ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

Что такое порядок чередования фаз в трехфазной сети. Фазировка двигателя схемы


Понятие о фазировке

Под фазировкой в широком смысле этого слова подразумевается согласование соединяемых фаз. Сфазированные между собой обмотки правильно соединяются в звезды и треугольники, несфазированные обмотки образуют вместо звезды "елочку" (смотрите статью "Некоторые ошибки при соединениях в звезду, треугольник, зигзаг") и тому подобное.

Но фазировкой самих обмоток далеко не исчерпываются задачи, стоящие при включении в сеть электрооборудования, так как правильно сфазированный аппарат или электрическую машину нужно еще сфазировать с сетью, к которой он или она присоединяется. Задача состоит в том, чтобы не только исключить короткие замыкания при соединении двух источников тока, но и не допустить между ними уравнительных токов, а в отношении электродвигателей – обеспечить необходимое направление вращения.

Итак, в общем случае имеется сеть, фазы которой a, b, c определены и принимаются за исходные (рисунок 1, а). К сети должна присоединяться нагрузка.

Если это лампы, печи и другие электроприемники, не являющиеся источниками или преобразователями тока, то фазировка безразлична. Важно только, чтобы нуль нагрузки не попал ошибочно на фазу (рисунок 1, г), иначе лампы перегорят.

Если нагрузкой являются электродвигатели, то необходимо, чтобы они вращались в определенном направлении. А это достигается вполне определенной последовательностью присоединения электродвигателя к сети. Пусть, например, вращение фаз в сети происходит против часовой стрелки (рисунок 1, а), Если присоединить электродвигатель Д так, как показано на рисунке 1, б, то ток будет достигать максимальных значений в обмотке 2 (которая присоединена к фазе a), затем в обмотке 3 (так как за фазой a следует фаза b) и, наконец, в обмотке 1. Значит, ротор электродвигателя будет вращаться против часовой стрелки.

Если присоединить электродвигатель иначе (рисунок 1, в), так, что ток будет достигать максимального значения сначала в обмотке 3, затем в обмотке 2 и, наконец, в обмотке 1, ротор будет вращаться по часовой стрелке. Чтобы изменить направление вращения электродвигателя, достаточно поменять местами на его зажимах любые две фазы. Действительно, для электродвигателя важно только направление вращения, а оно сохраняется при трех вариантах присоединения, а именно: a, b, c; b, c, a; c, a, b, но изменяется на обратное, если в любом из этих вариантов поменять местами любые две фазы: a, c, b; b, a, c; c, b, a.

Рассмотрим два типичных случая присоединения трансформатора T2 к сети, которая получает питание от трансформатора T1. Трансформаторы имеют равные вторичные напряжения, одинаковые группы соединения (смотрите статью "Группы соединения трансформаторов") и, значит, могут работать параллельно, но еще не сфазированы. Задача состоит в том, чтобы их сфазировать, то есть выводы a1, b1 и c1 трансформатора T2 присоединить соответственно к шинам a, b и c.

На рисунке 1 выводы a1, b1 и c1 обозначены. Но при фазировке неизвестно, в каком порядке они подходят к шинам. Поэтому, прежде чем присоединять трансформатор T2 к шинам, необходимо произвести соответствующие измерения, например с помощью вольтметра 1.

Принципиальные схемы фазировки

Рисунок 1. Принципиальные схемы фазировки

1-й случай. Нейтрали трансформаторов соединены (рисунок 1, д).Вольтметр V включают поочередно между каждым выводом трансформатора a1, b1 и c1 и шинами a, b и c, например в таком порядке, как перечислено в таблице к рисунку. Между разными фазами a1 – b, a1 – c, b1 – a, b1 – c, c1 – b, c1 – a вольтметр показывает напряжение. Между одинаковыми фазами a1 – a, b1 – b, c1 – c напряжения нет. В справедливости этого вывода легко убедиться по векторной диаграмме, приведенной там же.

2-й случай. Нейтрали трансформаторов не соединены. В этом необходимо предварительно убедиться, так как они могут случайно соединяться через землю, если неисправны пробивные предохранители (смотрите статью "Схема соединения "Звезда", рисунок 11).

Перед измерением нужно соединить один из выводов, например a1 (рисунок 1, е), с одной из шин, например с шиной b. На рисунке показано соединение через сопротивление r, которое всегда полезно включить во избежание короткого замыкания по непредвиденным причинам. Измерение поочередно производится между выводами b1 и c1 и шинами a и c согласно таблице и векторной диаграмме. Из нее видно, что фазировка не получилась. Почему? Потому что мы соединили фазу a1 с шиной b, то есть нефазированные выводы. Ясно, что и другие пары выводов не могли оказаться сфазированными.

Не добившись успеха при соединении вывода a1 с шиной b, приходится испытать другое соединение (рисунок 1, ж). Оно оказалось удачным: вывод b1 соединен с шиной b, то есть сфазирован. Поэтому при измерениях между выводами a1 и шиной a, а также между выводом c1 и шиной c напряжения нет (смотрите таблицу), что свидетельствует о том, что и они сфазированы.

Видео 1. Процедура фазировки линий трехфазной сети на подстанциях

Некоторые ошибки при фазировке и их предупреждение

Фазировка – дело сложное и весьма разнообразное. Здесь же обратим внимание на две распространенные ошибки: на фазировку с помощью фазоуказателя, чего ни в коем случае делать нельзя; на неправильное отношение к присоединению к шинам генераторов и вторичных обмоток трансформаторов, питающих сеть.

