ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

О "закрывающих" технологиях. Алексеенко двигатель бестопливный


Эфир и безтопливный мотор Алексеенко

В статье, посвященном магнитному мотору Говарда Джонсона, было показано, что его попытка создать практически «вечный двигатель» удалась потому, что автор интуитивно понимал, а может прекрасно знал, но тщательно скрывал истину, как правильно надо создать магнит нужной формы и как правильно надо сопоставить магнитные поля магнитов ротора и статора, чтобы взаимодействие между ними привело к практически вечному вращению ротора. Для этого ему пришлось изогнуть роторные магниты так, что этот магнит в разрезе стал похож на бумеранг, слабоизогнутую подкову или банан.

 

Благодаря такой форме магнитные силовые линии роторного магнита оказались замкнутыми уже не в виде тора, а в виде «бублика», пусть и сплюснутого. И размещение такого магнитного «бублика» так, чтобы его плоскость была при максимальном приближении магнита ротора к магнитам статора приблизительно или преимущественно параллельна силовым линиям, исходящих от магнитов статора, позволило получить за счет эффекта Магнуса для эфирных потоков силу, которая обеспечила безостановочное вращение арматуры вокруг статора... 

 

Конечно было бы лучше, если бы магнитный «бублик» роторного магнита был бы совсем параллельным силовым линиям, исходящих из полюсов магнитов статора, и тогда эффект Мёбиуса для магнитных потоков, которые есть потоки эфира, проявился бы с бОльшим эффектом. Но для того времени (более 30 лет назад) даже такое инженерное решение было огромным достижением, что, несмотря на запрет выдавать патенты на «вечные двигатели», Говарду Джонсону через несколько лет ожидания, патент получить удалось, так как, видимо, ему удалось убедить патентоведов реально действующим образцом своего магнитного мотора и магнитной дорожки. Но даже по прошествии 30 лет кто-то из власть имущих упорно не желает принять решение о массовом применении подобных двигателей в промышленности, в быту, на военных объектах и т.д.

 

Убедившись, что мотор Говарда Джонсона использует тот принцип, который понят мной, исходя их теории Эфира, я попытался проанализировать с этих же позиций еще один патент, который принадлежит русскому изобретателю Алексеенко Василию Ефимовичу. Патент был выдан еще в 1997 году, но поиск по Интернету показал, что наша власть и промышленники фактически игнорируют изобретение. Видимо в России еще много нефти и денег, поэтому чиновники предпочитают мягко спать и сладко есть, благо у них зарплата это позволяет. А в это время на нашу страну надвигается экономический, политический, экологический и идеологический кризис, которые могут перерасти в продовольственный и энергетические кризисы, а при нежелательном для нас развитии породить демографическую катастрофу. Но, как любили говорить некоторые царские военноначальники - не беда, бабы новых нарожают…

 

Предоставляю возможность самим читателям познакомиться с патентом Алексеенко В.Е. Он предложил 2 конструкции магнитных двигателей. Их недостатком является то, что их роторные магниты имеют довольно сложную форму. Но патентоведы, вместо того, чтобы помочь автору патента упростить конструкцию, ограничились формальной выдачей патента. Мне неизвестно, как Алексеенко В.Е. обошёл запрет на «вечные двигатели», но и на том спасибо. А вот то, что это изобретение фактически оказалось никому не нужным, это уже очень плохо. Но это, к сожалению, суровая правда бытия нашего народа, которым управляют недостаточно компетентные или слишком корыстные существа. Пока жаренный петух не клюнет…

ИЗОБРЕТЕНИЕ

Патент Российской Федерации RU2131636

БЕСТОПЛИВНЫЙ МАГНИТНЫЙ ДВИГАТЕЛЬ

http://www.ntpo.com/techno/techno1_7/30.shtml

Имя заявителя: Алексеенко Василий Ефимович

Имя изобретателя: Алексеенко Василий Ефимович 

Имя патентообладателя: Алексеенко Василий Ефимович

Адрес для переписки:

400007, Волгоград, ул.Таращанцев, д.14, кв.6, Алексеенко В.Е.

Дата начала действия патента: 1997.10.07

Использование: в качестве привода вращения. Двигатель состоит из диска (маховика), закрепленного на оси. На нем закреплены один или несколько постоянных магнитов ротора, которые вместе с диском (маховиком) могут свободно вращаться вокруг оси. Параллельно рабочему диску (маховику) двигателя на штоке закреплен неподвижно цилиндрический постоянный магнит стопора, который вместе со штоком может перемещаться в зону действия магнитных полей постоянных магнитов ротора, расположенных на рабочем диске. Все магниты обращены друг к другу одноименными полюсами. Одноименные полюса отталкиваются и заставляют рабочий диск двигателя вращаться вокруг оси. Двигатель работает от энергии сильных магнитных полей постоянных магнитов за счет разницы потенциалов магнитной энергии на полюсах магнитов ротора и их нейтральных зонах. Технический результат заключается в том, что для создания вращения потребление топлива минимально.

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Наиболее близким по технической сущности к предлагаемому решению является магнитный двигатель (вибратор), включающий статор в виде кольцевого постоянного магнита и ротор (якорь) в виде стержневого постоянного магнита, размещенного внутри статора в одной с ним плоскости, с возможностью взаимодействия между ними одноименными полюсами (а. с. СССР N 1658310, H 02 K 33/00, 1988 г.).

Его недостаток в том, что ему нужен подвод электроэнергии.

Целью предлагаемого изобретения является создание экологически чистого, без выхлопных газов двигателя, не требующего потребления топлива и подвода энергии извне, не загрязняющего атмосферу воздуха и окружающую среду.

Двигатель будет работать от энергии сильных магнитных полей постоянных магнитов, расположенных на двигателе.

Постоянные магниты длительное время сохраняют свои сильные магнитные поля и могут многократно намагничиваться. Стабильность магнитных полей постоянных магнитов сохраняется и при работе двигателя благодаря непрерывному вращению, т.е. движению отрицательно заряженных электронов по своим замкнутым орбитам вокруг ядра атома вещества, из которого построены магниты. При своем вращении по замкнутым орбитам электроны создают круговые электрические токи, вокруг которых по закону магнетизма и возникает магнитное поле, являющееся неотделимым спутником всякого тока. А вследствие этого и происходит непрерывное преобразование и пополнение магнитной энергией в постоянных магнитах. Вот почему и сохраняется стабильность магнитных полей и при работе двигателя.

Поэтому бестопливному двигателю и не требуется топливо и подвода энергии извне.

Бестопливный двигатель может быть различной мощности, которая определяется тремя факторами:

    1. Увеличение рабочего плеча двигателя. Достигается это за счет увеличения диаметра статора и соответственно с ним диаметра ротора двигателя.
    2. Использование постоянных магнитов с более мощными магнитными полями.
    3. Увеличение массы диска, который является еще и маховиком двигателя. А так как диск двигателя способен развивать до двадцати тысяч оборотов в минуту, то даже при небольшом увеличении массы диска (маховика) вращающий его момент будет соответственно усиливаться, одновременно с этим будет увеличиваться и мощность двигателя.

Экологически чистый бестопливный двигатель может быть широко использован в автомобилестроении, тракторостроении, авиации, космосе, в подводном транспорте, в энергетике, в коммунальном хозяйстве и во многих других отраслях народного хозяйства.

РАБОТА ДВИГАТЕЛЯ

На схеме 1 изображен общий вид рабочего диска двигателя, закрепленного на рабочей оси (вид сверху). На плоскости диска может быть установлен и закреплен один или несколько постоянных магнитов.

 

В данном варианте, как показано на схеме, на плоскости диска закреплены неподвижно два постоянных магнита (N2, N3), которые вместе с диском могут свободно вращаться на оси диска. Параллельно рабочему диску двигателя на штоке закреплен неподвижно постоянный магнит N1, который вместе со штоком может перемешаться в зону действия магнитных полей магнитов (N2, N3). Все магниты (N1, N2, N3) обращены друг к другу одноименными полюсами. Поэтому при введении магнита N1 при помощи штока в зону действия магнитов (N2, N3) их магнитные поля полюсов N вступают во взаимодействия. Они складываются, а их результирующий отталкивающий момент усиливается. При этом возникают в горизонтальной плоскости силы отталкивания у магнита N1 (статора), направленные радиально к поверхностям конических торцов полюсов N магнитов N2 и N3 (ротора). А так как диск с магнитами N2 и N3 имеет степень свободы и может свободно вращаться вокруг оси, то под влиянием отталкивающей силы магнита N1 (статора), действующей на поверхности конических торцов полюсов N (ротора) и заставляет диск поворачиваться по кругу. Вследствие этого и происходит непрерывное вращение диска, т.е. (ротора) вокруг оси.

Вращение диска с магнитами N2 и N3 происходит, как показано на схеме, по направлению часовой стрелки.

Выключение работы бестопливного двигателя происходит при выводе магнита N1 из зоны действия магнитного поля магнитов N2 и N3.

При конструировании магнитов диска необходимо иметь ввиду то, что длина магнита должна быть такой, чтобы в центре его нейтральной зоны оставалась намагниченность, близкая к нулю. Это позволит соблюдать разницу потенциалов магнитной энергии (намагниченности) между полюсами магнита и его нейтральной зоны, так как за счет этой разницы потенциала магнитной энергии и происходит непрерывное вращение рабочего диска двигателя.

На схеме 2 изображен второй вариант магнитного двигателя, где показан манит N1 (статор), имеющий форму круга закрепленного на опоре.

Параллельно магниту N1 расположен подковообразный магнит N2 (ротор), который закреплен на диске со штоком.

Полюса N и S магнита N2 имеют конусообразную форму под углом 40-45 градусов.

Диск с магнитом N2 при помощи штока может подыматься и опускаться к поверхности торца полюса N магнита N1. Магниты N1 и N2 направлены друг к другу одноименными полюсами.

