ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

ЖРД закрытого цикла. Ракетный двигатель ф1


F-1 Ракетный Двигатель

многолетний коммунизм «Ракета, пришедшая с холода» / The Engine That Came In F |бессмысленная война

многолетний коммунизм «Ракета, пришедшая с холода» / The Engine That Came In F |бессмысленная война Благодарим вас за просмотр моего видео, желаю вам счастливого дня, пожалуйста, подписаться на получение нового видео! Все помнят, какая борьба за технологии велась с первых дней ракетной эпохи. Так уж случилось, что первоначально в ракетостроении преуспели немецкие конструкторы; и еще в дни кровавых сражений, когда Красная Армия и союзники, преодолевая отчаянное сопротивление гитлеровцев, продвигались вглубь Германии, перед специалистами уже стояла задача о поиске всего, связанного с технологиями секретного проекта ФАУ. С началом космической эры в СССР и США не существовало ничего более закрытого, чем национальные секреты создания ракет. Ракетостроение стало главным критерием военной мощи государств и их принадлежности к кругу сверхдержав. Как получилось, что страна, впервые открывшая космос, запустившая космонавта, доставившая на Луну луноходы и создавшая космические станции -- эту гонку в итоге проиграла? Можно, конечно, кивать на перестройку и последовавший за ней развал страны; резкое сокращение средств на космонавтику. Но причина не только в недофинансировании. В годы Великой Отечественной войны случалось и труднее -- однако техническую гонку с рейхом мы выиграли. Завесу над этим вопросом приоткрывает совершенно уникальный документальный фильм «Ракета, пришедшая с холода», выпущенный в США в 2001 году. «Уникальный» - потому, что американцам даже в голову не пришло хоть как-то вуалировать факты прямого, на мой взгляд, предательства национальных интересов России рядом лиц, причастным к её космическим секретам. (Настолько, очевидно, режиссеры были уверены в необратимости нашей капитуляции перед Западом). Речь идет об удивительной для американских конструкторов технологии «закрытого типа» ракетных двигателей НК-33, сконструированных С.Кузнецовым для носителя Н-1 в Самаре по советской «лунной программе». Вот что об этом говорят сами американские специалисты: - Данный двигатель...привел к пересмотру всех космических технологий США... - ... Мы не знали таких технологий... -... Это лучшие двигатели на планете. Западные ученые считали эту технологию невозможной... -...Этот уровень в США считали невозможным... Авторы фильма не скрывают, что узнали о его существовании от разведки. Американский фильм демонстрирует кадры, как их МБР, потенциально «нацеленная на Россию» проводит успешный испытательный пуск. При запуске этой МБР присутствует вальяжный российский представитель, которого я идентифицирую как Ю.Н. Коптева, главу Росавиакосмоса. (В его адрес впоследствии поступало немало обвинений в преждевременном затоплении советской космической станции «Мир» - не без настойчивых рекомендаций со стороны американских «партнеров»). Российский специалист на старте американской боевой ракеты, оснащенной нашим двигателем? Кто тут сошел с ума? Subscribe & More Videos: https://goo.gl/k4ivQX Thank for watching, Please Like Share And SUBSCRIBE!!! #bessmyslennayavoyna, #mnogoletniykommunizm

ru.wn.com

F-1 (ракетный двигатель)

02 апреля 2011

Оглавление:1. F-1 (ракетный двигатель)2. Конструкция3. Интересные факты

американский жидкостный ракетный двигатель, разработанный компанией Rocketdyne. Использовался в ракете-носителе Сатурн V. Пять двигателей F-1 использовались на первой ступени Сатурна V, S-IC. До создания жидкостного четырёхкамерного ракетного двигателя РД-170 ракеты-носителя «Энергия» и твердотопливного ракетного двигателя для бокового ускорителя «Спэйс Шаттла», являлся самым мощным ракетным двигателем. По сей день остаётся самым мощным однокамерным жидкостным ракетным двигателем.

История создания

F-1 в Космическом ракетном центре США в Хантсвилле

Первоначально F-1 был разработан Рокетдайн в соответствии с запросом ВВС США от 1955 года о возможности создания очень большого ракетного двигателя. Конечным результатом этого запроса стали два разных двигателя — E-1 и более крупный F-1. Двигатель E-1, хоть и успешно прошёл стендовые огневые испытания, но быстро был признан технологически тупиковым вариантом, и отменен в пользу крупного, более мощного F-1. Американские ВВС впоследствии остановили дальнейшую разработку F-1 из-за отсутствия приложений для такого крупного двигателя. Однако НАСА, созданное в этот период времени, оценило пользу, которую может принести двигатель такой мощности, и заключила с Рокетдайн контракт на завершение его разработки. Испытания компонентов F-1 были начаты уже в 1957 году. Первое огневое испытание полностью скомпонованного тестового F-1 было совершено в марте 1959 года.

Семь лет разработок и испытаний двигателей F-1 выявили серьёзные проблемы с нестабильностью процесса горения, которые иногда приводили к катастрофическим авариям. Работы по устранению этой проблемы первоначально шли медленно, поскольку она проявлялась периодически и непредсказуемо. В конечном итоге инженеры разработали технику подрыва небольших зарядов взрывчатых веществ внутри камеры сгорания во время работы двигателя, что позволило им определить как именно работающая камера отвечает на флуктуации давления. Конструкторы теперь могли быстро экспериментировать с различными форсуночными головками, для выбора наиболее устойчивого варианта. Над этими задачами работали с 1959 по 1961 годы. В окончательной конструкции горение в двигателе было настолько стабильно, что он мог самостоятельно гасить искусственно вызванную нестабильность за десятую долю секунды.