Фазоуказатель указывает только направление вращения фаз и не больше, но как было уже указано, вращение имеет одно и то же направление при нескольких вариантах присоединения, среди которых есть и такое, при котором не исключено соединение разноименных фаз, то есть короткое замыкание.

Рисунок 2 иллюстрирует ошибку при фазировке перед соединением двух секций с разным расположением шин. На 1-й секции шины расположены в порядке a, b, c, на 2-й – c, a, b. Фазоуказатели ФУ показывают, несмотря на это, одно и то же направление вращения. И если на этом основании сделать ошибочное заключение о том, что шины обеих секций сфазированы, и соединить их, как показано на рисунке 2, то произойдет короткое замыкание.

Понятие о фазировке

Рисунок 2. Нельзя выполнить фазировку с помощью фазоуказателя

Неправильное присоединение к шинам питающего генератора или вторичной обмотки трансформатора может привести к тому, что последовательность фаз на шинах изменится. В результате такой ошибки все электродвигатели, питающиеся, от шин, пойдут в обратную сторону, в чем легко убедиться по рисунку 3. Сверху на нем показано правильное присоединение генератора Г к шинам, при котором роторы двигателей Д вращаются против часовой стрелки. На нижнем рисунке показана ошибка: при присоединении к шинам генератора левый и средний выводы "перекрещены". Из-за этого порядок следования фаз в обмотках электродвигателей изменился, поэтому их роторы стали вращаться в обратную сторону.

Перекрещивание фаз

Рисунок 3. При перекрещивании фаз источники электропитания изменяется направление вращения всех присоединенных к нему электродвигателей

1 Лампами для этой цели пользоваться опасно, так как между несфазированными выводами может получиться двойное линейное напряжение. В сетях 380 / 220 В оно составит 760 В.

Источник: Каминский Е. А., "Звезда, треугольник, зигзаг" – 4-е издание, переработанное – Москва: Энергия, 1977 – 104с.

www.electromechanics.ru

Чередование фаз в трехфазной сети – что это и как проверить

Часто на объектах электроснабжения приходится решать задачу проверки чередования фаз, а также производить фазировку. Обычно эти задачи входят в комплекс работ по согласованию параллельной работы трансформаторов. Хочется поделиться небольшой историей, в которой будут затронуты темы чередования фаз в трехфазной сети и правильной фазировки, а также приборы и методы, использующиеся при этом.

Небольшое вступление

Ctil

Попалась на глаза история о монтаже электрооборудования, а именно двух масляных трансформаторов. Работы были завершены успешно. В итоге имелась следующая схема электроснабжения. Собственно сами трансформаторы, вводные выключатели, секционные разъединители, две секции шин. Успешно, как считали монтажники, прошли пусконаладочные работы. Стали включать оба трансформатора на параллельную работу и получили короткое замыкание. Естественно, монтажники утверждали, что произвели проверку чередования фаз с обоих источников и все совпадало. Но, о фазировке не было сказано ни слова. А зря! Теперь давайте разберемся подробно, что же пошло не так.

Что собой представляет чередование фаз?

Как известно, в трехфазной сети присутствует три разноименные фазы. Условно они обозначаются как А, В и С. Вспоминая теорию, можно говорить что синусоиды фаз смещены относительно друг друга на 120 градусов. Так вот всего может быть шесть разных порядков чередования, и все они делятся на два вида – прямое и обратное. Прямым чередованием считается следующий порядок – АВС, ВСА и САВ. Обратный порядок будет соответственно СВА, ВАС и АСВ.

Схема

Чтобы проверить порядок чередования фаз можно воспользоваться таким прибором, как фазоуказатель. О том, как пользоваться фазоуказателем, мы уже рассказывали. Конкретно рассмотрим последовательность проверки прибором ФУ 2.

Как выполнить проверку?

Сам прибор (предоставлен на фото ниже) представляет собой три обмотки и диск, который вращается при проверке. На нем нанесены черные метки, которые чередуются с белыми. Это сделано для удобства считывания результата. Работает прибор по принципу асинхронного двигателя.

ФУ 2

Итак, подключаем на выводы прибора три провода от источника трехфазного напряжения. Нажимаем кнопку на приборе, которая расположена на боковой стенке. Увидим, что диск начал вращаться. Если он крутится по направлению нарисованной на приборе стрелки, значит, чередование фаз прямое и соответствует одному из вариантов порядка АВС, ВСА или САВ. Когда диск будет вращаться в противоположную стрелке сторону, можно говорить об обратном чередовании. В таком случае возможен один из таких трех вариантов – СВА, ВАС или АСВ.

Если возвращаться к истории с монтажниками, то все что они сделали – это лишь определение чередования фаз. Да, в обоих случаях порядок совпал. Однако нужно было еще проверить фазировку. А ее невозможно выполнить с помощью фазоуказателя. При включении были соединены разноименные фазы. Чтобы узнать где условно А, В и С, нужно было применить мультиметр или осциллограф.