При опускании магнита N2 при помощи штока к поверхности торца полюса N магнита N1 на близкое расстояние их магнитные поля полюсов N вступают во взаимодействия. Они складываются, их результирующий отталкивающий момент усиливается. При этом возникают силы отталкивания у торца полюса N магнита N1 (статора) в вертикальном направлении, вдоль оси, направленные к поверхности конического торца полюса N магнита N2 (статора).

А так как диск с магнитом N2 имеет степень свободы и может свободно вращаться вокруг оси, то под влиянием отталкивающей силы торца полюса N магнит N1 (статора), действующей на коническую поверхность торца полюса N (ротора) и заставляет диск поворачиваться по кругу. Вследствие этого и происходит непрерывное вращение диска двигателя, т.е. (ротора) вокруг оси по направлению часовой стрелки.

Включение работы бестопливного двигателя происходит при выводе магнита N2 из зоны действия магнитного поля магнитов N1 при помощи штока.

Использование экологически чистого бестопливного двигателя избавит от загрязнения выхлопными газами и другими вредными веществами атмосферу воздуха и окружающую среду нашей планеты.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Двигатель для получения вращательного движения, содержащий закрепленный параллельно постоянному магниту ротора постоянный магнит статора, имеющий возможность перемещаться в зону действия магнитного поля постоянного магнита ротора, отличающийся тем, что постоянный магнит статора неподвижно закреплен на штоке, при помощи которого он вводится в зону действия магнитных полей постоянных магнитов ротора, выполненного в виде диска (маховика), на котором установлен один или несколько, обращенных одноименными полюсами к постоянному магниту статора подковообразных магнитов ротора, длина которых выбрана такой, чтобы в центре нейтральной зоны оставалась намагниченность, близкая к нулю, что обеспечит отталкивание одноименных полюсов статора и ротора при введении постоянного магнита статора, неподвижно закрепленного на штоке в зону действия постоянного магнита ротора, и в результате взаимодействия магнитного поля постоянного магнита ротора с магнитным полем одноименного полюса постоянного магнита статора именно за счет их отталкивания обеспечено вращение ротора.

Версия для печати

Дата публикации 15.11.2006 гг.

Но прежде чем проводить анализ двигателя Алексеенко В.Е., позволю еще раз вернуться к двигателю Говарду Джонсона и его аналогам. Говард Джонсон до сих пор продолжает создавать свои двигатели самых разных модификаций. У него масса последователей, которые предлагают свои варианты решения поставленной задачи – за счет правильного выбора формы магнитов и их взаимного расположения получить «вечное движение». Но в русском секторе Интернета можно найти только описание патента, который к тому же содержит ошибки, которые заключаются в том, что часть рисунков соответствует патенту на магнитный мотор, а часть патенту на магнитную дорожку, которая работает на том же принципе. А в англоязычном секторе Интернета материала о моторе больше, есть сайт самого Говарда Джонсона, есть сайты его последователей.

 

Вот пример, что магнитный мотор Говарда Джонсона может быть самой разной конструкции (рис.1)

 

Рис.1. Говард Джонсон рядом со своим мотором.

Кроме Говарда Джонсона моторы, основанные на его принципе, создают и другие изобретатели (рис.2)

 

Рис.2. Магнитный мотор, использующий идею Говарда Джонсона.

Вот один из чертежей к этому мотору (рис.3)

 

Рис.3. Чертёж мотора, показанного на рис.2.

Прекрасно видно, что данный последователь разместил бумерангообразные магниты на роторе, а на статоре установил плоские магниты, видимо, северным полюсом повернутые к ротору. Для регулирования мощности и скорости вращения изобретатель установил статор на направляющих полозьях, и, перемещая статор относительно ротора, можно изменять зону перепрытия ротора со статором и таким образом управлять величиной магнитного взаимодействия между магнитами ротора и статора с целью вращения ротора с необходимой скоростью или мощью.

 

Имеются модификации двигателя Говарда Джонсона. Их изобретатель предпочитает размещать видео в Интернете. Конструкция его двигателей очень простая. На алюминиевый круг по окружности устанавливается цепочки плоских магнитов плоской стороной наружу, видимо, намагниченные так, что полюса их находятся на плоских сторонах и одноименные полюса направлены в одну сторону. Над диском расположена пластина из алюминия, под которой крепится изогнутый в полукруг или буквой «П» магнит, мимо которого магниты на алюминиевом диске последовательно проходят при вращении диска (ротора). И диск вращается. Медленно, с малой мощностью, но вращается. Но если бы изобретатель расположил вокруг ротора не один, а с десяток изогнутых магнитов (U-образных по сути магнитов), то в соответствующее число раз возросла бы мощность двигателя или скорость вращения двигателя.

 

Мне кажется, что и в двигателе Перендев применен сходный приём. Но только Перендев пошел даже более простым путём. Это ясно из схемы, где схематично изображены статор и ротор с размещенными на них магнитами в виде таблеток с полюсами на основаниях этих «таблеток» (рис.4).

 

Рис.4. Предполагаемая упрощенная схема мотора Перендев.

Чтобы превратить роторные магнитные спарки мотора Перендев в «П» образные магниты, достаточно их торцы, обращенные от статора соединить пластиной из мягкого железа. Это приведет к тому, что магнитное поле спаренных роторных магнитов замкнется в своеобразный бублик, а это то, что нам надо. Видимо, Перендев так и делал и это показано на рис.4. Так сказать ноу-хау. Так что не всегда надо стремиться экранировать магнитное поле. Иногда достаточно спрятать (сконцентрировать) часть магнитного поля в пластине (экране) из мягкого железа, направив магнитный поток в нужном изобретателю направлении. Думаю, что Перендев украл идею и Говарда Джонсона, поэтому он так тчательно скрывал принцип работы своего мотора, но сделал это гениально. Но в любом случае, жадность до добра не доводит.

 

В результате преимущественно однонаправленное магнитное поле статора, будет взаимодействовать с тороподобными магнитными полями роторных магнитных спарок. И чем теснее будут прилегать магниты статора к магнитам ротора, тем мощнее будет мотор. Эффект Магнуса для эфирных потоков приведет к тому, что эфирное давление у северных полюсов спарок упадет, а у южных - возрастёт. И поехали…

 

А теперь обратимся к мотору Алексеенко В.Е. Из текста патента следует, что его автор прекрасно понимал, что именно при такой форме роторных магнитов удастся получить вращение ротора. Иначе я не могу понять, как автор пришёл к мысли так изощрённо изогнуть магниты ротора, и понять, что и тут работает эффект Магнуса для эфирных потоков (магнитных потоков) сразу невозможно.

Рис.5. Двигатели Алексеенко В.Е. с указанием направления магнитных потокой и зон повышенного (+) и пониженного (-) эфирного давления.

 

На рис.5. я постарался показать направление эфирных потоков как в первом варианте двигателя, так и во втором. В первом варианте направление эфирных потоков в роторных магнитах(!) показаны синими стрелками, а во втором варианте – красными. Зоны повышенного эфирного давления отмечены знаком (+), а пониженного – знаком (-) зеленого цвета. Часть потока идет внутри магнита, а часть «по воздуху».

 

Вариант мотора Алексеенко на фиг.2. понять легче, ибо в нём магнитные (эфирные) потоки магнитов как ротора, так и статора представить можно без особых трудностей, лишь бы пространственное воображение работало как положено у любого нормального человека. От статорного магнита в области магнитов ротора магнитный (эфирный) поток поднимается вертикально вверх. А направление магнитного (эфирного) потока в противоположных частях роторного магнита показано красными стрелками. Направление магнитного (эфирного) потока в других частях роторного магнита перпендикулярно силовым линиям магнитного (эфирного) потока статора, поэтому в создании сил они участвовать не будут.

 

Там, где (магнитные) эфирные потоки статора и ротора направлены в одну сторону, там в итоге эфирное давление повышается, а электротехники говорят, что повышается напряженность итогового магнитного поля. Там, где магнитные (эфирные) потоки направлены в разные стороны (навстречу друг другу), там давление эфира уменьшается. Электротехники сказали бы, что в этой области напряженность магнитного поля уменьшается. В итоге между зоной, отмеченной знаком (+) и областью, отмеченной знаком (-) появляется разность эфирного давления (или разность напряженности магнитного поля), что заставит вращаться ротор по часовой стрелке, так как это указал на фиг.2 сам Алексеенко Н.Е.

 

С вариантом двигателя на фиг.1 не все так однозначно и требует более серьезного анализа и условий, при которых этот двигатель будет работать. Определение направления эфирных (магнитных) потоков в роторных магнитах сложностей не вызывает. А вот с направлением магнитных потоков (силовых линий) статорного магнита не все так однозначно. При неправильном выборе его положения ротор вращаться не будет, либо сила взаимодействия магнитных полей будет недостаточной для формирования требуемой мощности. Для того, чтобы магниты ротора вращались в магнитном поле статорного магнита, имеющего продольно-радиальную намагниченность, необходимо, чтобы магнитные силовые линии в области роторных магнитов горизонтально и веером расходились в плоскости, совпадающей с плоскостью роторных магнитов, а для этого требуется, чтобы нижний конец статорного магнита, где расположен северный полюс, не доходил до дна «стакана» на котором лежат роторные магниты. Поэтому для центрального магнита лучше применить специальный вариант намагниченности, чтобы северный полюс располагался на внешней поверхности магнита, а южный внутри. Или надо будет такой магнит склеить из секторов обычных магнитов, подогнав их форму под сектор, а уже из этих секторов собрать магнит требуемой цилиндрической формы, но с северным полюсом по наружной поверхности. Есть и другие варианты. И тогда, опуская или поднимая статорный магнит, можно будет регулировать мощность двигателя или скорость вращения ротора в более широких пределах.

