Warning: file_get_contents(/var/www/www-root/data/www/yandex_carscomfort.ru1.txt): failed to open stream: No such file or directory in /var/www/www-root/data/www/carscomfort.ru/index.php on line 21

Warning: file_get_contents(/var/www/www-root/data/www/yandex_carscomfort.ru2.txt): failed to open stream: No such file or directory in /var/www/www-root/data/www/carscomfort.ru/index.php on line 22

Warning: file_get_contents(/var/www/www-root/data/www/yandex_carscomfort.ru3.txt): failed to open stream: No such file or directory in /var/www/www-root/data/www/carscomfort.ru/index.php on line 23

Warning: file_get_contents(/var/www/www-root/data/www/yandex_carscomfort.ru4.txt): failed to open stream: No such file or directory in /var/www/www-root/data/www/carscomfort.ru/index.php on line 24
Сопротивление обмоток двигателя таблица. Как прозвонить электродвигатель мультиметром
ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

Сопротивление обмоток двигателя таблица


Как прозвонить электродвигатель мультиметром: устройство и прозвон

Сегодня обсудим, как прозвонить электродвигатель мультиметром. Умеющему пользоваться подходит отвертка-индикатор. Один нюанс: заручившись помощью тестера, оценим параметры, отличим пусковую обмотку от рабочей по значению сопротивления (в первом случае величина будет выше вдвое). Отвертка-индикатор миниатюрная, удобная, умение пользоваться приобретете, при необходимости, выплатив 30 рублей найдете новую.

Устройство электродвигателя

Разновидностей двигателей предостаточно. Составлены движущейся частью – ротором – неподвижной – статором. Первым делом посмотрим, где намотана медная проволока. Вариантов ответа три:

  1. Катушки только на роторе.
  2. Катушки только на статоре.
  3. На подвижной и неподвижной части намотка.
Конструкция электродвигателя

Конструкция электродвигателя

В остальном прозвонить асинхронный электродвигатель будет ничуть не сложнее, нежели коллекторный. И наоборот. Разница ограничивается принципом действия, не затрагивая методики оценки работоспособности конструкции. Чтобы правильно прозвонить электродвигатель, перестаньте разбирать особенности.

Ротор электродвигателя

В этом и следующем подзаголовке научим, как прозвонить трехфазный электродвигатель. Если катушки (вне зависимости от количества) имеются на роторе, смотрим, конструкцию токосъемника. Вариантов ответа минимум два.

Графитовые щетки

Видим барабан ротора, снабженный выраженными секциями. Токосъемники представляют собой графитовые щетки. Двигатель коллекторный. Нужно прозвонить все секции. Выводами катушек являются противолежащие секции окружности.

Берем тестер, начинаем поочередно оценивать сопротивление: в каждом случае ответ (в омах) одинаковый плюс минус погрешность. При фиксировании обрыва очистка барабана не помогает. Факт бесконечного сопротивления или короткого замыкания свидетельствует: катушка сгорела. В некоторых двигателях сопротивление катушки близкое нулю.

Рассказывали, что делать в этом случае. Взять нормальную Крону 12 вольт, соединить катушку ротора последовательно низкоомному сопротивлению (20 Ом). Тестером измерить падения напряжения на катушке, добавочном резисторе, пользуясь пропорцией, посчитать значение (R1/R2 = U1/U2). Обратите внимание: резистор высокоточный (ряд Е48 или выше), чтобы вычисления обладали малой погрешностью. Удается измерить сравнительно малые сопротивления.

Обратите внимание: ток достигает 0,5 А при мощности 7 Вт. Вместо батарейки лучше взять блок питания компьютера, либо аккумулятор.

Ротор двигателя

Ротор двигателя

Непрерывные кольца

Токосъемник выполнен в виде одного или нескольких непрерывных колец. Указывает красноречиво: синхронный двигатель (число фаз по количеству секций), либо асинхронный с фазным ротором. Собственно, до этого нет дела, потому как собрались прозвонить электродвигатель тестером, определить назначение прибора поленимся. Смотрим количество колец: число укладывается в пределы 1 — 3. Последнее означает: двигатель трехфазный. Начинаем звонить.

Обмотки соединены звездой, в результате сопротивление между каждыми двумя контактами равное. Если есть на руках оборудования для создания напряжения 500 В, следует прозвонить электродвигатель мегомметром на корпус. Стандартное значение изоляции составляет 20 МОм. Обратите внимание: обмотки могут не выдержать испытания. С двигателем на 12 вольт такие действия предпринимать не стоит. В результате при полностью исправном роторе получится равное сопротивление между контактами. При обнаружении короткого замыкания на корпус проверьте, не является ли техническим решением создания системы с глухозаземленной нейтралью.