Мультиметром измеряется напряжение между фазами разных источников питания и если оно равно нулю, то фазы одноименные. Если же напряжение будет соответствовать линейному напряжению, то они разноименные. Это самый простой и действенный способ. Более подробно о том, как пользоваться мультиметром, вы можете узнать в нашей статье. Можно, конечно, воспользоваться осциллографом и смотреть по осциллограмме какая фаза от какой отстает на 120 градусов, но это нецелесообразно. Во-первых, так на порядок усложняется методика, и во-вторых такой прибор стоит немалых денег.

На видео ниже наглядно показывается, как проверить чередование фаз:

Когда нужно учитывать порядок?

Проверить чередование фаз нужно при эксплуатации трехфазных электродвигателей переменного тока. От порядка фаз будет меняться направление вращения двигателя, что иногда бывает очень важно, особенно если на участке находится много механизмов, использующих двигатели.

Проверка чередования фаз фото

Также важно учитывать порядок следования фаз при подключении электросчетчика индукционного типа СА4. Если порядок будет обратный возможно такое явление как самопроизвольное движение диска на счетчике. Новые электронные счетчики, конечно, нечувствительны к чередованию фаз, но на их индикаторе появится соответствующее изображение.

Если имеется электрический силовой кабель, с помощью которого необходимо выполнить подключение трехфазной сети питания, и нужен контроль фазировки, выполнить его можно и без специальных приборов. Зачастую жилы внутри кабеля отличаются по цвету изоляции, что сильно упрощает процесс «прозвонки». Так, чтобы узнать где условно находится фаза А, В или С понадобится лишь снять наружную изоляцию кабеля. На двух концах мы увидим жилы одинакового цвета. Их мы и примем за одинаковые. Подробнее о цветовой маркировке проводов вы можете узнать из нашей статьи.

Цветовая маркировка в трехфазной сети

Но все же слепо доверяться такой маркировке нельзя. Так, на практике бывают случаи, что производители кабеля не могут гарантировать что в начале и в конце кабеля цвет жил будет один и тот же. Поэтому нужно все равно прозвонить жилы прозвонкой.

Теперь вы знаете, что такое чередование фаз в трехфазной сети и как его проверить с помощью приборов. Надеемся, информация была для вас полезной и интересной!

Советуем также прочитать:

samelectrik.ru

8.2. Методы фазировки

Фазировка может быть предварительной, выполняемой в процессе монтажа И ремонта оборудования, и при вводе в работу, производимой непосредственно перед первым включением в работу нового или вышедшего из ремонта оборудования, если при ремонте фазы могли быть переставлены местами.

Предварительной фазировкой проверяется чередование фаз соединяемых между собой элементов обору-дования. Так. например, при ремонте поврежденного кабеля определяют, какие жилы кабеля, находившегося в эксплуатации, и ремонтной вставки должны соединяться между собой, чтобы фазы кабельной линии и сборных шин РУ совпали. Произвольное соединение токоведущих жил может нарушить порядок чередования фаз, и это приведет к необходимости менять местами жилы у концевых муфт или изменять монтаж шин в ячейке РУ. Ясно, что обе эти операции не только нежелательны, но часто и невыполнимы. Поэтому перед соединением жил проверяют их фазировку. Предварительная фазировка производится на оборудовании, не наводящемся под напряжением. Основные виды оборудования фазируются визуально, "прозвонкой", при помощи мегаомметра или импульсного искателя.

Независимо от того, проводилась или не проводилась предварительная фазировка оборудования в период его монтажа или ремонта, оно обязательно фазируется при вводе в работу, так как только в этом случае можно быть уверенным в согласованности фаз всех элементов электрической цепи. Фазировка при вводе в работу произво-дится исключительно электрическими методами. Выбор метода зависит от вида фазируемого оборудования (генератор, трансформатор, линия) и класса напряжения, на котором оно должно включаться в работу. Различают прямые (см. § 8.3) и косвенные (см. § 8.4) методы фазировки оборудования при вводе в работу. Прямыми методами называют такие, при которых фазировка производится на вводах оборудования, нахо-дящегося непосредственно под рабочим напряжением; эти методы наглядны и их широко применяют в установках до 110 кВ.

Косвенными называют такие методы, при которых фазировка производится не на рабочем напряжении установки, а на вторичном напряжении трансформаторов напряжения, присоединенных к фазируемым частям установки. Косвенные методы менее наглядны, чем прямые, но применение их не ограничивается классом на-пряжения установки.

Оперативному персоналу подстанций, как правило, не приходится иметь дело с предварительной фазировкой оборудования, поэтому методы ее проведения здесь не рассматриваются. Из прямых методов фазировки представляют интерес методы фазировки трансформаторов и линий электропередачи.

8.3. Прямые методы фазировки

Фазировка трансформаторов, имеющих обмотки НН до 380 В, без установки перемычки между зажимами.

Этим методом фазируют силовые трансформаторы, вторичные обмотки которых соединены в звезду с выве-денной нулевой точкой, а также измерительные трансформаторы напряжения, имеющие вторичные обмотки с заземленной нейтралью. Фазировку производят с помощью вольтметра со стороны обмотки НН. Вольтметр дол-жен быть рассчитан на двойное фазное напряжение, так как появление такого напряжения между зажимами фазируемых трансформаторов не исключено.

Фазируемые трансформаторы включают по схеме, представленной на рис. 8.3. Нулевые точки вторичных обмоток при этом должны быть надежно заземлены или присоединены к общему нулевому проводу, что следует проверить перед началом фазировки. Объединение нулевых точек необходимо для создания между фазируемыми трансформаторами электрической связи, образующей замкнутый контур для прохождения тока через прибор.