 

В варианте двигателя на фиг1 можно отказаться от роторных магнитов такой сложной формы. Роторный магнит можно собрать из двух подковообразных магнитов, соединив их друг с другом разноименными полюсами. Или намагнитить соответствующим образом магнит торовидной формы. В результате будет создан магнит с замкнутым в колечко (тор) магнитным полем. Главное правильно такой магнит расположить в «стакане», чтобы магнитное поле в нём вращалось в ту же сторону, как это показано на фиг1.

 

В варианте двигателя на фиг2 тоже вместо навороченного роторного магнита можно установить всего два кольцевых магнита с внутренним магнитным полем, закрученным в одну сторону. Тогда размещение таких кольцевых магнитов на концах коромысла над статорным магнитом так, чтобы плоскость роторного магнита была перпендикулярна радиусу от оси вращения. Тогда в кольцевом магните в одной стороне магнитный поток будет направлен вверх, а в другой стороне вниз, а это приведет к тому, что между половинами кольцевого роторного магнита возникнет разность эфирного давления. И если роторные магниты такой конструкции правильно закрепить на коромысле, то появится пара сил, заставляющих коромысло вместе с круглыми магнитами вращаться вокруг оси. И эта разность давлений эфира будет перемещаться вместе с роторными магнитами. А ротор будет вращаться до тех пор, пока не разрушится данная конструкция. Здесь вместо кольцевых магнитов можно использовать подковообразные магниты, направив их полюсами к статорному магниту. Причем эти два магнита надо правильно закрепить на коромысле, чтобы пара сил была направлена в разные стороны.

 

Вот мы и сняли тайну и с магнитного мотора Алексеенко В.Е. И заодно предложили, как сделать так, чтобы конструкция упростилась, а мощность мотора возросла. И это оказалось не таким уж сложным делом, ибо мной раскрыт и предоставлен всем желающим принцип, по которому можно создавать магнитные моторы самых разных конструкций, для самых разных предназначений и для самых разных условий эксплуатации. Вращением магнитного (эфирного) колеса (цилиндра) во внешнем однородном магнитном поле благодаря эффекту Магнуса можно легко создавать градиент эфирного давления и использовать этот градиент для перемещения тела в пространстве, а если связать эфирное колесо (цилиндр) непосредственно с телом, то можно получить безопорное движение тела в пространстве без отбрасывания массы. Для перемещения в пространстве достаточно на средстве передвижения создать вращающееся, замкнутое в кольцо или цилиндр магнитное поле достаточной напряженности и при наличии однородного и однонаправленного магнитного поля в окружающем пространстве при правильном выборе ориентации магнитного кольца (цилиндра) относительно направлений внешнего магнитного (эфирного) потока (силовых линий) можно смело лететь куда угодно, по крайней мере туда, где есть магнитное поле.

 

Если учесть тот факт, что с позиций эфирной теории нет принципиальной разницы между гравитацией и магнетизмом, так как то и другое – это вихри жидкого эфира, разница только в масштабах потоков и частоте их вращения, то создав кольцевидное или цилиндрическое магнитное поле сверхвысокой напряженности можно добиться того, что такой вихрь начнет взаимодействовать через эффект Магнуса с медленными, но мощными потоками жидкого эфира, которые как раз и порождают гравитацию в масштабах звездных систем и галактик. Причем энергию для создания мощного торовидного или цилиндрического вихря можно добывать непосредственно из того эфира, который будет окружать межзвездное и межгалактичекое средство передвижения. И не обязательно это средство передвижения может быть в виде тарелки, но кажется «тарелкообразная» форма наиболее простая для этой цели, а уже правильно расположить плоскость «тарелки» в магнитном или гравитационном полях (потоках жидкого эфира) не составит большого труда.

 

С помощью обычного колеса человечество сумело освоить всю поверхность Земли. Теперь с помощью эфирного колеса или эфирного катка человечество сможет освоить пространство под водой и в атмосфере. А в будущем сможет освоить все пространство Солнечной и ближайших звездных систем. Ну, а в отдаленном будущем нет никаких ограничений, кроме тех, что связаны с биологией человека, и для освоения всего пространства нашей Галактики.

 

Такие вот перспективы открывает перед нами, казалось бы, простой и неуклюжий двигатель Алексеенко В.Е.

 

Сколково, наше вам с кисточкой!

 

Власов В.Н., Эфир и безтопливный мотор Алексеенко В.Е. // «Академия Тринитаризма», М., Эл № 77-6567, публ.16605, 01.07.2011 (с)

brndk.livejournal.com

Эфир и безтопливный мотор Алексеенко

В статье, посвященном магнитному мотору Говарда Джонсона, было показано, что его попытка создать практически «вечный двигатель» удалась потому, что автор интуитивно понимал, а может прекрасно знал, но тщательно скрывал истину, как правильно надо создать магнит нужной формы и как правильно надо сопоставить магнитные поля магнитов ротора и статора, чтобы взаимодействие между ними привело к практически вечному вращению ротора. Для этого ему пришлось изогнуть роторные магниты так, что этот магнит в разрезе стал похож на бумеранг, слабоизогнутую подкову или банан.

 

Благодаря такой форме магнитные силовые линии роторного магнита оказались замкнутыми уже не в виде тора, а в виде «бублика», пусть и сплюснутого. И размещение такого магнитного «бублика» так, чтобы его плоскость была при максимальном приближении магнита ротора к магнитам статора приблизительно или преимущественно параллельна силовым линиям, исходящих от магнитов статора, позволило получить за счет эффекта Магнуса для эфирных потоков силу, которая обеспечила безостановочное вращение арматуры вокруг статора... 

 

Конечно было бы лучше, если бы магнитный «бублик» роторного магнита был бы совсем параллельным силовым линиям, исходящих из полюсов магнитов статора, и тогда эффект Мёбиуса для магнитных потоков, которые есть потоки эфира, проявился бы с бОльшим эффектом. Но для того времени (более 30 лет назад) даже такое инженерное решение было огромным достижением, что, несмотря на запрет выдавать патенты на «вечные двигатели», Говарду Джонсону через несколько лет ожидания, патент получить удалось, так как, видимо, ему удалось убедить патентоведов реально действующим образцом своего магнитного мотора и магнитной дорожки. Но даже по прошествии 30 лет кто-то из власть имущих упорно не желает принять решение о массовом применении подобных двигателей в промышленности, в быту, на военных объектах и т.д.

 

Убедившись, что мотор Говарда Джонсона использует тот принцип, который понят мной, исходя их теории Эфира, я попытался проанализировать с этих же позиций еще один патент, который принадлежит русскому изобретателю Алексеенко Василию Ефимовичу. Патент был выдан еще в 1997 году, но поиск по Интернету показал, что наша власть и промышленники фактически игнорируют изобретение. Видимо в России еще много нефти и денег, поэтому чиновники предпочитают мягко спать и сладко есть, благо у них зарплата это позволяет. А в это время на нашу страну надвигается экономический, политический, экологический и идеологический кризис, которые могут перерасти в продовольственный и энергетические кризисы, а при нежелательном для нас развитии породить демографическую катастрофу. Но, как любили говорить некоторые царские военноначальники - не беда, бабы новых нарожают…

 

Предоставляю возможность самим читателям познакомиться с патентом Алексеенко В.Е. Он предложил 2 конструкции магнитных двигателей. Их недостатком является то, что их роторные магниты имеют довольно сложную форму. Но патентоведы, вместо того, чтобы помочь автору патента упростить конструкцию, ограничились формальной выдачей патента. Мне неизвестно, как Алексеенко В.Е. обошёл запрет на «вечные двигатели», но и на том спасибо. А вот то, что это изобретение фактически оказалось никому не нужным, это уже очень плохо. Но это, к сожалению, суровая правда бытия нашего народа, которым управляют недостаточно компетентные или слишком корыстные существа. Пока жаренный петух не клюнет…

ИЗОБРЕТЕНИЕ

Патент Российской Федерации RU2131636

БЕСТОПЛИВНЫЙ МАГНИТНЫЙ ДВИГАТЕЛЬ

http://www.ntpo.com/techno/techno1_7/30.shtml

Имя заявителя: Алексеенко Василий Ефимович

Имя изобретателя: Алексеенко Василий Ефимович 

Имя патентообладателя: Алексеенко Василий Ефимович

Адрес для переписки:

400007, Волгоград, ул.Таращанцев, д.14, кв.6, Алексеенко В.Е.

Дата начала действия патента: 1997.10.07

Использование: в качестве привода вращения. Двигатель состоит из диска (маховика), закрепленного на оси. На нем закреплены один или несколько постоянных магнитов ротора, которые вместе с диском (маховиком) могут свободно вращаться вокруг оси. Параллельно рабочему диску (маховику) двигателя на штоке закреплен неподвижно цилиндрический постоянный магнит стопора, который вместе со штоком может перемещаться в зону действия магнитных полей постоянных магнитов ротора, расположенных на рабочем диске. Все магниты обращены друг к другу одноименными полюсами. Одноименные полюса отталкиваются и заставляют рабочий диск двигателя вращаться вокруг оси. Двигатель работает от энергии сильных магнитных полей постоянных магнитов за счет разницы потенциалов магнитной энергии на полюсах магнитов ротора и их нейтральных зонах. Технический результат заключается в том, что для создания вращения потребление топлива минимально.

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Наиболее близким по технической сущности к предлагаемому решению является магнитный двигатель (вибратор), включающий статор в виде кольцевого постоянного магнита и ротор (якорь) в виде стержневого постоянного магнита, размещенного внутри статора в одной с ним плоскости, с возможностью взаимодействия между ними одноименными полюсами (а. с. СССР N 1658310, H 02 K 33/00, 1988 г.).

Его недостаток в том, что ему нужен подвод электроэнергии.

