ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

Энциклопедия по машиностроению XXL. Основные узлы двигателя


Основные узлы двигателя — Мегаобучалка

НАО «КАЗАХСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ К.САТПАЕВА»

ВОЕННАЯ КАФЕДРА

 

Экземпляров___

Экземпляр №___

 

МЕТОДИЧЕСКАЯ РАЗРАБОТКА

По дисциплине

«Конструкция авиационного двигателя»

 

 

ВУС-461000

 

ТЕМА 19.

Общая характеристика двигателя ТВ3-117ВМ

 

  Обсуждена на заседании цикла Э и РТВ Протокол _____________ От «___» _________2014г. Уточнена: «___» ____________201_г.
«___» ____________201_г. «___» ____________201_г.
 

 

АЛМАТЫ

 

 

УТВЕРЖДАЮ

Начальник военной кафедры

При НАО «КазНТУ им. К.И. Сатпаева»

Полковник юстиции Т.Сагымбеков

«___» ________20__ г.

 

МЕТОДИЧЕСКАЯ РАЗРАБОТКА

по дисциплине«Конструкция авиационного двигателя»

 

 

I. ОБЩИЕ ОРГАНИЗАЦИОННО-МЕТОДИЧЕСКИЕ УКАЗАНИЯ

Цели и задачи обучения

Авиационные двигатели играют большую роль в гражданской и военной авиации.

Важнейшим элементом любого летательного аппарата является двигатель данные и конструктивное исполнение которого в значительной степени определяют возможность достижения больших скоростей, дальности полета и высот полета.

Поэтому непременными условиями успешной эксплуатации авиационных двигателей является глубокое знание физических основ их устройства и работы, эксплуатационных характеристик и обусловленности их ограничения, а также знание правил эксплуатации авиационной техники и их точное выполнение.

В результате изучения дисциплины студенты должны

знать:

- основные сведения о развитии гражданской авиации как отрасли государственного хозяйства;

- основные части авиационных двигателей;

- основы аэродинамики;

Уметь:

- определять и отличать основные технические данные авиационных

двигателей;

- производить простейшие расчеты по определению параметров

двигателей;

- иметь представление об основных конструктивных узлах двигателя и

их работе.

Выработать навыки:

- по демонтажу и установке основных агрегатов двигателя, а также иметь практические навыки по регулировке основных узлов и агрегатов двигателей АИ-24 и ТВ3-117 ВМ

Методические указания

При изучении дисциплины «Конструкция авиационного двигателя АИ-24 и двигателя ТВ3-117ВМ» является важнейшим этапом в подготовке специалистов, умеющих выполнять работы по техническому обслуживанию двигателей и их систем.

Это обучение позволяет закрепить и углубить знания, наиболее сложных вопросов касающихся газотурбинных двигателей, а также взаимодействие всех систем двигателей.

На занятиях учебный материал излагать применительно к практическим навыкам встречающимся при технической эксплуатации АД.

Большое внимание уделять знаю конкретных агрегатов двигателя, а также знанию основных систем двигателя.

Основной формой проведения практических занятий считать осмотр агрегатов той или иной системы на стендах, на макете двигателя.

Эти занятия проводить в специально оборудованных аудиториях, в классе оборудованном компьютерами, а также на учебных сборах в ангарах, где производиться техническое обслуживание авиадвигателей.

В процессе обучения на лекциях и практических занятиях использовать учебные кинофильмы, специальные программы на ПЭВМ по соответствующей тематике авиационного двигателя АИ-24 и двигателя ТВ3-117ВМ.

Главное внимание уделять на практические навыки по замене агрегатов различных систем двигателя, регулировки агрегатов двигателя АИ-24 и двигателя ТВ3-117ВМ.

В ходе проведения занятий широко использовать программный опрос обучающихся, проекционную аппаратуру, средства интерактивного обучения, а также использовать оборудование специальных классов.