Пришло время упомянуть, что для такой системы способ питания характерен напряжениям ниже 1 кВ. Однако при резонансной компенсации (если удастся в природе найти двигатель) может использоваться нечто подобное. По шильдику с маркировкой можно быстро решить вопрос (выход нейтрали на корпус).

Коллекторные щетки чаще расположены перпендикулярно поверхности барабана, тогда как к токосъемникам прижимаются под некоторым углом. Возникает вопрос – где нейтраль. Не выходит на корпус — не используют в схеме. Часто встречается на напряжениях свыше 3 кВ. Здесь нейтраль изолирована, токи уходят через фазу, где в данном случае присутствует нуль (или отрицательное значение).

Расположение ротора

Расположение ротора

В высоковольтных цепях общий провод может заземляться через дугогасящий реактор. При коротком замыкании одной фазы на грунт образуется параллельный контур между емкостным сопротивлением линии и индуктивностью реактора. Собственно, тип импеданса дал название устройству (мнимая, реактивная части сопротивления). На промышленной частоте сопротивление контура близко бесконечности, в результате обрыв блокируется до приезда ремонтной группы.

Ротор часто называют якорем.

Статор электродвигателя

После вызванивания ротора электродвигателя займитесь статором. Деталь более простой конструкции. Если перед нами генератор, часть обмоток возбуждающая, в общем случае следует просто найти сопротивление каждой. Обмотки бывают пусковыми только однофазных цепей. Сопротивление катушки будет больше. Допустим, имеется три контакта, тогда распределение между ними следующее:

Различие проводится по величине сопротивления: между фазными входами номинал больше, следовательно, оставшийся конец – нулевой провод. Далее деление проводится, как было указано выше. Сопротивление пусковой катушки наибольшее (разница между нулем и этим контактом), оставшиеся концы обозначат рабочую обмотку. Номинал активной части импеданса уменьшен, снижая тепловые потери. Обратите внимание: на 230 вольт существуют также модели электродвигателей, где обе обмотки считаются рабочими. Разница по сопротивлению между ними невелика (менее двух раз).

Для трехфазных двигателей обмотки статора выполняются на разное количество полюсов, всегда эквивалентны. Исповедуется строгая симметрия. Объединение ведется по схеме звезды. В коллекторных двигателях большой мощности между полюсами главной катушки могут размещаться добавочные (дополнительные). Намотаны одним слоем, потому демонстрируют большее сопротивление. Предназначены компенсировать реактивную мощность якоря. Понятно, что число дополнительных полюсов равно числу основных. Разница ограничена геометрическими размерами.

Сердечник дополнительных полюсов изготавливается внахлест (шихтованная конструкция) для уменьшения вихревых токов. Аналогично ротору, недостаточным будет прозвонить трехфазный электродвигатель мультиметром, следует также измерить изоляцию корпуса (типичное значение 20 МОм).

Дополнительный конструктив двигателей

Часто состав двигателей пестрит дополнительными элементами, оптимизирующими работу, выполняющими защитную, иную функцию. Сюда нужно отнести варисторы. Резисторы, соединяющие каждую щетку с корпусом, при резком росте напряжения замыкают искру. Осуществляется гашение. Такие явления, как круговой огонь на коллекторе, приводят к преждевременному выходу оборудования из строя.

Явление наблюдается в результате возникновения противо-ЭДС. Механизм генерации достаточно прост: при изменении тока в проводнике образуется сила, противодействующая процессу. В процессе перехода на следующую секцию феномен вызывает возникновение разности потенциалов щетка-нерабочая часть коллектора. При напряжениях свыше 35 вольт процесс вызывает ионизацию воздуха зазора, наблюдаем в виде искры. Одновременно ухудшаются шумовые характеристики оборудования.