Целью предлагаемого изобретения является создание экологически чистого, без выхлопных газов двигателя, не требующего потребления топлива и подвода энергии извне, не загрязняющего атмосферу воздуха и окружающую среду.

Двигатель будет работать от энергии сильных магнитных полей постоянных магнитов, расположенных на двигателе.

Постоянные магниты длительное время сохраняют свои сильные магнитные поля и могут многократно намагничиваться. Стабильность магнитных полей постоянных магнитов сохраняется и при работе двигателя благодаря непрерывному вращению, т.е. движению отрицательно заряженных электронов по своим замкнутым орбитам вокруг ядра атома вещества, из которого построены магниты. При своем вращении по замкнутым орбитам электроны создают круговые электрические токи, вокруг которых по закону магнетизма и возникает магнитное поле, являющееся неотделимым спутником всякого тока. А вследствие этого и происходит непрерывное преобразование и пополнение магнитной энергией в постоянных магнитах. Вот почему и сохраняется стабильность магнитных полей и при работе двигателя.

Поэтому бестопливному двигателю и не требуется топливо и подвода энергии извне.

Бестопливный двигатель может быть различной мощности, которая определяется тремя факторами:

    1. Увеличение рабочего плеча двигателя. Достигается это за счет увеличения диаметра статора и соответственно с ним диаметра ротора двигателя.
    2. Использование постоянных магнитов с более мощными магнитными полями.
    3. Увеличение массы диска, который является еще и маховиком двигателя. А так как диск двигателя способен развивать до двадцати тысяч оборотов в минуту, то даже при небольшом увеличении массы диска (маховика) вращающий его момент будет соответственно усиливаться, одновременно с этим будет увеличиваться и мощность двигателя.

Экологически чистый бестопливный двигатель может быть широко использован в автомобилестроении, тракторостроении, авиации, космосе, в подводном транспорте, в энергетике, в коммунальном хозяйстве и во многих других отраслях народного хозяйства.

РАБОТА ДВИГАТЕЛЯ

На схеме 1 изображен общий вид рабочего диска двигателя, закрепленного на рабочей оси (вид сверху). На плоскости диска может быть установлен и закреплен один или несколько постоянных магнитов.

 

В данном варианте, как показано на схеме, на плоскости диска закреплены неподвижно два постоянных магнита (N2, N3), которые вместе с диском могут свободно вращаться на оси диска. Параллельно рабочему диску двигателя на штоке закреплен неподвижно постоянный магнит N1, который вместе со штоком может перемешаться в зону действия магнитных полей магнитов (N2, N3). Все магниты (N1, N2, N3) обращены друг к другу одноименными полюсами. Поэтому при введении магнита N1 при помощи штока в зону действия магнитов (N2, N3) их магнитные поля полюсов N вступают во взаимодействия. Они складываются, а их результирующий отталкивающий момент усиливается. При этом возникают в горизонтальной плоскости силы отталкивания у магнита N1 (статора), направленные радиально к поверхностям конических торцов полюсов N магнитов N2 и N3 (ротора). А так как диск с магнитами N2 и N3 имеет степень свободы и может свободно вращаться вокруг оси, то под влиянием отталкивающей силы магнита N1 (статора), действующей на поверхности конических торцов полюсов N (ротора) и заставляет диск поворачиваться по кругу. Вследствие этого и происходит непрерывное вращение диска, т.е. (ротора) вокруг оси.

Вращение диска с магнитами N2 и N3 происходит, как показано на схеме, по направлению часовой стрелки.

Выключение работы бестопливного двигателя происходит при выводе магнита N1 из зоны действия магнитного поля магнитов N2 и N3.

При конструировании магнитов диска необходимо иметь ввиду то, что длина магнита должна быть такой, чтобы в центре его нейтральной зоны оставалась намагниченность, близкая к нулю. Это позволит соблюдать разницу потенциалов магнитной энергии (намагниченности) между полюсами магнита и его нейтральной зоны, так как за счет этой разницы потенциала магнитной энергии и происходит непрерывное вращение рабочего диска двигателя.

На схеме 2 изображен второй вариант магнитного двигателя, где показан манит N1 (статор), имеющий форму круга закрепленного на опоре.

Параллельно магниту N1 расположен подковообразный магнит N2 (ротор), который закреплен на диске со штоком.

Полюса N и S магнита N2 имеют конусообразную форму под углом 40-45 градусов.

Диск с магнитом N2 при помощи штока может подыматься и опускаться к поверхности торца полюса N магнита N1. Магниты N1 и N2 направлены друг к другу одноименными полюсами.

При опускании магнита N2 при помощи штока к поверхности торца полюса N магнита N1 на близкое расстояние их магнитные поля полюсов N вступают во взаимодействия. Они складываются, их результирующий отталкивающий момент усиливается. При этом возникают силы отталкивания у торца полюса N магнита N1 (статора) в вертикальном направлении, вдоль оси, направленные к поверхности конического торца полюса N магнита N2 (статора).

А так как диск с магнитом N2 имеет степень свободы и может свободно вращаться вокруг оси, то под влиянием отталкивающей силы торца полюса N магнит N1 (статора), действующей на коническую поверхность торца полюса N (ротора) и заставляет диск поворачиваться по кругу. Вследствие этого и происходит непрерывное вращение диска двигателя, т.е. (ротора) вокруг оси по направлению часовой стрелки.

Включение работы бестопливного двигателя происходит при выводе магнита N2 из зоны действия магнитного поля магнитов N1 при помощи штока.

Использование экологически чистого бестопливного двигателя избавит от загрязнения выхлопными газами и другими вредными веществами атмосферу воздуха и окружающую среду нашей планеты.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Двигатель для получения вращательного движения, содержащий закрепленный параллельно постоянному магниту ротора постоянный магнит статора, имеющий возможность перемещаться в зону действия магнитного поля постоянного магнита ротора, отличающийся тем, что постоянный магнит статора неподвижно закреплен на штоке, при помощи которого он вводится в зону действия магнитных полей постоянных магнитов ротора, выполненного в виде диска (маховика), на котором установлен один или несколько, обращенных одноименными полюсами к постоянному магниту статора подковообразных магнитов ротора, длина которых выбрана такой, чтобы в центре нейтральной зоны оставалась намагниченность, близкая к нулю, что обеспечит отталкивание одноименных полюсов статора и ротора при введении постоянного магнита статора, неподвижно закрепленного на штоке в зону действия постоянного магнита ротора, и в результате взаимодействия магнитного поля постоянного магнита ротора с магнитным полем одноименного полюса постоянного магнита статора именно за счет их отталкивания обеспечено вращение ротора.

Версия для печати

Дата публикации 15.11.2006 гг.

Но прежде чем проводить анализ двигателя Алексеенко В.Е., позволю еще раз вернуться к двигателю Говарду Джонсона и его аналогам. Говард Джонсон до сих пор продолжает создавать свои двигатели самых разных модификаций. У него масса последователей, которые предлагают свои варианты решения поставленной задачи – за счет правильного выбора формы магнитов и их взаимного расположения получить «вечное движение». Но в русском секторе Интернета можно найти только описание патента, который к тому же содержит ошибки, которые заключаются в том, что часть рисунков соответствует патенту на магнитный мотор, а часть патенту на магнитную дорожку, которая работает на том же принципе. А в англоязычном секторе Интернета материала о моторе больше, есть сайт самого Говарда Джонсона, есть сайты его последователей.

 

Вот пример, что магнитный мотор Говарда Джонсона может быть самой разной конструкции (рис.1)

 

Рис.1. Говард Джонсон рядом со своим мотором.

Кроме Говарда Джонсона моторы, основанные на его принципе, создают и другие изобретатели (рис.2)

 

Рис.2. Магнитный мотор, использующий идею Говарда Джонсона.

Вот один из чертежей к этому мотору (рис.3)

 

Рис.3. Чертёж мотора, показанного на рис.2.

Прекрасно видно, что данный последователь разместил бумерангообразные магниты на роторе, а на статоре установил плоские магниты, видимо, северным полюсом повернутые к ротору. Для регулирования мощности и скорости вращения изобретатель установил статор на направляющих полозьях, и, перемещая статор относительно ротора, можно изменять зону перепрытия ротора со статором и таким образом управлять величиной магнитного взаимодействия между магнитами ротора и статора с целью вращения ротора с необходимой скоростью или мощью.

 

Имеются модификации двигателя Говарда Джонсона. Их изобретатель предпочитает размещать видео в Интернете. Конструкция его двигателей очень простая. На алюминиевый круг по окружности устанавливается цепочки плоских магнитов плоской стороной наружу, видимо, намагниченные так, что полюса их находятся на плоских сторонах и одноименные полюса направлены в одну сторону. Над диском расположена пластина из алюминия, под которой крепится изогнутый в полукруг или буквой «П» магнит, мимо которого магниты на алюминиевом диске последовательно проходят при вращении диска (ротора). И диск вращается. Медленно, с малой мощностью, но вращается. Но если бы изобретатель расположил вокруг ротора не один, а с десяток изогнутых магнитов (U-образных по сути магнитов), то в соответствующее число раз возросла бы мощность двигателя или скорость вращения двигателя.

 

Мне кажется, что и в двигателе Перендев применен сходный приём. Но только Перендев пошел даже более простым путём. Это ясно из схемы, где схематично изображены статор и ротор с размещенными на них магнитами в виде таблеток с полюсами на основаниях этих «таблеток» (рис.4).

 

Рис.4. Предполагаемая упрощенная схема мотора Перендев.