В ходе занятий студенты приобретают навыки по замене агрегатов турбовинтового двигателя АИ-24 и двигателя ТВ3-117ВМ, определение характерных неисправностей двигателя АИ-24 и двигателя ТВ3-117ВМ,

а также способы их устранения, либо заменой агрегата либо регулировкой, что производиться на стендах или на макете турбовинтового двигателя АИ-24 и двигателя ТВ3-117ВМ.

ЗАНЯТИЕ – 1. Общая характеристика двигателя ТВ3-117ВМ.

 

УЧЕБНАЯ ЦЕЛЬ:

- знание физических основ их устройства и работы, эксплуатационных характеристик.

ВРЕМЯ: 2 часа (90 минут).

ВИД ЗАНЯТИЯ: групповое занятие

МЕСТО: специализированный класс.

УЧЕБНО-МАТЕРИАЛЬНОЕ ОБЕСПЕЧЕНИЕ:

Мультимидийные средства обучения.

 

Литература:

1. Руководство по технической эксплуатации турбовального двигателя ТВ3-117.

2. Авиационный турбовальный двигатель ТВ3-117, учебник Крейса.

 

УЧЕБНЫЕ ВОПРОСЫ И РАСЧЕТ ВРЕМЕНИ

№ пп Вопросы занятий Время (мин)
I Организация занятия
II Учебные вопросы:
  1. Особенности компоновочной схемы и работы вертолетного ГТД со свободной турбиной.    
2. Основные узлы и системы двигателя ТВ3-117ВМ. Технические и эксплуатационные данные двигателя.
3. Сигнализация и контроль за работой двигателя и его систем.
III Заключительная часть
     

ВВОДНАЯ ЧАСТЬ.

Проверка подготовки студентов к занятию:

Принять доклад дежурного по взводу.

Проверить наличие студентов.

Проверить готовность взвода к занятию.бъявить тему и учебные цели занятия.

 

ОСНОВНАЯ ЧАСТЬ

1-й учебный вопрос.Особенности компоновочной схемы и работы вертолетного ГТД со свободной турбиной.

 

Турбовальный двигатель ТВЗ-117 (см. рис. 1) предназначен для установки на вертолет. По своим техническим данный и эксплуатационным качествам двигатель соответствует современном техническим требованиям, предъявляемым к двигателям данного класса.

Двигатель TB3-117 эксплуатируется в составе силовой установки вертолета, куда входят два двигателя (рис. 2). Правый и левый двигатели силовой установки взаимозаменяемы при условии разворота выхлопного патрубка. Особенностью конструкции турбовального двигателя является наличие свободной турбины, кинематически не связанной с ротором турбокомпрессора.

Мощность, развиваемая свободной турбиной, передается редуктору и составляет эффективную мощность двигателя.

Эта особенность имеет ряд конструктивных и эксплуатационных преимуществ:

- позволяет получить желаемую частоту вращения ротора свободной турбины (nст) независимо от частоты вращения ротора турбокомпрессора (nтк) двигателя;

- облегчает раскрутку ротора ТК при запуске двигателя;

- позволяет получить оптимальные расходы топлива при различных условиях эксплуатации двигателя;

- исключает необходимость фрикционной муфты в силовой установке вертолета.

Двигатель может эксплуатироваться на вертолете как с установленным на входе пылезащитным устройством ПЗУ, так и без него.

На отдельных модификациях может быть установлено экранно-выхлопное устройство (ЭВУ).

 

 

Рис. 1.

 

 

 

 

Рис. 2.

 

Основные характеристики двигателя ТВ3-117ВМ:
Тип двигателя турбовинтовой, со свободной турбиной
Направление вращения левое
Частота вращения свободной турбины 15000 об/мин (100 %)
Мощность на выходном валу (взлетный режим) 2000 л.с.
Сухая масса 293 кг
Длина с агрегатами и выхлопным патрубком 2055 мм
Ширина 650 мм
Высота 728 мм

 

2-й учебный вопрос. Основные узлы и системы двигателя ТВ3-117ВМ. Технические и эксплуатационные данные двигателя.