Данное явление, однако, используется отслеживать постоянство скорости вращения вала коллекторного двигателя. Уровень искрения определен числом оборотов. При отклонении параметра от номинала тиристорная схема изменяет угол отсечки напряжения в нужную сторону, чтобы вернуть скорость вала к номинальной. Подобные электронные платы часто встретим в составе бытовых кухонных комбайнов или мясорубок. Состав двигателя следующий:

Электромагнитный двигатель

Электрический двигатель

  1. Термопредохранители. Температура срабатывания выбирается, чтобы уберечь изоляцию от выгорания, разрушения. Предохранитель укреплен на корпусе электродвигателя стальной дужкой, либо прячется под изоляцией обмоток. В последнем случае наружу торчат выводы, легко можно прозвонить мультиметром. Проще проследить, заручившись помощью тестера, индикаторной отвертки, на какие ножки разъема выходит схема защиты. В нормальном состоянии термопредохранитель дает короткое замыкание.
  2. Вместо предохранителей частот ставятся температурные реле. Нормально разомкнутые или замкнутые. Чаще используется последний тип. На корпусе пишут марку, можно в интернете найти соответствующий тип элемента. Дальше действовать согласно найденной информации (тип, сопротивление, температура срабатывания, положение контактов в начальный момент времени).
  3. На двигателях стиральных машин часто ставят датчики оборотов, тахометры. В первом случае выводов три, во втором — два. Принцип действия датчиков Холла основан на изменении разницы потенциалов в поперечном направлении пластинки, по которой течет слабый электрический ток. Соответственно, два крайних вывода служат для подачи питания, должны давать короткое замыкание (небольшое сопротивление), тогда как выход можно проверить только под действием магнитного поля в рабочем режиме. Для этого нужно подать питание согласно электрической разводке. Рекомендуем скачать техническую информацию (data sheet) на присутствующий в электродвигателе датчик Холла. Придуманы другие варианты. Можно измерить питание тестером на включенной стиральной машине. Полагаем читатели понимают опасность манипуляций. Лучше будет электродвигатель снять, питание подать отдельно, только на датчик Холла. Затем все зависит от конструкции. Если на роторе магнит постоянный, достаточно просто повращать ось рукой, чтобы на выходе датчика Холла появились импульсы (фиксируется тестером). В противном случае понадобится изъять сенсор. Заручившись помощью постоянного магнита, проверяется работоспособность. Датчик Холла в составе электродвигателя обычно служит для контроля скорости вращения.

Теперь читатели знают, как прозвонить электродвигатель мультиметром, обзор заканчивается. Ряд специфических устройств можно продолжать до бесконечности. Главное — прозвонить обмотку электродвигателя, мотор обычно стоит дороже прочих деталей. Не берем случай, когда датчик Холла идет по цене 4000 рублей. Уверены, читатели смогут дополнить рекомендации. Но войдите в положение – невозможно объять необъятное… в пределах одного обзора.

vashtehnik.ru

1.8.15. Электродвигатели переменного тока | Элкомэлектро

О компании » Вопросы и ответы » ПУЭ 7 издание » 1.8.15. Электродвигатели переменного тока

Электродвигатели переменного тока

1.8.15.Электродвигатели переменного тока напряжением до 1 кВ испытываются по пп. 2, 4б, 5, 6. Электродвигатели переменного тока напряжением выше 1 кВ испытываются по пп. 1-6. 1. Определение возможности включения без сушки электродвигателей напряжением выше 1 кВ. Электродвигатели переменного тока включаются без сушки, если значение сопротивления изоляции и коэффициента абсорбции не ниже указанных в табл. 1.8.9.                   

                                                                                                                                                                                                                               Таблица 1.8.9

 Допустимые значения сопротивления изоляции и коэффициента абсорбциидля обмоток статора электродвигателей

Мощность, номинальное напряжение электродвигателя, вид изоляции обмоток

Критерии оценки состояния изоляции обмотки статора

Значение сопротивления изоляции, МОм

Значение коэффициента абсорбции R60/R15

1. Мощность более 5 МВт, термореактивная и микалентная компаундированная изоляция

При температуре 10-30 °С сопротивление изоляции не ниже 10 МОм на 1 кВ номинального линейного напряжения

Не менее 1,3 при температуре 10-30°С

2. Мощность 5 МВт и ниже, напряжение выше 1 кВ, термореактивная изоляция

3. Двигатели с микалентной компаундированной изоляцией, напряжение выше 1 кВ, мощностью от 1 до 5 МВт включительно, а также двигатели меньшей мощности наружной установки с такой же изоляцией напряжением выше 1 кВ

Не ниже значений, указанных в табл. 1.8.10.

Не менее 1,2

4. Двигатели с микалентной компаундированной изоляцией, напряжение выше 1 кВ, мощностью более 1 МВт, кроме указанных в п.3

Не ниже значений, указанных в табл. 1.8.10.