Чтобы превратить роторные магнитные спарки мотора Перендев в «П» образные магниты, достаточно их торцы, обращенные от статора соединить пластиной из мягкого железа. Это приведет к тому, что магнитное поле спаренных роторных магнитов замкнется в своеобразный бублик, а это то, что нам надо. Видимо, Перендев так и делал и это показано на рис.4. Так сказать ноу-хау. Так что не всегда надо стремиться экранировать магнитное поле. Иногда достаточно спрятать (сконцентрировать) часть магнитного поля в пластине (экране) из мягкого железа, направив магнитный поток в нужном изобретателю направлении. Думаю, что Перендев украл идею и Говарда Джонсона, поэтому он так тчательно скрывал принцип работы своего мотора, но сделал это гениально. Но в любом случае, жадность до добра не доводит.

 

В результате преимущественно однонаправленное магнитное поле статора, будет взаимодействовать с тороподобными магнитными полями роторных магнитных спарок. И чем теснее будут прилегать магниты статора к магнитам ротора, тем мощнее будет мотор. Эффект Магнуса для эфирных потоков приведет к тому, что эфирное давление у северных полюсов спарок упадет, а у южных - возрастёт. И поехали…

 

А теперь обратимся к мотору Алексеенко В.Е. Из текста патента следует, что его автор прекрасно понимал, что именно при такой форме роторных магнитов удастся получить вращение ротора. Иначе я не могу понять, как автор пришёл к мысли так изощрённо изогнуть магниты ротора, и понять, что и тут работает эффект Магнуса для эфирных потоков (магнитных потоков) сразу невозможно.

Рис.5. Двигатели Алексеенко В.Е. с указанием направления магнитных потокой и зон повышенного (+) и пониженного (-) эфирного давления.

 

На рис.5. я постарался показать направление эфирных потоков как в первом варианте двигателя, так и во втором. В первом варианте направление эфирных потоков в роторных магнитах(!) показаны синими стрелками, а во втором варианте – красными. Зоны повышенного эфирного давления отмечены знаком (+), а пониженного – знаком (-) зеленого цвета. Часть потока идет внутри магнита, а часть «по воздуху».

 

Вариант мотора Алексеенко на фиг.2. понять легче, ибо в нём магнитные (эфирные) потоки магнитов как ротора, так и статора представить можно без особых трудностей, лишь бы пространственное воображение работало как положено у любого нормального человека. От статорного магнита в области магнитов ротора магнитный (эфирный) поток поднимается вертикально вверх. А направление магнитного (эфирного) потока в противоположных частях роторного магнита показано красными стрелками. Направление магнитного (эфирного) потока в других частях роторного магнита перпендикулярно силовым линиям магнитного (эфирного) потока статора, поэтому в создании сил они участвовать не будут.

 

Там, где (магнитные) эфирные потоки статора и ротора направлены в одну сторону, там в итоге эфирное давление повышается, а электротехники говорят, что повышается напряженность итогового магнитного поля. Там, где магнитные (эфирные) потоки направлены в разные стороны (навстречу друг другу), там давление эфира уменьшается. Электротехники сказали бы, что в этой области напряженность магнитного поля уменьшается. В итоге между зоной, отмеченной знаком (+) и областью, отмеченной знаком (-) появляется разность эфирного давления (или разность напряженности магнитного поля), что заставит вращаться ротор по часовой стрелке, так как это указал на фиг.2 сам Алексеенко Н.Е.

 

С вариантом двигателя на фиг.1 не все так однозначно и требует более серьезного анализа и условий, при которых этот двигатель будет работать. Определение направления эфирных (магнитных) потоков в роторных магнитах сложностей не вызывает. А вот с направлением магнитных потоков (силовых линий) статорного магнита не все так однозначно. При неправильном выборе его положения ротор вращаться не будет, либо сила взаимодействия магнитных полей будет недостаточной для формирования требуемой мощности. Для того, чтобы магниты ротора вращались в магнитном поле статорного магнита, имеющего продольно-радиальную намагниченность, необходимо, чтобы магнитные силовые линии в области роторных магнитов горизонтально и веером расходились в плоскости, совпадающей с плоскостью роторных магнитов, а для этого требуется, чтобы нижний конец статорного магнита, где расположен северный полюс, не доходил до дна «стакана» на котором лежат роторные магниты. Поэтому для центрального магнита лучше применить специальный вариант намагниченности, чтобы северный полюс располагался на внешней поверхности магнита, а южный внутри. Или надо будет такой магнит склеить из секторов обычных магнитов, подогнав их форму под сектор, а уже из этих секторов собрать магнит требуемой цилиндрической формы, но с северным полюсом по наружной поверхности. Есть и другие варианты. И тогда, опуская или поднимая статорный магнит, можно будет регулировать мощность двигателя или скорость вращения ротора в более широких пределах.

 

В варианте двигателя на фиг1 можно отказаться от роторных магнитов такой сложной формы. Роторный магнит можно собрать из двух подковообразных магнитов, соединив их друг с другом разноименными полюсами. Или намагнитить соответствующим образом магнит торовидной формы. В результате будет создан магнит с замкнутым в колечко (тор) магнитным полем. Главное правильно такой магнит расположить в «стакане», чтобы магнитное поле в нём вращалось в ту же сторону, как это показано на фиг1.

 

В варианте двигателя на фиг2 тоже вместо навороченного роторного магнита можно установить всего два кольцевых магнита с внутренним магнитным полем, закрученным в одну сторону. Тогда размещение таких кольцевых магнитов на концах коромысла над статорным магнитом так, чтобы плоскость роторного магнита была перпендикулярна радиусу от оси вращения. Тогда в кольцевом магните в одной стороне магнитный поток будет направлен вверх, а в другой стороне вниз, а это приведет к тому, что между половинами кольцевого роторного магнита возникнет разность эфирного давления. И если роторные магниты такой конструкции правильно закрепить на коромысле, то появится пара сил, заставляющих коромысло вместе с круглыми магнитами вращаться вокруг оси. И эта разность давлений эфира будет перемещаться вместе с роторными магнитами. А ротор будет вращаться до тех пор, пока не разрушится данная конструкция. Здесь вместо кольцевых магнитов можно использовать подковообразные магниты, направив их полюсами к статорному магниту. Причем эти два магнита надо правильно закрепить на коромысле, чтобы пара сил была направлена в разные стороны.

 

Вот мы и сняли тайну и с магнитного мотора Алексеенко В.Е. И заодно предложили, как сделать так, чтобы конструкция упростилась, а мощность мотора возросла. И это оказалось не таким уж сложным делом, ибо мной раскрыт и предоставлен всем желающим принцип, по которому можно создавать магнитные моторы самых разных конструкций, для самых разных предназначений и для самых разных условий эксплуатации. Вращением магнитного (эфирного) колеса (цилиндра) во внешнем однородном магнитном поле благодаря эффекту Магнуса можно легко создавать градиент эфирного давления и использовать этот градиент для перемещения тела в пространстве, а если связать эфирное колесо (цилиндр) непосредственно с телом, то можно получить безопорное движение тела в пространстве без отбрасывания массы. Для перемещения в пространстве достаточно на средстве передвижения создать вращающееся, замкнутое в кольцо или цилиндр магнитное поле достаточной напряженности и при наличии однородного и однонаправленного магнитного поля в окружающем пространстве при правильном выборе ориентации магнитного кольца (цилиндра) относительно направлений внешнего магнитного (эфирного) потока (силовых линий) можно смело лететь куда угодно, по крайней мере туда, где есть магнитное поле.

 

Если учесть тот факт, что с позиций эфирной теории нет принципиальной разницы между гравитацией и магнетизмом, так как то и другое – это вихри жидкого эфира, разница только в масштабах потоков и частоте их вращения, то создав кольцевидное или цилиндрическое магнитное поле сверхвысокой напряженности можно добиться того, что такой вихрь начнет взаимодействовать через эффект Магнуса с медленными, но мощными потоками жидкого эфира, которые как раз и порождают гравитацию в масштабах звездных систем и галактик. Причем энергию для создания мощного торовидного или цилиндрического вихря можно добывать непосредственно из того эфира, который будет окружать межзвездное и межгалактичекое средство передвижения. И не обязательно это средство передвижения может быть в виде тарелки, но кажется «тарелкообразная» форма наиболее простая для этой цели, а уже правильно расположить плоскость «тарелки» в магнитном или гравитационном полях (потоках жидкого эфира) не составит большого труда.

 

С помощью обычного колеса человечество сумело освоить всю поверхность Земли. Теперь с помощью эфирного колеса или эфирного катка человечество сможет освоить пространство под водой и в атмосфере. А в будущем сможет освоить все пространство Солнечной и ближайших звездных систем. Ну, а в отдаленном будущем нет никаких ограничений, кроме тех, что связаны с биологией человека, и для освоения всего пространства нашей Галактики.

 

Такие вот перспективы открывает перед нами, казалось бы, простой и неуклюжий двигатель Алексеенко В.Е.

 

Сколково, наше вам с кисточкой!

 

Власов В.Н., Эфир и безтопливный мотор Алексеенко В.Е. // «Академия Тринитаризма», М., Эл № 77-6567, публ.16605, 01.07.2011 (с)

tol39.livejournal.com

БЕСТОПЛИВНЫЙ МАГНИТНЫЙ ДВИГАТЕЛЬ АЛЕКСЕЕНКО shram.kiev.ua

БЕСТОПЛИВНЫЙ ДВИГАТЕЛЬ АЛЕКСЕЕНКО

Алексеенко Василий Ефимович

Оставьте комментарий

Использование в качестве привода вращения. Двигатель состоит из диска (маховика), закрепленного на оси. На нем закреплены один или несколько постоянных магнитов ротора, которые вместе с диском (маховиком) могут свободно вращаться вокруг оси. Параллельно рабочему диску (маховику) двигателя на штоке закреплен неподвижно цилиндрический постоянный магнит стопора, который вместе со штоком может перемещаться в зону действия магнитных полей постоянных магнитов ротора, расположенных на рабочем диске. Все магниты обращены друг к другу одноименными полюсами. Одноименные полюса отталкиваются и заставляют рабочий диск двигателя вращаться вокруг оси. Двигатель работает от энергии сильных магнитных полей постоянных магнитов за счет разницы потенциалов магнитной энергии на полюсах магнитов ротора и их нейтральных зонах. Технический результат заключается в том, что для создания вращения, потребление топлива минимально.