Основные узлы двигателя

Входное устройство: плавный канал для подвода воздуха из атмосферы, защищено от обледенения.

Компрессор: осевой двенадцатиступенчатый.

Камера сгорания: кольцевая, имеет 12 топливных форсунок.

Турбина компрессора: двухступенчатая, осевая.

megaobuchalka.ru

Система охлаждения двигателя - основные узлы, неисправности

Система охлаждения двигателя — основные узлы, неисправности

Двигатель внутреннего сгорания устроен таким образом, что для его нормальной работы требуется определенная температура, называемая рабочей температурой двигателя. Если двигатель не охлаждать, он перегреется и выйдет из строя, если двигатель охлаждать слишком интенсивно, процессы горения в камере сгорания будут протекать неправильно и двигатель не сможет развить полную мощность.

Любое отклонение температуры двигателя от нормальных показателей является поводом начать поиск и устранение неисправности.

Основные узлы системы охлаждения

Двигатель внутреннего сгорания как правило содержит следующие узлы, которые так или иначе связаны с охлаждением:

Все эти узлы связаны между собой резиновыми патрубками, трубами и фланцами. Далее перечислю самые частые неисправности, которые могут встретиться в эксплуатации автомобиля.

Негерметичность соединений системы охлаждения

Пожалуй самая частая проблема, которая встречается. Многие знают о подтеканиях охлаждающей жидкости, однако продолжают эксплуатировать автомобиль, так как жидкость уходит медленно. Однако не стоит забывать, что любая брешь в герметичности замкнутой системы охлаждения, будучи прогретой до рабочей температуры может стихийно увеличиться и образовать внезапный порыв, не совместимый с дальнейшей эксплуатацией.

Основных причины негермитичности всего четыре:

Найти негерметичность достаточно просто, так как в антифриз добавляется краситель, который в месте подтекания никуда не денется, сохранив при этом цвет охлаждающей жидкости.

Выход из строя насоса охлаждения

В этом пункте все просто — насос охлаждения лишается возможности перекачивать антифриз, в результате чего может образоваться локальный перегрев. Неисправность опасна тем, что высокая температура может дойти до датчика слишком поздно, когда или перегреется двигатель, или от высокого давления порвет шланги.

Выход из строя пробки бачка охлаждающей жидкости

Пробка бачка охлаждающей жидкости является не просто обыкновенной пробкой, а так же поддерживает определенное давление внутри системы охлаждения. Если пробка выходит из строя или установлена неродная пробка, это может привести к высокому давлению и разрыву шлангов.

Выход из строя радиаторов

Радиаторов в машине минимум два: радиатор печки и радиатор системы охлаждения. Если любой из ниж выходит из строя, это может привести или к нарушению тока антифриза, или к снижению эффективности работы радиатора. Другими словами, если сломается радиатор печки, печка перестанет дуть горячим, если сломается радиатор двигателя, двигатель перестанет эффективно охлаждаться. Радиатор может быть забит грязью снаружи, забит накипью снутри или у него могут сломаться перегородки, в результате чего жидкость будет попадать со входа сразу на выход.

Выход из строя термостата

Термостат — достаточно коварная деталь. Его не так просто заменить и не так просто диагностировать. Единственная поломка термостата заключается в его заклинивании. Заклинить его может как в открытом состоянии так и в закрытом, следовательно двигатель может или перегреваться, или наоборот переохлаждаться. Если на перегрев двигателя лампочки есть почти во всех машинах, то на недогрев нету ни у кого, и хорошо, если у вас есть индикатор температуры охлаждающей жидкости. В противном случае очень неприятно ездить на недогретов двигателе с повышенным расходом топлива и не знать об этом.