-

5. Напряжение ниже 1 кВ, все виды изоляции

Не ниже 1,0 Мом при температуре 10-30°С

-

6. Обмотка ротора

0,2

-

7. Термоиндикаторы с соединительными проводами, подшипники

В соответствии с указаниями заводов-изготовителей

2. Измерение сопротивления изоляции.  Допустимые значения сопротивления изоляции электродвигателей напряжением выше 1 кВ должны соответствовать нормам, приведенным в табл. 1.8.10. У синхронных электродвигателей и электродвигателей с фазным ротором на напряжение 3 кВ и выше или мощностью более 1 МВт производится измерение сопротивления изоляции ротора мегаомметром на напряжение 1000 В. Измеренное значение сопротивления должно быть не ниже 0,2 МОм. 3. Испытание повышенным напряжением промышленной частоты. Производится на полностью собранном электродвигателе. Испытание обмотки статора производится для каждой фазы в отдельности относительно корпуса при двух других, соединенных с корпусом. У двигателей, не имеющих выводов каждой фазы в отдельности, допускается производить испытание всей обмотки относительно корпуса. Значения испытательных напряжений приведены в табл. 1.8.11. Продолжительность приложения испытательного напряжения 1 мин.

                                                                                                                                                                                                                             Таблица 1.8.10

 Наименьшие допустимые значения сопротивления изоляции для электродвигателей (табл. 1.8.9, пп. 3, 4)

Температура обмотки, °С

Сопротивление изоляции R60", МОм, при номинальном напряжении обмотки, кВ

3-3,15

6-6,3

10-10,5

10

30

60

100

20

20

40

70

30

15

30

50

40

10

20

35

50

7

15

25

60

5

10

17

75

3

6

10

Таблица 1.8.11

 Испытательные напряжения промышленной частотыдля обмоток электродвигателей переменного тока

Испытуемый элемент

Мощность электродвигателя, кВт

Номинальное напряжение электродвигателя, кВ

Испытательное напряжение, кВ

1 . Обмотка статора

Менее 1,0

Ниже 0,1

0,8 (2Uном + 0,5)

 

От 1,0 и до 1000

Ниже 0,1

0,8 (2Uном + 1)

 

 

Выше 0,1

0,8 (2Uном + 1),

но не менее 1,2

 

От 1000 и более

До 3,3 включительно

0,8 (2Uном + 1)

 

От 1000 и более

Свыше 3,3 до 6,6 включительно

0,8 ´ 2,5Uном

 

От 1000 и более

Свыше 6,6

0,8 (2Uном + 3)

2. Обмотка ротора синхронных электродвигателей, предназначенных для непосредственного пуска, с обмоткой возбуждения, замкнутой на резистор или источник питания.

-

-

8-кратное Uном системы возбуждения,

но не менее 1,2

и не более 2,8

3. Обмотка ротора электродвигателя с фазным ротором.

-

-

1,5Uр*,

но не менее 1,0

4. Резистор цепи гашения поля синхронных двигателей.

-

-

2,0

5. Реостаты и пускорегулирующие резисторы.

-

-

1,5Uр*,

но не менее 1,0

*Uр напряжение на кольцах при разомкнутом неподвижном роторе и номинальном напряжении на статоре.

4. Измерение сопротивления постоянному току. Измерение производится при практически холодном состоянии машины. а) Обмотки статора и ротора*________________* Сопротивление постоянному току обмотки ротора измеряется у синхронных электродвигателей и асинхронных электродвигателей с фазным ротором. Измерение производится у электродвигателей на напряжение 3 кВ и выше. Приведенные к одинаковой температуре измеренные значения сопротивлений различных фаз обмоток, а также обмотки возбуждения синхронных двигателей не должны отличаться друг от друга и от исходных данных более чем на 2 %. б) Реостаты и пускорегулировочные резисторы Для реостатов и пусковых резисторов, установленных на электродвигателях напряжением 3 кВ и выше сопротивление измеряется на всех ответвлениях. Для электродвигателей напряжением ниже 3 кВ измеряется общее сопротивление реостатов и пусковых резисторов и проверяется целостность отпаек. Значения сопротивления не должны отличаться от исходных значений более чем на 10 %. 5. Проверка работы электродвигателя на холостом ходу или с ненагруженным механизмом.  Продолжительность проверки не менее 1 часа. 6. Проверка работы электродвигателя под нагрузкой. Производится при нагрузке, обеспечиваемой технологическим оборудованием к моменту сдачи в эксплуатацию. При этом для электродвигателя с регулируемой частотой вращения определяются пределы регулирования. Проверяется тепловое и вибрационное состояние двигателя.