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Общий вид бестопливного двигателя Алексеенко

Рис. 1

Наиболее близким по технической сущности к предлагаемому решению является магнитный двигатель (вибратор), включающий статор в виде кольцевого постоянного магнита и ротор (якорь) в виде стержневого постоянного магнита, размещенного внутри статора в одной с ним плоскости, с возможностью взаимодействия между ними одноименными полюсами (а. с. СССР N 1658310, H 02 K 33/00, 1988 г.).

Его недостаток в том, что ему нужен подвод электроэнергии.

Целью предлагаемого изобретения является создание экологически чистого, без выхлопных газов двигателя, не требующего потребления топлива и подвода энергии извне, не загрязняющего атмосферу воздуха и окружающую среду.

Двигатель будет работать от энергии сильных магнитных полей постоянных магнитов, расположенных на двигателе.

Постоянные магниты длительное время сохраняют свои сильные магнитные поля и могут многократно намагничиваться. Стабильность магнитных полей постоянных магнитов сохраняется и при работе двигателя благодаря непрерывному вращению, т.е. движению отрицательно заряженных электронов по своим замкнутым орбитам вокруг ядра атома вещества, из которого построены магниты. При своем вращении по замкнутым орбитам электроны создают круговые электрические токи, вокруг которых по закону магнетизма и возникает магнитное поле, являющееся неотделимым спутником всякого тока. А вследствие этого и происходит непрерывное преобразование и пополнение магнитной энергией в постоянных магнитах. Вот почему и сохраняется стабильность магнитных полей и при работе двигателя.

Поэтому бестопливному двигателю и не требуется топливо и подвода энергии извне.

Бестопливный двигатель может быть различной мощности, которая определяется тремя факторами:

  1. Увеличение рабочего плеча двигателя. Достигается это за счет увеличения диаметра статора и соответственно с ним диаметра ротора двигателя.
  2. Использование постоянных магнитов с более мощными магнитными полями.
  3. Увеличение массы диска, который является еще и маховиком двигателя. А так как диск двигателя способен развивать до двадцати тысяч оборотов в минуту, то даже при небольшом увеличении массы диска (маховика) вращающий его момент будет соответственно усиливаться, одновременно с этим будет увеличиваться и мощность двигателя.

Экологически чистый бестопливный двигатель может быть широко использован в автомобилестроении, тракторостроении, авиации, космосе, в подводном транспорте, в энергетике, в коммунальном хозяйстве и во многих других отраслях народного хозяйства.

РАБОТА ДВИГАТЕЛЯ

На Рис. 1 изображен общий вид рабочего диска двигателя, закрепленного на рабочей оси (вид сверху). На плоскости диска может быть установлен и закреплен один или несколько постоянных магнитов.

В данном варианте, как показано на схеме, на плоскости диска закреплены неподвижно два постоянных магнита (№2, №3), которые вместе с диском могут свободно вращаться на оси диска. Параллельно рабочему диску двигателя на штоке закреплен неподвижно постоянный магнит №1, который вместе со штоком может перемешаться в зону действия магнитных полей магнитов (№2, №3). Все магниты (№1, №2, №3) обращены друг к другу одноименными полюсами. Поэтому при введении магнита №1 при помощи штока в зону действия магнитов (№2, №3) их магнитные поля полюсов N вступают во взаимодействия. Они складываются, а их результирующий отталкивающий момент усиливается. При этом возникают в горизонтальной плоскости силы отталкивания у магнита №1 (статора), направленные радиально к поверхностям конических торцов полюсов N магнитов №2 и №3 (ротора). А так как диск с магнитами №2 и №3 имеет степень свободы и может свободно вращаться вокруг оси, то под влиянием отталкивающей силы магнита №1 (статора), действующей на поверхности конических торцов полюсов N (ротора) и заставляет диск поворачиваться по кругу. Вследствие этого и происходит непрерывное вращение диска, т.е. (ротора) вокруг оси.

Вращение диска с магнитами №2 и №3 происходит, как показано на схеме, по направлению часовой стрелки.

Выключение работы бестопливного двигателя происходит при выводе магнита №1 из зоны действия магнитного поля магнитов №2 и №3.

При конструировании магнитов диска необходимо иметь ввиду то, что длина магнита должна быть такой, чтобы в центре его нейтральной зоны оставалась намагниченность, близкая к нулю. Это позволит соблюдать разницу потенциалов магнитной энергии (намагниченности) между полюсами магнита и его нейтральной зоны, так как за счет этой разницы потенциала магнитной энергии и происходит непрерывное вращение рабочего диска двигателя.

На Рис. 2 изображен второй вариант магнитного двигателя, где показан манит №1 (статор), имеющий форму круга закрепленного на опоре.

Параллельно магниту №1 расположен подковообразный магнит №2 (ротор), который закреплен на диске со штоком.

Полюса N и S магнита №2 имеют конусообразную форму под углом 40-45 градусов.

Диск с магнитом №2 при помощи штока может подыматься и опускаться к поверхности торца полюса N магнита №1. Магниты №1 и №2 направлены друг к другу одноименными полюсами.

При опускании магнита №2 при помощи штока к поверхности торца полюса N магнита №1 на близкое расстояние их магнитные поля полюсов N вступают во взаимодействия. Они складываются, их результирующий отталкивающий момент усиливается. При этом возникают силы отталкивания у торца полюса N магнита №1 (статора) в вертикальном направлении, вдоль оси, направленные к поверхности конического торца полюса N магнита №2 (статора).

Общий вид второго варианта магнитного, бестопливного двигателя Алексеенко

Рис. 2

А так как диск с магнитом №2 имеет степень свободы и может свободно вращаться вокруг оси, то под влиянием отталкивающей силы торца полюса N магнит №1 (статора), действующей на коническую поверхность торца полюса N (ротора) и заставляет диск поворачиваться по кругу. Вследствие этого и происходит непрерывное вращение диска двигателя, т.е. (ротора) вокруг оси по направлению часовой стрелки.

Включение работы бестопливного двигателя происходит при выводе магнита №2 из зоны действия магнитного поля магнитов №1 при помощи штока.

Использование экологически чистого бестопливного двигателя избавит от загрязнения выхлопными газами и другими вредными веществами атмосферу воздуха и окружающую среду нашей планеты.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Двигатель для получения вращательного движения, содержащий закрепленный параллельно постоянному магниту ротора постоянный магнит статора, имеющий возможность перемещаться в зону действия магнитного поля постоянного магнита ротора, отличающийся тем, что постоянный магнит статора неподвижно закреплен на штоке, при помощи которого он вводится в зону действия магнитных полей постоянных магнитов ротора, выполненного в виде диска (маховика), на котором установлен один или несколько, обращенных одноименными полюсами к постоянному магниту статора подковообразных магнитов ротора, длина которых выбрана такой, чтобы в центре нейтральной зоны оставалась намагниченность, близкая к нулю, что обеспечит отталкивание одноименных полюсов статора и ротора при введении постоянного магнита статора, неподвижно закрепленного на штоке в зону действия постоянного магнита ротора, и в результате взаимодействия магнитного поля постоянного магнита ротора с магнитным полем одноименного полюса постоянного магнита статора именно за счет их отталкивания обеспечено вращение ротора.

Версия для печатиАвтор: Алексеенко Василий ЕфимовичПочтовый адрес: 400007, Волгоград, ул.Таращанцев, д.14, кв.6Дата публикации 20.10.2006гг

www.shram.kiev.ua

Двигатель Алексеенко

БЕСТОПЛИВНЫЙ ДВИГАТЕЛЬ

Использование: в качестве привода вращения. Двигатель состоит из диска (маховика), закрепленного на оси. На нем закреплены один или несколько постоянных магнитов ротора, которые вместе с диском (маховиком) могут свободно вращаться вокруг оси. Параллельно рабочему диску (маховику) двигателя на штоке закреплен неподвижно цилиндрический постоянный магнит стопора, который вместе со штоком может перемещаться в зону действия магнитных полей постоянных магнитов ротора, расположенных на рабочем диске. Все магниты обращены друг к другу одноименными полюсами. Одноименные полюса отталкиваются и заставляют рабочий диск двигателя вращаться вокруг оси. Двигатель работает от энергии сильных магнитных полей постоянных магнитов за счет разницы потенциалов магнитной энергии на полюсах магнитов ротора и их нейтральных зонах. Технический результат заключается в том, что для создания вращения потребление топлива минимально. 2 ил.

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

 

 

  рис. 1

Наиболее близким по технической сущности к предлагаемому решению является магнитный двигатель (вибратор), включающий статор в виде кольцевого постоянного магнита и ротор (якорь) в виде стержневого постоянного магнита, размещенного внутри статора в одной с ним плоскости, с возможностью взаимодействия между ними одноименными полюсами (а. с. СССР N 1658310, H 02 K 33/00, 1988 г.).

 

Его недостаток в том, что ему нужен подвод электроэнергии.

 

Целью предлагаемого изобретения является создание экологически чистого, без выхлопных газов двигателя, не требующего потребления топлива и подвода энергии извне, не загрязняющего атмосферу воздуха и окружающую среду.

 

Двигатель будет работать от энергии сильных магнитных полей постоянных магнитов, расположенных на двигателе.