Неисправности вентиляторов охлаждения

На самом деле неисправности всего две: не крутится или крутится но слабо. У электрических вентиляторов может выйти из строя мотор или включатели(начиная с блока управления двигателем и заканчивая реле). У вентиляторов на вязкостных муфтах может заклинить саму муфту и вентилятор будет или вращаться влишком быстро, или слишком медленно. Медленное вращение чревато перегревом, быстрое вращение чревато недогревом в зимнее время года.

Дополнительно хотелось бы отметить, что у вентилятора могут быть повреждены лопасти, что приведет или к снижению эффективности работы вентилятор и системы охлаждения в целом, или к сильной вибрации при работе вентилятора.

Вот пожалуй и все, что можно рассказать про неисправности системы охлаждения двигателя. Следите за состоянием шлангов и старайтесь своевременно устранять причины течей.

Удачи на дорогах!

ТАКЖЕ ЧИТАЙТЕ ПО ЭТОЙ ТЕМЕ:

http://myautoexp.ru

legkoe-delo.ru

Двигатели Основные узлы - Энциклопедия по машиностроению XXL

Этим объясняется наличие в спектрах вибрации двигателей наряду с низкочастотным составом, обусловленным возмущающими усилиями, высокочастотных составляющих, вызванных ко--лебаниями деталей на собственных частотах. Для полной расшифровки спектров вибрации необходимо знать частоты собственных колебаний основных узлов двигателя блока, картера, крышки и т. д.  [c.191]

Поэтому для более полной расшифровки спектров вибрации двигателей необходимо знать собственные частоты связанных колебаний основных узлов двигателя блока, картера, головки и т. д.  [c.206]

После окончания монтажа основных узлов на двигателе собирают топливную аппаратуру, механизм распределения, регулятор и др. Одновременно со сборкой двигателя устанавливают компрессор, воздушные баллоны и систему охлаждения.  [c.491]

ОСНОВНЫЕ УЗЛЫ СТАЦИОНАРНЫХ И СУДОВЫХ ДВИГАТЕЛЕЙ ВНУТРЕННЕГО СГОРАНИЯ  [c.50]

Проверка эксплуатационных характеристик и надежности двигателя. Сюда относятся испытания газодинамической устойчивости компрессора, устойчивости процессов горения, по оценке влияния отборов воздуха, испытания в условиях максимальных и минимальных окружающих температур, проверка на надежность основных узлов и двигателя в целом, оценка летно-эксплуатационных характеристик в термобарокамере и на самолете.  [c.56]

Все машины этой группы состоят из сравнительно небольшого числа основных узлов двигателя, трансмиссии, рамы, мостов с колесами или гусеницами, кабины управления и рабочего оборудования. Для этих узлов должны быть разработаны оптимальные ряды типоразмеров, унифицированные конструкции и организовано специализированное их производство с учетом потребностей  [c.210]

Рассмотрим еще, в качестве примера, основные моменты монтажа крупного электрического двигателя. Основные монтажные узлы такого двигателя фундаментная плита, статор, рабочий вал с ротором и стойки с подшипниками.  [c.282]

Поворотная платформа представляет собой металлическую конструкцию, сваренную из швеллера и предназначенную для размещения нз ней всех основных узлов буровой машины. Эта платформа опирается на круг тремя парами конических роликов, установленных на кронштейнах, которые закреплены на средней части поворотной платформы. В качестве силового агрегата для привода бурового оборудования использован двигатель СМД-14А от трактора Т-4. Двигатель устанавливается на поворотной платформе на трех эластичных пружинно-резиновых опорах. Радиатор и топливный бак использованы также от трактора Т-4.  [c.146]

Одним из основных узлов энергоустановки тепловоза являются теплообменные аппараты для охлаждения воды и масла в системах смазки и гидропередач двигателя. В тепловозных  [c.201]