Прежде чем приступить к фазировке, проверяют симметричность напряжений трансформаторов. Для этого вольтметр поочередно подключают к зажимам a1-b1; b1-c1; c1-a1; a2-b2; b2-c2; c2-a2.

Если значения измеренных напряжений сильно отличаются друг от друга, проверяют положение переключа-телей ответвлений обоих трансформаторов. Перелючением ответвлений уменьшают разницу напряжений. Фазировка допускается, если разность напряжений не превышает 10%.

После проведения перечисленных операций приступают собственно к фазировке. Сущность ее заключается в отыскании выводов, между которыми разность напряжений практически близка к нулю. Для этого провод от вольтметра присоединяют к одному выводу первого трансформатора, а другим проводом поочередно касаются трех выводов второго трансформатора (например, измеряют напряжения между выводами a1- a2; a1-b2; a1-c2-)-Дальнейший ход фазировки зависит от полученных результатов. Если при одном измерении (допустим, между выводами a1- a2 )п оказание вольтметра было близким к нулю, то эти выводы замечают, а вольтметр присое-диняют ко второму выводу (например, b1) первого трансформатора и измеряют напряжение между выводами b1-b2; b1-c2. Если опять одно из показаний вольтметра (например, между выводами b1-b2) окажется близким к нулю, то фазировку считают законченной (рис. 8.4, а). Особой необходимости в измерении напряжения между выводами c1-c2 нет, так как при двух нулевых показаниях вольтметра (a1- a2 и b1-b2) напряжение между третьей парой фаз, естественно, должно быть близким к нулю. Однако для подтверждения полученных результатов о совпадении фаз все же производят измерение между c1-c2. Выводы, между которыми не было разности напряжений, соединяют при включении трансформаторов на параллельную работу. У каждого полюса коммутационного аппарата такие выводы должны находиться непосредственно друг против друга.

Если после измерения (a1- a2; a1-b2; a1-c2; b1-a2; b1-b2; b1-c2) ни одно из показаний вольтметра не было близким к нулю, то это говорит о том, что фазируемые трансформаторы принадлежат к разным группам соединений и их включение на параллельную работу недопустимо. Фазировку на этом прекращают. На основании измерений строят векторные диаграммы и по ним судят, можно ли включать трансформаторы параллельно и какие пересоединения надо для этого выполнить.

Техника построения векторных диаграмм на основании результатов измерений линейных напряжений показана на рис. 8.4, б. Треугольник линейных напряжений первого трансформатора строят произвольно, а точки вершин второго треугольника находят путем засечек, радиусы которых численно равны напряжениям между зажимами a1- a2 и b1-a2; a1-b2 и b1-b2.

Фазировка кабельных и воздушных линий 6-110 кВ. При фазировке линий напряжением 6—10 кВ пользуются индикаторами, например, типа УВН-80, УВНФ и др. Фазировка выполняется в следующей последовательности. На выводы разъединителей или выключателя подают фазируемые напряжения (рис. 8.5).

Проверяют исправность индикатора. Для этого щупом трубки, содержащей резистор, касаются заземления, а щуп другой трубки подносят к одному из зажимов аппарата, находящегося под напряжением (рис. 8.5,а), при этом неоновая лампа должна загореться. Затем щупами обеих трубок касаются одной токопроводящей части (рис. 8.5, б). Лампа индикатора при этом не должна гореть. Проверяют напряжение на всех шести выводах коммутационного аппарата, как показано на рис. 8.5, в. Проверка производится для того, чтобы исключить ошибку в случае фазировки линии, имеющей обрыв (например, вследствие неисправности предохранителя). Абсолютные значения напряжения между фазой и землей здесь не играют роли, так как при фазировке присоединение индикатора будет производиться или на линейное напряжение (несовпадение фаз), или на незначительную разность напряжений между одноименными фазами (совпадение фаз). Поэтому о наличии напряжения на каждой фазе судят просто по свечению лампы индикатора.

Процесс собственно фазировки состоит в том, что щупом одной трубки индикатора касаются любого крайнего вывода аппарата, например фазы с а щупом другой трубки — поочерёдно трех выводов со стороны фазируемой линии (рис. 8.5, г). В двух случаях касаний (С – А1 и С – В1) лампа будет ярко загораться, в третьем (С –С1) гореть не будет, что укажет на одноименность фаз.

После определения первой пары одноименных выводов щупами поочередно касаются других пар выводов, например А – А1 и А – В1. Отсутствие свечения лампы индикатора в одном касании укажет на одноименность следующей пары выводов. Совпадение фаз третьей пары выводов В — В1 проверяют только в целях контроля - фазы должны совпасть.

Одноименные фазы соединяют на параллельную работу. Если одноименные фазы у разъединителей или выключателя не находятся друг против друга, то с установки снимают напряжение и пересоединяют шины в том порядке, который необходим для совпадения фаз.