 

Постоянные магниты длительное время сохраняют свои сильные магнитные поля и могут многократно намагничиваться. Стабильность магнитных полей постоянных магнитов сохраняется и при работе двигателя благодаря непрерывному вращению, т.е. движению отрицательно заряженных электронов по своим замкнутым орбитам вокруг ядра атома вещества, из которого построены магниты. При своем вращении по замкнутым орбитам электроны создают круговые электрические токи, вокруг которых по закону магнетизма и возникает магнитное поле, являющееся неотделимым спутником всякого тока. А вследствие этого и происходит непрерывное преобразование и пополнение магнитной энергией в постоянных магнитах. Вот почему и сохраняется стабильность магнитных полей и при работе двигателя.

 

Поэтому бестопливному двигателю и не требуется топливо и подвода энергии извне.

 

Бестопливный двигатель может быть различной мощности, которая определяется тремя факторами: 1. Увеличение рабочего плеча двигателя. Достигается это за счет увеличения диаметра статора и соответственно с ним диаметра ротора двигателя.

 

2. Использование постоянных магнитов с более мощными магнитными полями.

 

3. Увеличение массы диска, который является еще и маховиком двигателя. А так как диск двигателя способен развивать до двадцати тысяч оборотов в минуту, то даже при небольшом увеличении массы диска (маховика) вращающий его момент будет соответственно усиливаться, одновременно с этим будет увеличиваться и мощность двигателя.

 

Экологически чистый бестопливный двигатель может быть широко использован в автомобилестроении, тракторостроении, авиации, космосе, в подводном транспорте, в энергетике, в коммунальном хозяйстве и во многих других отраслях народного хозяйства.

 

Работа двигателя.

 

На схеме 1 изображен общий вид рабочего диска двигателя, закрепленного на рабочей оси (вид сверху). На плоскости диска может быть установлен и закреплен один или несколько постоянных магнитов.

 

В данном варианте, как показано на схеме, на плоскости диска закреплены неподвижно два постоянных магнита (N 2, N 3), которые вместе с диском могут свободно вращаться на оси диска. Параллельно рабочему диску двигателя на штоке закреплен неподвижно постоянный магнит N 1, который вместе со штоком может перемешаться в зону действия магнитных полей магнитов (N 2, N 3). Все магниты (N 1, N 2, N 3) обращены друг к другу одноименными полюсами. Поэтому при введении магнита N 1 при помощи штока в зону действия магнитов (N 2, N 3) их магнитные поля полюсов N вступают во взаимодействия. Они складываются, а их результирующий отталкивающий момент усиливается. При этом возникают в горизонтальной плоскости силы отталкивания у магнита N 1 (статора), направленные радиально к поверхностям конических торцов полюсов N магнитов N 2 и N 3 (ротора). А так как диск с магнитами N 2 и N 3 имеет степень свободы и может свободно вращаться вокруг оси, то под влиянием отталкивающей силы магнита N 1 (статора), действующей на поверхности конических торцов полюсов N (ротора) и заставляет диск поворачиваться по кругу. Вследствие этого и происходит непрерывное вращение диска, т.е. (ротора) вокруг оси.

 

Вращение диска с магнитами N 2 и N 3 происходит, как показано на схеме, по направлению часовой стрелки.

 

Выключение работы бестопливного двигателя происходит при выводе магнита N 1 из зоны действия магнитного поля магнитов N 2 и N 3.

 

При конструировании магнитов диска необходимо иметь ввиду то, что длина магнита должна быть такой, чтобы в центре его нейтральной зоны оставалась намагниченность, близкая к нулю. Это позволит соблюдать разницу потенциалов магнитной энергии (намагниченности) между полюсами магнита и его нейтральной зоны, так как за счет этой разницы потенциала магнитной энергии и происходит непрерывное вращение рабочего диска двигателя.

 

На схеме 2 изображен второй вариант магнитного двигателя, где показан манит N 1 (статор), имеющий форму круга закрепленного на опоре.

 

 

рис. 2

Параллельно магниту N 1 расположен подковообразный магнит N 2 (ротор), который закреплен на диске со штоком.

 

Полюса N и S магнита N 2 имеют конусообразную форму под углом 40-45 градусов.

 

Диск с магнитом N 2 при помощи штока может подыматься и опускаться к поверхности торца полюса N магнита N 1. Магниты N 1 и N 2 направлены друг к другу одноименными полюсами.

 

При опускании магнита N 2 при помощи штока к поверхности торца полюса N магнита N 1 на близкое расстояние их магнитные поля полюсов N вступают во взаимодействия. Они складываются, их результирующий отталкивающий момент усиливается. При этом возникают силы отталкивания у торца полюса N магнита N 1 (статора) в вертикальном направлении, вдоль оси, направленные к поверхности конического торца полюса N магнита N 2 (статора).

 

А так как диск с магнитом N 2 имеет степень свободы и может свободно вращаться вокруг оси, то под влиянием отталкивающей силы торца полюса N магнит N 1 (статора), действующей на коническую поверхность торца полюса N (ротора) и заставляет диск поворачиваться по кругу. Вследствие этого и происходит непрерывное вращение диска двигателя, т.е. (ротора) вокруг оси по направлению часовой стрелки.

 

Включение работы бестопливного двигателя происходит при выводе магнита N 2 из зоны действия магнитного поля магнитов N 1 при помощи штока.

 

Использование экологически чистого бестопливного двигателя избавит от загрязнения выхлопными газами и другими вредными веществами атмосферу воздуха и окружающую среду нашей планеты.

ФОРМУЛА ИЗОБРЕТЕНИЯ

 

Двигатель для получения вращательного движения, содержащий закрепленный параллельно постоянному магниту ротора постоянный магнит статора, имеющий возможность перемещаться в зону действия магнитного поля постоянного магнита ротора, отличающийся тем, что постоянный магнит статора неподвижно закреплен на штоке, при помощи которого он вводится в зону действия магнитных полей постоянных магнитов ротора, выполненного в виде диска (маховика), на котором установлен один или несколько, обращенных одноименными полюсами к постоянному магниту статора подковообразных магнитов ротора, длина которых выбрана такой, чтобы в центре нейтральной зоны оставалась намагниченность, близкая к нулю, что обеспечит отталкивание одноименных полюсов статора и ротора при введении постоянного магнита статора, неподвижно закрепленного на штоке в зону действия постоянного магнита ротора, и в результате взаимодействия магнитного поля постоянного магнита ротора с магнитным полем одноименного полюса постоянного магнита статора именно за счет их отталкивания обеспечено вращение ротора

Добавить комментарий

alternatefuel.ru

О "закрывающих" технологиях | Земля Мастеров

Русские изобретения и закрывающие технологии - промышленность нового технологического уклада

Если внедрить бестопливный двигатель... 

Истинно, Учение Жизни является пробным камнем. Никто не пройдет мимо, не показав своей сущности. Кто возрадуется, кто ужаснется, кто вознегодует. Так каждый должен показать, что таится в глубине его сознания. Не удивляйтесь, что реакция на Учение так различна и ярка. Нарада высекал такие же различные искры из сознаний человеческих. Если кто-то не может вместить устоев справедливости и нравственности, пусть он проявит свою негодность. В явной формуле пусть возможно менее останется масок лицемерия. Пусть проявится дикость, ибо она не может долго пробыть под одеждою притворства. Так же пусть возликует молодое сердце: оно может явить себя в радостном восхождении. Так пусть мера Учения будет и показанием деления человечества. Зло и добро должны различаться, но такое распознавание дается нелегко. 

Братство, 197 

В мире идет драка за нефть, а в России изобретен безтопливный двигатель. Зачем Америке воевать с арабами за нефть, за ее самые большие запасы на Ближнем Востоке, если экономика может работать без нефти? Можно вообще отказаться от сырья, нефть это или газ, если перевести производство материальных благ на двигатели нового типа: бестопливные. В верхах помалкивают об этой и других уникальных технологиях, так как "правящий" режим России сориентирован на интересы США. И все-таки бестопливную перспективу России, а значит - и мира в целом, не спрятать. Чем глубже русские падают в кризис, тем ближе они подходят к внедрению технологий столь высокого уровня. Они обеспечат рывковый выход из кризиса, который затянулся на 17 лет и привел к крайнему упадку всей системы хозяйствования РФ. Выход - на пути капитального переоснащения производства под технологии, которые обеспечат многократный рост производительности труда и остановят экологическую катастрофу. Если уж снижать затраты, то по-крупному: не экономить дефицитное топливо, а полностью отказываться от него, внедряя бестопливные технологии. Патент на безтопливный двигатель выдан Василию Алексеенко, русскому "Левше", 10 июня 1969 года Российским агентством по патентам и товарным знакам. Двигатель не требует вообще никакого топлива: ни нефти, запасы которой ограничены, ни газа - ничего, что мы называем сырьем. Работает уникальный двигатель от энергии магнитных полей постоянных магнитов. Если один килограмм обычного магнита может притянуть или оттолкнуть 50 или 100 кг. массы, то мощные оксидно-бариевые способны то же самое проделывать с пятью тысячами килограммов массы. Такие мощные магниты, как уточняет изобретатель, не нужны. Годятся самые известные: один к пятидесяти или один к ста. С их помощью можно получить в двигателе, который сотворил русский "Левша", 20 тысяч оборотов в минуту. Мощность придется даже гасить, используя передающее устройство. Постоянные магниты, от энергии которых работает двигатель, на нем и расположены "Ротор своим магнитным полем отталкивается от такого же поля статора и начинает вращаться, а магнитное поле статора следует за ним и как бы его подгоняет, ускоряя вращение" (из выступления Василия Алексеенко). Так можно добиться чудовищной мощности. Если такой двигатель использовать, скажем, в стиральной машине, вращение обеспечат крохотные магнитики. 