По мере снижения высоты полета самолета с ТВД нагрузки передающиеся на основные узлы двигателя, возрастают, и возникает необходимость в ограничении величины параметра Л в-С этой целью нужно снижать обороты двигателя или температуру газа перед турбиной (одновременно облегчая винт). У таких ТВД высотная характеристика имеет вид, изображенный на рис. 5.26. Снижение температуры Г на высотах, меньших высоты ограничения, приводит к увеличению С .  [c.150]

На рис. 9.3 представлена схема газотурбинного двигателя, в которую включены его основные узлы. Насос подачи топлива 1, компрессор 2 (обычно лопастного типа) и турбинное колесо 4 установлены на общем валу 5. Вращение вала 5 в рабочем режиме обеспечивает турбинное колесо 4. При вращении вала 5 насос 1 осуществляет подачу топлива в камеру сгорания 3, а компрессор 2 нагнетает туда воздух. В камере 3 происходит сгорание рабочей смеси (подвод теплоты Q,i).Сгоревшая газовая смесь поступает под большим напором на лопатки турбинного колеса, обеспечивая его вращение. Из турбины отработанная газовая смесь направляется на выход (отвод теплоты Q,2).  [c.112]

При эксплуатации по техническому состоянию о надежности двигателя судят по оперативным данным системы диагностики и контроля каждого конкретного авиационного ГТД. Продление наработки в эксплуатации осуществляется индивидуально каждому двигателю в зависимости от состояния его элементов и узлов. Для этого необходимо иметь данные о долговечности основных узлов и деталей, высокую контролепригодность конструкции двигателя, совершенные методы и средства диагностики и контроля состояния двигателя, эффективную систему сбора и оперативной обработки информации.  [c.70]

Относительное, а вероятно, и абсолютное снижение потребления титана для двигателей военных машин можно объяснить тем, что для военных самолетов в значительной мере требуются двигатели для сверхзвуковых скоростей, т. е. турбореактивные, где возможность применения титана меньше, чем в турбовентиляторных, из-за особенностей самой конструкции. Кроме того, наблюдается постоянная тенденция к форсированию военных машин, повышению рабочих температур компрессора — основного узла, где можно выгодно применить титан. Последние ступени компрессора наиболее форсированных турбореактивных двигателей работают при температурах, превышающих 600° С, что привело к применению на этих ступенях жаропрочных сплавов на никелевой и железоникелевой основах.  [c.425]

При оценке возможности использования двигателя Стирлинга для конкретной практической задачи часто (хотя и не всегда) требуется определить его компактность. Тем не менее всегда полезно иметь представление о размерах двигателя в целом и его основных узлов. Для различных видов теплового двигателя часто имеется возможность оценить типичную величину выходной мощности на единицу объема цилиндра. Однако, поскольку выходная мощность двигателя Стирлинга существенно зависит от давления цикла, невозможно назвать типичное числовое значение. Кроме того, рассматриваемый двигатель может ыть машиной простого или двойного действия. Однако соотношение Била позволяет оценить размеры двигателя для конкретных значений отношения температур, давления и скорости вращения вала, если задана требуемая мощность. Разумеется, возможно множество различных комбинаций, но соотношение настолько просто, что можно получить ответ даже при отсутствии каких-либо конкретных ограничений. В настоящее время имеются определенные ограничения на некоторые параметры, которые указаны в табл. 3.6.  [c.312]

В любом из указанных типов двигателей имеются три основных узла компрессор, камера сгорания и турбина (рис. 12.3).  [c.577]

Первое требование состоит в необходимости смещения двигателя вперед для получения свободного пространства перед поперечиной панели приборов. Наличие такого пространства позволит разместить перед панелью приборов конструкцию, поглощающую кинетическую энергию двигателя, а также и автомобиля в целом. Следующее требование заключается в обеспечении определенного распределения во времени ударной нагрузки, воспринимаемой панелями. Необходимо, чтобы крылья и боковины последовательно разрушались от передней части к задней. Статическое моделирование разрушения конструкции, происходящего в такой последовательности, можно провести на установке, предназначенной для проведения статических испытаний на разрушение, которая показана на рис. 5.7. На этой установке с помощью шарнирных связей и штанг, соединенных с плунжерами гидронасосов, воспроизводится распределение реальных нагрузок в узлах, соответствующих центрам масс основных узлов автомобиля.  [c.125]