Фазировка воздушных и кабельных линий прямым методом возможна и на напряжении 35 и 110 кВ. Для этой цели в Мосэнерго используют индикатор типа УВНФ-35-110, конструкция которого аналогична индикатору УВНФ на 10 кВ. От последнего его отличает наличие в схеме полистирольных конденсаторов вместо резистора. Фазировка производится на отключенных разъединителях (или отделителях), выводы которых находятся под напряжением: с одной стороны от шин РУ, с другой от фазируемой линии. Сначала на всех фазах разъединителей проверяют наличие напряжения прикосновением щупов указателя к фазе и к заземленной конструкции, затем на крайних фазах разъединителей проверяют совпадение напряжений по фазе (рис. 8.6). На средней фазе проверку не производят. Если лампа индикатора не загорается при фазировке на крайних фазах, то фазировку считают законченной - фазы совпадают. При свечении лампы индикатора на обеих крайних фазах или только на одной фазировку прекращают - фазы не совпадают.

В Ленэнерго для фазировки линий 35-110 кВ применяют индикатор, в котором использован принцип сравнения напряжений на двух одинаковых делителях напряжения, собранных из резисторов (рис. 8.7). Производят фазировку, касаясь щупами индикатора проводов каждой фазы разъединителей так, как это показано на рис. 8.8. При совпадении фаз напряжений стрелка прибора не должна значительно отклоняться от нуля шкалы. Возможно лишь небольшое отклонение стрелки, что объясняется некоторой разностью фазируемых напряжений или сдвигом напряжений по углу при фазировке линий большой протяженности. При несовпадении напряжений по фазе стрелка прибора отклонится до конца шкалы.

Условия безопасности при фазировке индикаторами напряжения. Прежде чем приступить к фазировке, необходимо убедиться в выполнении как общих требований техники безопасности по подготовке рабочего места, так и специальных требований по работе с измерительными штангами на оборудовании, находящемся под напряжением.

Электрические аппараты, на выводах которых будет производиться фазировка, еще до подачи на них напряжения должны быть надежно заперты, должны быть также приняты меры, предотвращающие их включение.

Индикаторы напряжения перед началом работы под напряжением должны быть подвергнуты тщательному наружному осмотру, при этом обращается внимание на то, чтобы лаковый покров трубок и изоляции соединительного провода не имели видимых повреждений и царапин. Срок годности индикатора проверяется по штампу периодических испытаний. Не допускается применять индикаторы, срок годности которых истек.

При работах с индикатором напряжения обязательно применение диэлектрических перчаток. В ходе фазировки не рекомендуется приближать соединительный провод к заземленным частям. Располагать рабочие и изолирующие части индикатора следует так, чтобы не возникла опасность перекрытия по их поверхности между фазами или на землю.

Фазировку индикатором напряжения нельзя производить во время дождя, снегопада, при тумане, так как изолирующие части его могут увлажниться, что приведет к их перекрытию.

studfiles.net

Чередование фаз | Заметки электрика

cheredovaniye_faz_чередование_фаз_2

Здравствуйте, уважаемые гости и постоянные читатели сайта «Заметки электрика».

Несколько дней назад мне позвонил знакомый с просьбой разобраться в ситуации.

У него на объекте работала бригада электромонтажников.

Они занимались установкой двух силовых масляных трансформаторов 10/0,4 (кВ) мощностью 400 (кВА). С каждого трансформатора питались сборные шины 1 и 2 секций 0,4 (кВ). Между сборными шинами 1 и 2 секций был предусмотрен межсекционный автоматический выключатель.

Вот фото двух секций напряжением 400 (В).

cheredovaniye_faz_чередование_фаз

При пусконаладочных работах решили попробовать включить оба трансформатора на параллельную работу. При включении произошло короткое замыкание, при котором сработала защита сразу на двух вводных автоматических выключателях.

cheredovaniye_faz_чередование_фаз_1

Стали разбираться. Условия включения трансформаторов на параллельную работу были соблюдены, но не все. Пришли к выводу, что не была соблюдена фазировка шин двух секций 400 (В). Бригада монтажников уверяет, что предварительную фазировку провела правильно. Чуть позже выяснилось, что фазировку они проводили с помощью фазоуказателя ФУ-2 на каждой секции и в обоих случаях прибор показал прямую последовательность фаз.

 

Фазоуказатель ФУ-2

Порядок чередования фаз (следования фаз) в трехфазной системе напряжений можно проверить с помощью переносного индукционного фазоуказателя типа ФУ-2. Вот так он выглядит.

cheredovaniye_faz_чередование_фаз_3

Он состоит из трех обмоток, расположенных на сердечниках, и алюминиевого диска.

Действие прибора аналогично принципу работы асинхронного двигателя.

Если все три обмотки включить в сеть трехфазного напряжения, то они образуют в пространстве вращающееся магнитное поле, которое приводит во вращение алюминиевый диск. Алюминиевый диск имеет фон черно-белого цвета. Направление магнитного поля и алюминиевого диска зависит исключительно от порядка чередования (следования) фаз питающего трехфазного напряжения.

Фазоуказатель ФУ-2 предназначен для включения в сеть трехфазного напряжения от 50 до 500 (В). Время его включения ограничивается временем 5 секунд. При нажатии на кнопку (она находится сбоку) диск начнет вращаться ту или иную сторону.

Рассмотрим работу фазоуказателя ФУ-2 более подробно.

 

Проверка чередования (следования) фаз на стенде

На моем испытательном стенде имеется источник трехфазного напряжения. Порядок чередования фаз мне неизвестен.

cheredovaniye_faz_чередование_фаз_4

Проведем проверку чередования (следования) фаз с помощью фазоуказателя ФУ-2.