Просмотров: 2300

www.vonovke.ru

ЖРД закрытого цикла - это... Что такое ЖРД закрытого цикла?

ЖРД замкнутой схемы

ЖРД замкнутой схемы (ЖРД закрытого цикла) — жидкостный ракетный двигатель, выполненный по схеме с дожиганием генераторного газа. В ракетном двигателе замкнутой схемы один из компонентов газифицируется в газогенераторе за счёт сжигания при относительно невысокой температуре с небольшой частью другого компонента, и получаемый горячий газ используется в качестве рабочего тела турбины турбонасосного агрегата (ТНА). Сработавший на турбине генераторный газ затем подаётся в камеру сгорания двигателя, куда также подаётся оставшаяся часть неиспользованного компонента топлива. В камере сгорания завершается сжигание компонентов с созданием реактивной тяги.

В зависимости от того, какой именно компонент газифицируется полностью, различают двигатели закрытой схемы с окислительным генераторным газом (примеры: РД-253, РД-170/171, РД-180, РД-120, НК-33), с восстановительным генераторным газом (примеры: SSME, РД-0120, РД-857) и с полной газификацией компонентов (РД-270).

Сравнение с другими схемами

В отличие от двигателей открытой схемы, в двигателе замкнутой схемы генераторный газ после срабатывания на турбине не выбрасывается в окружающую среду, а подаётся в камеру сгорания, участвуя таким образом в создании тяги и повышая эффективность двигателя (удельный импульс).

В двигателе закрытой схемы расход рабочего тела через турбину ТНА существенно выше, чем в двигателе открытой схемы, что делает возможным достижение более высоких давлений в камере сгорания.

При этом размеры камеры сгорания уменьшаются, а степень расширения сопла увеличивается, что делает его более эффективным при работе в атмосфере.

Недостатком этой схемы являются тяжёлые условия работы турбины, более сложная система трубопроводов из-за необходимости транспортировки горячего генераторного газа к основной камере сгорания, что имеет большое влияние на общую конструкцию двигателя и усложняет управление его работой.

История

Замкнутая схема ЖРД была впервые предложена А. М. Исаевым в 1949 году. Первый двигатель, созданный по этой схеме, был ЖРД 11Д33 (S1.5400), разработанный бывшим помощником Исаева Мельниковым, который использовался в создаваемых советских ракетах-носителях (РН).[1][2] Примерно в то же время, в 1959 году, Н. Д. Кузнецов начал работу над ЖРД с замкнутой схемой НК-9 для баллистической ракеты ГР-1 конструкции С. П. Королёва. Кузнецов позже развил эту схему в двигателях НК-15 и НК-33 для неудачной лунной РН Н1 и Н1Ф. Модификацию двигателя НК-33, ЖРД НК-33-1, планируется использовать на центральной ступени РН «Союз-2-3». Первый некриогенный ЖРД закрытой схемы РД-253 на компонентах гептил/N2O4 был разработан В. П. Глушко для РН «Протон» в 1963 году.

После неудачи программы разработки РН Н1 и Н1Ф, Кузнецову было приказано уничтожить технологию разработки ЖРД НК-33, но вместо этого десятки двигателей были законсервированы и помещены на склад. В 1990-х, специалисты Аэроджет посетили это предприятие, в ходе которого была достигнута договорённость о демонстрационных испытаниях двигателя в США для подтверждения параметров удельного импульса и других спецификаций.[3] Российский двигатель РД-180, получаемый Локхид Мартин и позже ULA (англ. United Launch Alliance — Объединённый альянс запусков) для РН Атлас III и Атлас-5, также использует замкнутую схему с дожиганием генераторного газа, который перенасыщен окислителем.

Первым ЖРД замкнутой схемы на западе был лабораторный двигатель, созданный в 1963 году немецким инженером Людвигом Бёльковым (англ. Ludwig Bölkow).

Маршевый двигатель космического челнока RS-24 (SSME) является ещё одним примером ЖРД замкнутой схемы и являются первыми двигателем данного типа, которые использовали компоненты кислород/водород. Российский аналог РД-0120 — использовался в центральном блоке системы РН «Энергия» — имеет ряд технических усовершенствований.

Замкнутая схема с полной газификацией компонентов

Замкнутая схема с полной газификацией компонентов топлива

Замкнутая схема с полной газификацией компонентов топлива (англ. Full flow staged combustion, FFSCC — «полнопоточный ступенчатый цикл сгорания» или «газ-газ») представляет из себя разновидность замкнутой схемы, в которой осуществляется газификация всего топлива в двух газогенераторах: в одном небольшая часть горючего сжигается с почти полным расходом окислителя, а в другом — почти полный расход горючего сжигается с оставшейся частью окислителя. Получившиеся генераторные газы используются для привода турбонасосных агрегатов (ТНА).

Большой расход рабочего тела через турбины позволяет получать очень высокие давления в камере сгорания двигателя. При использовании данной схемы турбины имеют ме́ньшую температуру, так как через них проходит бо́льшая масса, что должно привести к более продолжительному функционированию двигателя и его бо́льшей надёжности. Полная газификация компонентов приводит также к более быстрым химическим реакциям сгорания в основной камере, что в ряде случаев увеличивает удельный импульс ЖРД данной схемы на 10-20 сек — по сравнению с двигателями других схем (например, РД-270 и РД-0244).[4]

В настоящее время по этой схеме НАСА и ВВС США разрабатывают «Интегрированный демонстратор силовой насадки (англ. integrated powerhead demonstrator)».[5] В России данная схема работы двигателя с полной газификацией компонентов была реализована в ЖРД РД-270 для окислительного и топливного независимых контуров в 1969 году.

Примечания

Ссылки

dic.academic.ru