Каково устройство основных узлов двигателя автотележки ТГ-200  [c.210]

Для испытаний на изнашивание при трении о жестко закрепленные частицы абразива может быть рекомендовано йесколько типов установок 140, 197]. Общий вид одной из них, изготовленной в соответствии со схемой, описанной в [159], показан на фото 10. Основными узлами ее являются диск с наждачной бумагой, приводимый в движение двигателем, и ходовой винт с двумя держателями образцов. Во время испытаний образцы прижимаются к диску за счет веса держателей и гирь, закрепляемых на штоках. Относительно диска образцы совершают движение по спирали Архимеда. В поперечном направлении образцы перемещаются за счет вращения ходового винта. Смена направления перемещения осуществляется в автоматическом режиме с помощью конечных выключателей. Удобная конструкция держателей обеспечивает быструю установку и смену образцов.  [c.116]

На основании литературных данных, требований ГОСТа 23.201 — 78, результатов исследований, проведенных в Лаборатории Р1ГД СО АН СССР, для испытания покрытий на газоабразивное изнашивание можно рекомендовать установку типа центробежного ускорителя. Основными узлами машины являются ротор с четырьмя внутренними радиальными пазами, бункер с абразивом, основание с двенадцатью держателями образцов, герметизирующий кожух с вентилятором для удаления пыли, образующейся при проведении испытаний. Ротор с частотой 3000 об/мин приводится во вращение двигателем, расположенным под основанием. Абразив поступает из бункера в ротор и по радиальным пазам за счет центробежных сил устремляется к образцам, закрепленным в держателях. На выходе из пазов ротора скорость абразива достигает 38 м/с. Удобная конструкция держателей обеспечивает быструю установку и Сдмену испытуемых образцов (фото И). Испытания проводятся при четырех углах атаки 15, 30, 60, 90°. В качестве критерия стойкости материалов при воздействии газоабразивного потока возможно использование величины скорости их изнашивания. Эта характеристика оценивается на прямолинейных участках зависимостей потеря массы образца — время испытаний . В качестве контрольных применяются образцы из стали 45.,  [c.117]

В системе электропоезда или моторного вагона ярко выделяются дпа-основных узла в первую очередь, тяговый двигатель и, во вторую очередь, зубчатая передача. Выделяются они по двум признакам их стветствекнссти и числу неисправностей электроподвижного состава, вызванных их состоянием [Ц.  [c.203]

В 1843 г. англичанин В. Хенсон получил патент (заявка была подана на год раньше) на первый в истории проект самолета с двигательной установкой — паровым двигателем [6, с. 53]. Конструкция самолета, названного автором Ариель , была проработана весьма детально и имела все основные узлы и элементы современного самолета (полный вес 1360 кг, площадь крыла 425 Л1 , мощность мотора 30 л. с.). Ариель имел схему моноплана с одним мотором и двумя толкающими винтами в прорезях крыла. Два винта, по мнению Хенсона, должны были обеспечить поперечную устойчивость в полете. Для облегчения взлета Ариеля Хенсон предложил устроить наклонную дорожку.  [c.265]

Примерное расположение на чертеже сборочного вида не охваченных компоновкой узлов конструктор должен представлять себе мысленно. Для более полного выявления особенностей расположения основных узлов компоновочный чертеж сложного устройства должен включать в себя две или три проекции. В нашем примере отдельные, сравнительно небольшие по габаритам узлы, расположенные главным образом на периферии (см. рис.. 2.4), на основной проекции компоновки (см. рис. 2.15) не показаны. К таким узлам относятся арретиры гироплатформы и наружного кольца, амортизаторы, разгрузочный двигатель наружной оси карданова подвеса. Для выявления расположения этих узлов удобна дополнительная плановая проекция. Трудности компоновки этих узлов сравнительно невелики из-за таких факторов, как удаленность от критической зоны и возможность осуществить различные варианты расположения узлов.  [c.73]