Подключаем зажимы А, В и С фазоуказателя ФУ-2 к выводам трехфазного напряжения на стенде.

cheredovaniye_faz_чередование_фаз_5

cheredovaniye_faz_чередование_фаз_6

Подаю напряжение на источник трехфазного напряжения порядка 80 (В).

Нажимаем на кнопку и смотрим куда начал вращаться диск прибора. Диск начал вращаться в обратную сторону — против стрелки. Это значит, что трехфазное напряжение на испытательном стенде имеет обратную последовательность фаз, т.е. фазы следуют друг за другом в следующих трех вариантах: СВА, АСВ или ВАС.

Чтобы изменить обратную последовательность фаз на прямую, достаточно поменять местами две любые фазы. Меняю местами две крайние фазы (справа) на стенде и снова провожу измерение.

Теперь диск фазоуказателя начал вращаться в одну сторону со стрелкой. Это значит, что теперь трехфазное напряжение на испытательном стенде имеет прямую последовательность фаз, т.е. фазы следуют друг за другом в следующих трех вариантах: АВС, ВСА или САВ.

Все вышеописанные действия Вы сможете посмотреть на видео:

 

Зачем необходимо проверять чередование фаз?

Чередование фаз необходимо проверять для правильного подключения трехфазных двигателей. При прямом подключении фаз они будут вращаться в одном направлении, а при обратном — в другом.

Также чередование фаз необходимо учитывать при подключении счетчиков электрической энергии. Особенно, это относится к счетчикам индукционного типа.

Например, у счетчика СА4-И678 при обратной последовательности фаз начинается «самоход» диска. В современных электронных счетчиках типа СЭТ-4ТМ и ПСЧ-4ТМ при обратном чередовании фаз выдается на экран уведомление.

Забыл упомянуть про реле контроля фаз типа ЕЛ-11, которое контролирует и срабатывает при нарушении чередования фаз.

Так в чем же была ошибка электромонтажников?

Внимание!!! С помощью фазоуказателя нельзя определить, где именно находится фаза А, В или С. Им определяется ТОЛЬКО последовательность фаз, т.е. направление вращающегося поля. Вот в этом и была ошибка электромонтажников, у которых на 1 и 2 секциях 400 (В) совпала последовательность фаз, а сами фазы по одноименности не совпали, поэтому при включении на параллельную работу трансформаторов случилось короткое замыкание, т.к. межсекционный автоматический выключатель замкнул разноименные фазы.

Во избежание подобных ошибок фазировку 1 и 2 секций 0,4 (кВ) необходимо было проводить с помощью поверенных указателей напряжения (УНН) или мультиметра, а не с помощью фазоуказателя, который показывает только последовательность фаз питающего напряжения:

Дополнение: в прошлом году немного обновили «парк» приборов нашей ЭТЛ и теперь вместо ФУ-2 пользуемся указателем TKF-12.

P.S. В следующих статьях мы поговорим о правильности проведения фазировки. Подписывайтесь на новости сайта, чтобы не пропустить выпуски новых статей.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:

zametkielectrika.ru

Что такое порядок чередования фаз в трехфазной сети

Прямое и обратное чередование фаз

Трехфазный переменный ток графически представляет собой три фазы в виде чередующихся синусоид на оси Х, сдвинутых по отношению друг к другу на 120°. Первую синусоиду можно представить как фазу А, следующую синусоиду как фазу B, сдвинутую на 120° относительно фазы А, и третью фазу C, также сдвинутую на 120° по отношению к фазе В.

Three-phase current

Графическое отображение сдвига фаз на 120° трехфазной сети

 

Если фазы имеют порядок АВС, то такое следование фаз называется прямым чередованием. Следовательно, порядок фаз СВА будет означать обратное чередование. Всего возможно три прямых чередования фаз ABС, BCА, CАВ. Для обратного чередования фаз порядок будет выглядеть как CВА, BCА, ACB.

Проверить чередование фаз трехфазной сети можно фазоуказателем ФУ — 2. Он представляет собой небольшой корпус, на котором имеются три зажима для подключения трех фаз сети, алюминиевого диска с черной точкой на белом фоне и три обмотки. Принцип действия у него аналогичен работе асинхронного электродвигателя.

Если подключить фазоуказатель к трем фазам и нажать кнопку на корпусе, то диск начнёт вращаться в одну из сторон. Когда вращение диска совпадает со стрелкой на корпусе, тогда фазоуказатель показывает прямое чередование фаз, вращение диска в обратном направлении указывает на обратное чередование фаз.

phase diagram circuit

Электрическая схема фазоуказателя ФУ-2

В каких случаях необходимо знать порядок чередования фаз. Во-первых, если дом подключен к трехфазной сети и установлен индукционный электросчётчик, тогда нужно соблюдать на нем прямое чередование фаз. При неправильном подключении такого электросчетчика возможен его самоход, что даст неправильные показания в сторону увеличения расхода электроэнергии.

Также, если в доме используются асинхронные электродвигатели, то направление вращения ротора будет зависеть от порядка чередования фаз. Меняя чередование фаз на асинхронном электродвигателе можно изменить направление вращения ротора в нужную сторону.

Что такое фазировка трехфазной сети

Фазировку трех фаз проводят в трансформаторных подстанциях при параллельном подключении трансформаторов. Подключение двух трансформаторов к одной трехфазной сети осуществляется межсекционными автоматическими выключателями. Проверить одноименные фазы фазоуказателем не представляется возможным.