www.megaomm.ru

Сопротивление обмоток двигателя таблица. Разделы начинающим

Зачастую, найдя какой-нибудь трехфазный двигатель, мы не можем его запустить по той простой причине, что правильно не определены начала и концы трех обмоток. Восполним этот пробел и применим для этого некоторые способы.Способ первый: инструмент - батарейка на от 1,5В до 4,5В(или аналогичный блок питания постоянного тока), милливольтрметр постоянного тока.Допустим, мы вызвонили омметром обмотки и у нас имеются несколько пар проводов. Нам надо определить, где у этих пар начало обмотки, а где конец. Возьмем любую пару проводов, принадлежащих одной из обмоток. Помечаем произвольно один из выводов обмотки как начало (Н), а второй как конец (К). Подключаем милливольтметр постоянного тока на пределе единицы или десятки милливольт постоянного тока(чем меньше напряжение батареи - тем меньше предел)к паре проводов другой обмотки. Минус батарейки присоединяем к нашему условному концу (К) первой обмотки, плюс - к началу. Наблюдаем за показаниями милливольтметра. Нас интересует отклоненение стрелки прибора в момент замыкания цепи «батарейка – обмотка». Если стрелка прибора отклоняется влево за ноль, то переключаем полярность присоединения прибора ко второй обмотке, и снова замыкаем батарейку на первую обмотку. Теперь отклонения прибора в момент замыкания должны быть в положительную(правую) сторону. Тот вывод обмотки, который соединен с плюсом милливольтметра, будет началом второй обмотки, а с минусом – концом (см. рис.1). Таким же образом определяем начало и конец третьей обмотки.Способ второй: инструменты - понижающий трансформатор, выключатель, вольтметр.Выбираем любую обмотку и подаем на нее напряжение с трансформатора величной, например, 6В. Это будет обмотка №1. Если при измерении вольтметром, к примеру, между обмоткой №1 и №2 вольтметр покажет, скажем, 8В - значит эти обмотки соединены одноименными концами(можно принять их за начала). Если это измерение между №1 и №2 покажет 4В - значит соединены они разноименными выводами и одну из обмоток надо развернуть концами. Аналогично определяюся концы 3-ей обмотки.

Конструкция трансформаторов спроектирована и рассчитана с использованием новейшего вычислительного и графического программного обеспечения. Это позволяет быстро выполнять проекты трансформаторов, в которых известны и подсчитываются все параметры и значения, связанные с производством и работой трансформаторов. Также возможно оптимизировать и выбрать лучший вариант дизайна. Трехколонные трансформаторы изготовлены из низкопробного холоднокатаного трансформаторного листа, покрытого неорганической изоляцией, их конструкция аналогична сердечникам трансформатора.

Способ третий: инструменты - лампа накаливания на 220В, выключатель, амперметр.Две любые обмотки двигателя, лампу, выключатель и амперметр соединяем последовательно. Измеряем и запоминаем показание. Затем концы одной из обмоток меняем местами, снова измеряем и запоминаем. Большему показанию прибора будет соответствовать соединение двух обмоток одноименными выводами. Обозначаем их концы. То же самое проделываем с третьей обмоткой.

Обмотки нижнего напряжения наматываются медной лентой или несколькими параллельными проводниками поперечного сечения профиля в классе изоляции лака. Ленты изолированы слоем специального изоляционного композита, соединяющего соседние катушки. Использование такого типа обмоток дает высокую устойчивость к короткому замыканию, полное обмотку, что предотвращает проникновение влаги и химических паров, а также высокую диэлектрическую прочность. Верхние обмотки обмотки наматываются круговыми или профилированными проводами в классе изоляции лаков.

Чтобы проверить статор и ротор на межвитковое замыкание мультиметром, не потребуется много времени. Дольше придется разбирать двигатель. Болгарка, дрель, перфоратор – каждый инструмент можно отремонтировать, определив неисправность. Проверку лучше разбить на несколько основных этапов, и последовательно не спеша выполнять действия.

Для изоляции обмоток используется стеклянная полоса, насыщенная полутвердыми эпоксидными смолами. После обмотки обмотка представляет собой компактный монолит с высокой механической и эл

electrician-i.ru