Основными узлами машины являются несущая рама, узел рабочих органов, система дозирования компонентов, пневматический уплотнитель, трансмиссия с двигателем и механизмами управления. Привод всех узлов осуществляется от одной силовой установки мощностью 300 л. с. типа 2Д12Б. На грунтосмесителе для управления рабочими органами применены механический, гидравлический и пневматический приводы.  [c.175]

Лебедка состоит из трех основных узлов барабана, редуктора и электродвигателя с тормозным устройством. Кинематическая схема лебедки показана на рис. 162. Лебедка изготовляется в трех исполнениях, которые отличаются друг от друга мощностью устанавливаемого двигателя. На лебедках применяются двигатели типов МВТ-412-8, MBT-412-B и МВТ-412-6С с соответствующей мощностью 22, 16 и 30 квпг при ПВ 25%. Крутяш,нй момент от двигателя передается двухступенчатому редуктору, а от него на барабан. Редуктор имеет две цилиндрических зубчатых пары с общим передаточным числом 40,71. Вращение от двигателя при этом передаточном числе обеспечивает скорость навивки каната до 42 mImuh при развиваемом тяговом усилии 5000 кГ.  [c.274]

Вентилятор является одним из основных узлов двухконтурных турбореактивных двигателей, осуществляющий сжатие воздуха, проходящего как через первый, так и через второй контуры. Отношение расхода воздуха через второй контур Оц к расходу воздуха через первый контур Gj называется степенью двух-контурности двигателя т.  [c.80]

ДТРД этого назначения характеризуются двух- или трехваль-ной схемой турбокомпрессорной части с регулируемыми направляющими аппаратами компрессора, развитой высокоэффективной системой охлаждения турбины и других горячих элементов двигателя, применением средств реверсирования тяги и шумоглушения, высокой экономичностью, увеличенным сроком службы основных узлов и деталей, блочной конструкцией, высокой надежностью и рядом других важнейших современных конструктивных и эксплуатационных свойств.  [c.20]

С другой стороны, такой путь создания двигателей предопределяет ненерснективность их технико-экономических данных и малые возможности по совершенствованию основных узлов, системы регулирования и технологии обслуживания. Кроме того, применение подобных двигателей может быть затруднено после введения в конце 80-х годов еще более жестких норм по уровню шума и эмиссии загрязняющих веществ.  [c.176]

Фирма Роллс-Ройс продолжает работать над двигателем Пегас в направлении увеличения тяги, повышения надежности и улучшения обслуживаемости. В частности, разрабатывается вариант ДТРД Пегас 11-35 с увеличенной до 111,2 кН тягой н с модифицированными основными узлами двигателя [20], в то время как одна из первых серийных модификаций имела тягу 60 кН.  [c.194]

Методика проектного инженерного расчета основных параметров виброзащищенных электромагнитных ударно-вибрационных ручных машин, охватывающая расчет активной части электромагнитного двигателя (ударного узла), буферного устройства, систем охлаждения и виброзащиты, изложена в работе [3J.  [c.420]

С помощью данных, полученных методами предварительного расчета, можно провести более строгий анализ основных узлов двигателей. В работах [72, 73] представлено, по-видимому, наиболее полное описание метода такого подробного расчета, а в работах [6, 18] приведен метод расчета конструкции двигателя с термодинамической точки зрения. Ввиду сложности конструкции двигателя в целом пока не создано универсального теоретического или численного расчетного метода. Необходимо применять методы раздельного анализа, хотя в общую методику расчета можно включить комбинированный метод расчета газодинамических характеристик типа предложенного Уриелли или Органом.  [c.355]

mash-xxl.info