Однако можно определить одноименные фазы мультиметром или любым вольтметром с пределом измерения 500 В. При проведении фазировки, нужно соблюдать все меры безопасности и заранее проверить на работоспособность мультиметр. Перед нахождением одноименных фаз важно определить наличие фазного напряжения относительно «земли» на всех шинах (на случай обрыва).

phasing of transformer tires

Проверка на обрыв и нахождение одноименных фаз в трехфазной сети

Далее, работая в резиновых перчатках, замеряют линейные напряжения на шинах разных трансформаторов. Если найдены шины, напряжение между которыми около нуля, то такие шины имеют одноименные фазы и их отмечают. Следом находят остальные две пары одноимённых шин и также отмечают.

Если напряжения между всеми шинами разных трансформаторов ниже линейного 380 В, но значительно отличаются от нуля, то фазировать такие трансформаторы нельзя, т. к. они имеют разные схемы соединения. Найденные одноимённые шины соединяют на разъединителях для параллельной работы.

types of voltage

Отличие фазного и линейного напряжения в трехфазной сети

Когда трансформатор имеет различные напряжения, при одинаковых схемах соединений, их подгоняют переключателем отводов обмоток трансформаторов до номинального значения. Фазировку высоковольтных линий проводят специальными высоковольтными индикаторами УВНФ.

Тоже интересные статьи

electricavdome.ru

Фазировка | Электротехнический журнал

Фазировка - согласование электрических фаз между собой по полярности и направлению чередования при подключении. Правильно сфазированные обмотки соединяются в звезду и треугольник. (См. Схемы электрических соединений нейтралей электрических машин). Под фазировкой, в обычном смысле слова, понимают подключение трёх-фазного источника питания к трёх-фазному потребителю, где принципиально важно соблюдение чередования фаз. Например, при неправильном подключении трёх-фазных электродвигателей, они начинают вращение в обратную сторону, что приводит к нарушению технологического цикла, в котором используются эти электродвигатели в качестве приводов.

Виды фазировки

Фазировка электроаппарата (машины)

Фазировкой электроаппарата или электрической машины называют правильное соединение обмоток трёх-фазного электроаппарата между собой для обеспечения правильного функционала. Так, например, фазировкой системы освещения называют правильно сфазированное подключение осветительных приборов к трёх-фазной осветительной сети для обеспечения симметрии нагрузки, работы осветительного прибора на нужном уровне напряжения и т.д.

При сборе схемы подключения трёх-фазного генератора неправильная фазировка его обмоток между собой приведёт к тому, что  токи между обмотками будут достигать значений близких к значениям токов короткого замыкания. Трехфазный генератор состоит из трёх разных обмоток, сдвинутых относительно друг друга на угол 120 градусов. Соответственно, для совместной работы их нужно сфазировать.

При подключении таких потребителей к трёхфазной сети, как ламп, электрических печей и другой активной нагрузки фазировка не важна. Однако, при подключении к трехфазной сети групп таких электроприборов следует выполнить некоторые мероприятия, которые можно отнести к фазировке. Так, при подключении линии освещения к трёхфазному источнику питания (трансформатору 10/0.4кВ, например) важно распределить нагрузку по фазам равномерно, иначе получится так называемый перекос мощности, который негативно сказывается на сети в целом, важно так же подключить осветительный прибор на фазное напряжение, так как при подключении их на линейное напряжение они попросту выйдут из строя.

Фазировка электроаппарата (машины) с сетью

Фазировкой самих обмоток электрических машин (фазировка выводов генератора, трансформатора и т.д.) далеко не исчерпываются задачи, стоящие при включении в сеть электрооборудования, так как правильно сфазированный сам аппарат или электрическую машину нужно еще сфазировать с сетью, к которой он или она присоединяется. Задача фазировки состоит в том, что нужно не только исключить короткие замыкания при соединении двух источников тока, но и не допустить между ними уравнительных токов, а в отношении электродвигателей — обеспечить необходимое направление вращения.

Для того чтобы изменить направление вращения электродвигателя, достаточно поменять местами на его зажимах любые две фазы. Действительно, для электродвигателя важно только направление вращения, а оно сохраняется при трех вариантах присоединения (a-a, b-b, c-c; a-b, b-c, c-a; a-c, b-a, c-b), но изменяется на обратное, если в любом из этих вариантов поменять местами любые две фазы.

Трансформаторы могут иметь равные вторичные напряжения, одинаковые группы соединения обмоток и, значит, могут работать параллельно, но они могут  быть не сфазированы. Задача фазировки трансформаторов на параллельную работу состоит в том, чтобы их сфазировать их вывода "а" с  "a", "b" c "b" и "с" c "c", иначе возникнет уравнительные ток, равный или близкий к току короткого замыкания.

Проверка фазировки

Проверку фазировки проводят:

Причины нарушения фазировки

  1. Брак на заводе изготовителе. Ошибка маркировки выводов электрического аппарата.
  2. Человеческий фактор, ошибка при монтаже, ремонте муфт кабелей или ошиновки и т.д.
  3. Объединение разных участков сети, которые раньше работали от разных трансформаторов, вторичные напряжения которых по-разному сфазированы.

