении рабочего тела двигателя. Холодильник понижает энтропию двигателя и при этом неизбежно тратит впустую часть тепловой энергии, полученной от нагревателя. Именно поэтому КПД теплового двигателя никогда не достигает 100%», — поясняет ведущий автор исследования Андрей Лебедев, сотрудник Технического университета Цюриха и МФТИ.

Ранее группа под руководством ведущего научного сотрудника Лаборатории квантовой теории информации МФТИ и Института теоретической физики имени Л. Д. Ландау РАН Гордея Лесовика, пытаясь доказать справедливость второго закона термодинамики для квантовых систем, обнаружила, что в квантовом мире он может при определённых условиях нарушаться.

Оказалось, что в квантовых системах относительно небольшого, но макроскопического размера — сантиметры и даже метры (в линейном измерении) — энтропия может снижаться, но этот процесс происходит без передачи тепловой энергии, за счёт явления квантовой запутанности.

В новой статье, опубликованной в журнале Physics Review A, Лебедев, Лесовик и их коллеги из Цюриха описали квантовую тепловую машину, КПД которой может достигать 100%. Она состоит из нескольких квантовых элементов — кубитов, которые могут находиться в состоянии квантовой запутанности друг с другом. Один из кубитов поглощает тепло, но в силу его квантовой природы эту энергию можно использовать только с вероятностью 50%. Чтобы извлекать энергию с вероятностью 100%, нужно снизить его энтропию, сделать это состояние «чистым» (в терминологии квантовой механики). Эту задачу решает вспомогательный чистый кубит, который обменивается своим квантовым состоянием с термализованным «грязным» состоянием рабочего кубита. Важно, что при этом передачи энергии между двумя кубитами не происходит.

«Можно сказать, что избыточная энтропия телепортируется из системы наружу во вспомогательный кубит, который играет роль квантового «демона Максвелла»», — говорит Лесовик.

После «вычищения» рабочего кубита оказывается, что собрать энергию с вероятностью 100% в одном кубите — это всё ещё непростая задача. Чтобы её решить, пришлось вдвое увеличить число рабочих элементов — кубитов.

«Финальная часть цикла — «демонские» (их, кстати, по смыслу можно назвать скорее «ангельскими» — за их очистительно-информационную деятельность) кубиты нужно почистить обычным образом, с затратой энергии, но это происходит вдали от системы. Важно подчеркнуть, что на этой стадии в объёме, заключающем в себе и систему и «демона/ангела», справедливость второго закона восстанавливается», — говорит Лесовик.

Сейчас группа занимается детальной разработкой установки для экспериментальной проверки своей теории на базе сверхпроводящих кубитов — трансмонов.  опубликовано econet.ru 

 

P.S. И помните, всего лишь изменяя свое потребление - мы вместе изменяем мир! © econet

econet.ru

Вечный двигатель второго рода Википедия

Мнимый вечный двигатель с перекатывающимися шарами. Фото 1915 года У этого термина существуют и другие значения, см. Perpetuum Mobile.

Ве́чный дви́гатель (лат. Perpetuum Mobile) — воображаемое неограниченно долго действующее устройство, позволяющее получать большее количество полезной работы, чем количество сообщённой ему извне энергии (вечный двигатель первого рода) или позволяющее получать тепло от одного резервуара и полностью превращать его в работу (вечный двигатель второго рода)[1][2].

Современная классификация вечных двигателей[ | код]

И первое, и второе начала термодинамики были введены как постулаты после многократного экспериментального подтверждения невозможности создания вечных двигателей. Из этих начал выросли многие физические теории, проверенные множеством экспериментов и наблюдений, и у учёных не остаётся никаких сомнений в том, что данные постулаты верны, и создание вечного двигателя невозможно. В частности, второе начало термодинамики может быть сформулировано как один из следующих (эквивалентных) постулатов:

  1. Постулат Кельвина — невозможно создать периодически действующую машину, совершающую механическую работу только за счёт охлаждения теплового резервуара.
  2. Постулат Клаузиуса — самопроизвольный переход теплоты от более холодных тел к более горячим невозможен.

Демон Максвелла и броуновский храповик, если бы такие устройства были осуществимы, позволили бы реализовать вечный двигатель второго рода. Однако доказано, что работа таких систем как замкнутых (без обмена энергией с внешней средой) невозможна.

История[ | код]

Индийский или арабский вечный двигатель с небольшими косо закреплёнными сосудами, частично наполненными ртутью

Попытки исследования места, времени и причины возникновения идеи вечного двигателя — задача весьма сложная. Не менее затруднительно назвать и первого автора подобного замысла. К самым ранним сведениям о Perpetuum mobile относится, по-видимому, упоминание, которое мы находим у индийского поэта, математика и астронома Бхаскары, а также отдельные заметки в арабских рукописях XVI в., хранящихся в Лейдене, Готе и Оксфорде[3]. В настоящее время прародиной первых вечных двигателей по праву считается Индия. Так, Бхаск

ru-wiki.ru

Вечный двигатель второго рода

В XVIII веке широкое распространение получили паровые машины и механизмы. Часть физики, которая пыталась объяснить их работу и построить общие закономерности создания тепловых машин, стала называться термодинамикой. Закон сохранения энергии стали также именовать первым началом термодинамики. Вечные двигатели, принципы работы которых противоречили первому началу термодинамики, стали называть вечными двигателями первого рода.

Но существовала и другая общая идея вечного двигателя, которая не противоречила закону сохранения энергии. Было известно, что работа в двигателях совершается, когда горячее тело отдает тепло газу или пару и пар совершает работу, например, двигая поршень. Огромная тепловая энергия сосредоточена, допустим, в океане. Если отбирать у океана энергию за счет понижения его температуры, то этой энергии хватит на то, чтобы, например, поддерживать работу корабельного двигателя или создавать в море электростанции.

Однако оказалось, что никак не удается сделать так, чтобы энергия от более холодного тела перешла к более горячему. А ведь для создания вечного двигателя необходимо, чтобы при этом еще и совершалась работа.

В результате развития термодинамики, основываясь на работах Сади КАРНО, Рудольф Клаузиус показал, что, невозможен процесс, при котором теплота переходила бы самопроизвольно от тел более холодных к телам более нагретым. При этом невозможен не только непосредственный переход — его невозможно осуществить и с помощью машин или приборов без того, чтобы в природе не произошло еще каких-либо изменений.

Уильям Томсон (лорд Кельвин) сформулировал принцип невозможности вечного двигателя второго рода (1851 г.), поскольку в природе невозможны процессы, единственным следствием которых была бы механическая работа, произведённая за счет охлаждения теплового резервуара.

Когда была создана статистическая термодинамика, которая основывалась на молекулярных представлениях, второе начало термодинамики нашло свое объяснение. Оказалось, что переход тепла от холодного тела к более горячему в принципе возможен, но это уничтожающе маловероятное событие. А в природе реализуются наиболее вероятные события.

 

gitak.ru