Такой двигатель, не требующий ни грамма топлива, применим практически везде. Будучи большим или маленьким (в зависимости от задачи, которую он должен решать), безтопливный двигатель может вращать генератор любой мощности и вырабатывать сколько нужно электроэнергии. Имея такой уникальный двигатель, реально решить все проблемы коммунальщиков, обогрев и осветив любое жилье, отказавшись при этом от давно отслуживших свой век паротрасс, батарей, коптящих труб ТЭЦ. Казалось бы, чего тут думать? Надо не медлить и внедрять бестопливную новинку, начав с северных регионов, где вопросы обогрева жилья стоят острее, чем где-либо. Почему бы средства, которые власть выделяет на закупку сырья и транспортировку его в северные регионы, на ремонт коммунального оборудования, не пустить на срочный запуск бестопливных двигателей, если верхи, конечно, не шутят, что денно и нощно трудятся над тем, как обогреть холодных, накормить голодных и поднять Россию? Но в том-то и дело, что это пустые разглагольствования властей: в верхах боятся таких технологий. Они работают на подъем экономики, а перед власть имущими, судя по их управленческим шагам, стоит другая задача: удерживать Россию в состоянии кризиса. Подтверждение тому - полное отсутствие условий для роста производства. Оно может расти только вследствие внедрения новшеств (новых технологий), а условия для внедрения не созданы. Внедрять новое не только не выгодно, но и разорительно. Хозяйственники, которые совершают такие героические шаги, как перевод своих производств на новые технологии, получают от государства нулевую поддержку. "Правящие" создали и удерживают условия для торможения производства, но никак не наоборот. 

Благосостояние пойдет вверх, если цены на блага пойдут вниз, а цены не могут пойти вниз, если не снижать затраты на производство недостающих благ, то есть - не внедрять новое. Внедрение, к примеру, бестопливного двигателя полностью снимет проблему в топливе. Оно не потребуется, так как двигатель работает от энергии магнитов. Высвободятся колоссальные средства для выпуска новых объемов продукции. Как разъясняет Василий Алексеенко, создатель бестопливной технологии, его магнитный двигатель "может вращать генератор любой мощности, вырабатывая энергии - сколько угодно". Проблему отопления реально решить раз и навсегда, если перевести его на безтопливный вариант. Навсегда отпадет необходимость в теплотрассах. Чем менять износившиеся трубы на новые, не лучше ли пустить средства на перевод отопления на безтопливный вариант? К тому же это значительно удешевит обогрев жилья. Появится реальная основа для снижения цен на эту и другие коммунальные услуги. Такие преимущества дает снижение затрат, достижимое в результате внедрения экономичных и ресурсосберегающих технологий. Русским по плечу такой путь выхода из кризиса, от которого люди устали, как от длительной и мучительной болезни. Ни одна страна мира не накопила такое множество новых технологий, равных бестопливной Василия Алексеенко. Но в том и острота ситуации, ее сложность, что уставшее от кризиса большинство готово внедрять и поднимать экономику, а правящий класс - не готов. У него, похоже, другие планы, судя потому, в какой мере экономика России, особенно - ее сырьевая сфера, приспособлена для работы на Запад. Вот почему вокруг новых технологий - заговор молчания, как вокруг чего-то тайного и опасного. Наше сырье нам понадобится самим, если Россия возьмет курс на подъем на основе технологий, о которых речь. В 1999 году наша затухающая система "съела" только 100 млн. тонн нефти. Остальная нефть ушла в основном на Запад, что вполне устраивает мировые верхи. Сравните эти 100 млн. тонн с одним миллиардом тонн нефти, который потребляет ежегодно экономика США, чтобы представить глубину нашего упадка. Таково объяснение тому, почему правящий класс России создал условия для дальнейшего упадка производства. На внедрение новых технологий режим почти не отпускает средств. Внедренческая сфера заблокирована. По словам депутата Госдумы С. Глазьева, в России отсутствует механизм продвижения научно-технических разработок в производство. Есть механизм их продвижения в "портфель", что надо понимать как полное отсутствие условий для внедрения новых технологий, то есть - выхода из кризиса. Россия с легкой руки "сподвижников" Запада, засевших в структурах власти РФ, искусственно удерживается в состоянии кризиса. Если в развитых странах до 90% роста ВВП обеспечивается за счет внедрения новых технологий, то в России - от силы 5%. Такова реальная ситуация. Это сделано, чтобы новые идеи не попадали в производство, а оставались в "портфеле". Но как без новых технологий не может быть роста производства, так без роста производства нереален выход из кризиса. Это взаимосообщающиеся сосуды, о чем, будьте уверены, осведомлены в "правящих" верхах, не допуская условий, при которых внедрение новых технологий выгодно производителям. Народ готов к работе на подъем из кризиса, а верхи бойкотируют подъем. В этом и состоит конфликт верхов и низов, который обостряется не то что с каждым годом, а с каждым месяцем, имея только одну перспективу: его разрешение в виде роста производства. 

Один безтопливный двигатель, если дать ему "зеленый свет", опрокинет темные планы "тайного" мирового правительства по сокращению населения планеты до 1 млрд. человек якобы для облегчения нагрузки на планету. Зачем это делать такой ценой, если нагрузку на планету может в сотни или более раз уменьшить переход мира на бестопливные двигатели? В том и причина молчания вокруг столь блестящих технологий, как бестопливная, что с их внедрением темные планы мировой закулисы теряют смысл. Может, в том и состоит предназначение России, как предвестнице нового, неизведанного, чтобы получить такой тяжкий, опустошительный вариант кризиса, когда на износившихся мощностях будет не поднять систему, в связи с чем будет предпринят единственно возможный и быстрый вариант подъема: на основе внедрения уникальных "зарывающих технологий". 

Анализ того, насколько полно они закрывают больные места в экономике, убеждает, что они обеспечат самый быстрый, какой только можно представить, выход из кризиса. Возьмем, к примеру, технологию термической закалки рельсов. При ее внедрении в производство потребность в рельсах падает в три раза! Технология потому и попала в разряд "закрывающих", что "закрывает" проблему дефицита рельсов. С ее внедрением высвобождаются резервы множества металлургических заводов в разных странах мира. Это резервы, которые можно использовать для "закрытия" других дефицитов. Наличие таких технологий позволит мировому большинству, которое вошло в XXI век с теми же проблемами, какими мучалось во все предшествующие века, добывая средства к существованию, позволяет раз и навсегда закрыть их. В мире есть все, чтобы решить на 100% жилищную, продовольственную, транспортную и прочие проблемы выживания. Этот вопрос вообще не должен стоять в XXI веке, но стоит, так как хозяева мира не заинтересованы закрывать "дефициты". Если продукт не будет в дефиците, они не смогут держать на него высокую цену. 

Не смогут держать под контролем распределение материальных благ, распределяя их так, чтобы меньшинство могло жить за счет большинства. Это скрытый вид рабства, для сохранения которого мировое правительство строго следит за тем, чтобы ни одна из стран мира не отказалась от кризисного варианта "развития" в пользу некризисного. Россия, опущенная верхами на край, имеет перспективу перейти на некризисный вариант развития, так как ближе других стран подошла к варианту рывкового подъема через внедрение "закрывающих технологий". Внедрение этих технологий не повлечет глобальной реконструкции производств, то есть - не разорит производителей, так как переконструировать почти нечего. 

Что же из себя представляют эти "закрывающие" технологии? Возьмем для примера область энергетики, чтобы показать, в какой степени может изменить картину мира применение "закрывающих технологий" только в одной сфере. Русский изобретатель из Перми А. Бакаев создал "приставку" к автодвигателям, которая позволяет автомобилям ездить на воде без каких-либо углеводородных добавок к ней. И это не фантастический проект. Он уже внедряется. Приставками оснащены уже более 3-х тысяч автомобилей, курсирующих по дорогам России. Это в буквальном смысле подарок автолюбителям. Использование приставок избавляет автомобилистов от затрат на бензин, а атмосферу - от вредных выбросов. Чтобы создать такую приставку, А. Бакаев сначала открыл новый тип расщепления, использовав его в своем уникальном изобретении. Другой русский ученый XX века, Б. Болотов, создал автодвигатель, которому нужна чуть ли не капля бензина, и то для первоначальной раскрутки. Двигателю, который он изобрел, не нужны ни коленчатый вал, ни цилиндры, ни вообще трущиеся детали. Их заменяют два диска на подшипниках с небольшим зазором между ними. В качестве топлива работает воздух, который на огромных оборотах разделяется на кислород и азот. При 90° градусах азот сгорает в кислороде, в результате чего двигатель массой 8 кг развивает мощность в 300 лошадиных сил. Помимо безтопливного двигателя Василия Алексеенко, русские изобретатели предложили еще несколько конструкций безтопливных двигателей. Они работают на принципиально новых источниках энергии: на энергии вакуума и других. Могущество США, чья экономика намертво завязана на нефти и других иссякающих видах сырья, рухнет, как рухнули небоскребы-близнецы, если Россия пойдет по пути внедрения "закрывающих технологий", а она пойдет по этому пути, так как у русских, которых измучил кризис, нет выбора. Или резко вперед или погибель. Но и "закрывающие" технологии - не предел. С открытием хрононов, мельчайших частиц, поставщиков энергии, ученые всерьез задумались об использовании энергии высшего порядка: хрональной. 

В свете озвученных фактов ясно, почему в России устроен и искусственно удерживается кризис уже в течение 17 лет. К 1990 году русские накопили самый мощный в мире потенциал технологий, внедрение которых раз и навсегда закрывало все дефициты разом, останавливая экологическую катастрофу. Это был бы самый мощный удар по Западу, использующему дефицит в качестве кнута и пряника для управления миром, искусственно удерживая его на уровне примитивной борьбы за средства к существованию. Кризис - это то препятствие, которое затормозило русских, но не отменило рывок. Кризис поворачивается своей второй стороной, работая как толчок к внедрению "закрывающих" технологий. Впереди мощные выравнивающие процессы. 

Александр Щербаковпо материалам газеты "Новая система", №29, 2003 г. 

zema.su