См. также

Ссылки и примечания

Просмотров всего: 423, Просмотров за день: 1

www.el-info.ru

Фазоуказатель своими руками

За свою трудовую деятельность всегда приходилось заниматься приборами учета электроэнергии (снимать электросчетчики на поверку), и часто, принимая новый учет, находил проблему, а именно - электросчетчик имел "самоход", или "самосдвиг", т.е. при отключенной нагрузке электросчетчик имел небольшое движение диска.

Фазоуказатель промышленного производства

Фазоуказатель промышленного производства.

Это явление наблюдается с индукционными электросчечиками (СА4-И678, СА4У-И678 и др.), при подключении обязательно должна соблюдаться фазировка (очередность фаз). И вот тогда приходилось искать прибор фазоуказатель, чтобы навести порядок в учете. Сейчас на всех объектах стоят электронные, которые на фазировку не реагируют. Может, кому-то понадобится фазоуказатель, который можно сделать самостоятельно, схему которого и предлагаем вашему вниманию.

Выпускаемые промышленностью фазоуказатели индукционного типа И-517 или ФУ-2 работают аналогично асинхронным электродвигателям.

Однако наличие вращающихся частей делает их сложными по конструкции и неудобными в эксплуатации. Известны фазоуказатели, основанные и на других принципах.

Рисунок 1. Схема простого фазоуказателя для самостоятельного изготовления

Рисунок 1. Схема простого фазоуказателя для самостоятельного изготовления.

Схема простого фазоуказателя показана на рис. 1. Он позволяет определить порядок следования фаз в трехфазных электросетях с нулевым проводом, с которым соединяют клемму ХТЗ прибора, а клеммы ХТ1 и ХТ2 подключают к двум из трех фазных проводов.

Предположим, напряжение, приложенное к клемме ХТ1, отстает по фазе на 120° от напряжения на клемме ХТ2. Этой ситуации соответствуют графики на рис. 2.

Благодаря диоду VD1 ток Iуе в цепи управляющего электрода тиристора VS1 течет только в течение положительных полупериодов напряжения на клемме ХТ2.

В момент t1, когда напряжение на клемме ХТ1 и аноде тиристора становится положительным, последний открывается и остается открытым до окончания полупериода (момента t2).

Номинал резистора R1 выбран таким образом, что лампа HL1 светится в полный накал, сигнализируя, что порядок следования фаз соответствует маркировке клемм (ХТ2 — "А", ХТ1 — "В", фаза, оставшаяся неподключенной, — "С").

Если фазные провода соединены с прибором в обратном порядке ("А" — к ХТ1, "В" — к ХТ2), фаза тока управляющего электрода тиристора отстает на 120° от фазы анодного напряжения. Теперь тиристор открывается в момент и закрывается в момент t4.

Среднее значение тока, протекающего через лампу HL1, значительно меньше, чем в предыдущем случае, поэтому она светится очень слабо или вовсе не светится. Интервалы, в течение которых через лампу HL1 течет ток, на рис. 2 заштрихованы.

В качестве VS1 кроме указанного на схеме пригодны тиристоры T112-10-5, КУ202Н. Диод КД105В можно заменить любым из серии КД209. HL1 — лампа накаливания на 26 В, 0,12 А, однако подойдет и другая с номинальным током не менее тока удержания использованного тиристора.

Рисунок 2. Графики напряжения

Рисунок 2. Графики напряжения.

Необходимо лишь подобрать резистор R1 соответствующего номинала и мощности. Подборка резистора потребуется и в том случае, если номинальное линейное напряжение в сети отличается от 220 В.

Детали фазоуказателя смонтированы в корпусе из изоляционного материала подходящих размеров, на передней панели которого установлены клеммы ХТ1-ХТЗ и патрон с лампой HL1.

Промышленные  фазоуказатели:

  1. Фазоуказатель (индикатор фазы) микроконтроллерный ИФ 517М (ИФ 517 М) предназначен для определения чередования фаз A, B, C в трехфазной сети 380 В промышленной частоты 50 Гц.
  2. Выпускается вместо И-517, ФУ-2 (И-517, ФУ 2).

Условия эксплуатации:

  1. Температура, °С: от -45 до +45.
  2. Влажность, %, при 25°С: до 98.

Технические характеристики:

  1. Номинальное напряжение, В: 380.
  2. Индикация режимов работы: светодиодная.
  3. Внутренний источник питания: отсутствует.
  4. Длина соединительных проводов, м: не менее 0,5.
  5. Габаритные размеры, мм: 160х55х16.
  6. Масса, кг: не более 0,11.

Фазоуказатели ЭИ 5001 предназначены для определения порядка чередования фаз в трехфазных цепях переменного тока.

Технические характеристики:

Электрическая схема фазоуказателя

Электрическая схема фазоуказателя.

  1. Обеспечивает определение порядка чередования фаз в трехфазных цепях переменного тока при значениях напряжения в цепи от 50 В до 600 В.
  2. Обеспечивает определение порядка чередования фаз в трехфазных цепях переменного тока в диапазоне частот от 40 Гц до 1000 Гц при значениях напряжений, В:

Также обеспечивает определение порядка чередования фаз при продолжительности включения не более 3 сек с интервалом между включениями не менее 30 сек.

Мощность, потребляемая фазоуказателем, не превышает следующих значений при напряжениях:

http://fazaa.ru/youtu.be/gVhRC_4B-no

Габаритные размеры: 65х65х45 мм

Масса: 0,19 кг

Поделитесь полезной статьей:

Top

fazaa.ru